2N5366 2N5367

PNP SILICON TRANSISTOR

www.centralsemi.com

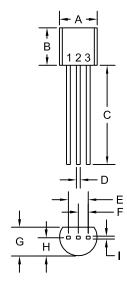
DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2N5366 and 2N5367 are silicon PNP epitaxial planar transistors designed for general purpose switching and amplifier applications.

MAXIMUM RATINGS: (T _A =25°C)		SYMBOL			UNITS
Collector-Base Voltage		V_{CBO}	4	0	V
Collector-Emitter Voltage		V_{CEO}	4	.0	V
Emitter-Base Voltage		V_{EBO}	4	.0	V
Continuous Collector Current		I _C	30	300	
Continuous Collector Current (tp=10µs)		l _C	70	00	mA
Power Dissipation		P_{D}	62	25	mW
Operating and Storage Junction Temperature		T _J , T _{stg}	-65 to +150		°C
Thermal Resistance		$\Theta_{\sf JA}$	200		°C/W
ELECTRICA	AL CHARACTERISTICS: (Τ _Α =25°C ι	unless otherwise	noted)		
SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ICBO	V _{CB} =40V			100	nA
I _{CBO}	V_{CB} =40V, T_A =100°C			10	μΑ
ICES	V _{CE} =40V			100	nA
I _{EBO}	V _{EB} =4.0V			10	μΑ
BV_{CEO}	I _C =10mA	40			V
V _{CE(SAT)}	I _C =50mA, I _B =2.5mA			0.25	V
VCE(CAT)	Ic=300mA Ip=30mA			1.0	V

ICES	V _{CE} =40V			100	nA
I _{EBO}	V _{EB} =4.0V			10	μΑ
BV_{CEO}	I _C =10mA	40			V
V _{CE(SAT)}	I_C =50mA, I_B =2.5mA			0.25	V
V _{CE} (SAT)	I _C =300mA, I _B =30mA			1.0	V
V _{BE(SAT)}	I_C =50mA, I_B =2.5mA			1.1	V
V _{BE(SAT)}	I_C =300mA, I_B =30mA			2.0	V
V _{BE(ON)}	V_{CE} =10V, I_{C} =2.0mA	0.5		0.8	V
f _T	V_{CE} =10V, I_{C} =2.0mA		250		MHz

		<u>2N5366</u>		2N:	<u>2N5367</u>		
		MIN	MAX	MIN	MAX		
hFE	V_{CE} =10V, I_{C} =2.0mA	80	-	200	-		
hFE	V_{CE} =1.0V, I_{C} =50mA	100	300	250	500		
h _{FE}	V_{CE} =5.0V, I_{C} =300mA	40	-	75	-		
h _{fe}	V _{CE} =10V, I _C =2.0mA, f=1.0kHz	80	450	200	750		


R2 (24-July 2019)

2N5366 2N5367

PNP SILICON TRANSISTOR

TO-92 CASE - MECHANICAL OUTLINE

DIMENSIONS					
	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	
A (DIA)	0.175	0.205	4.45	5.21	
В	0.170	0.210	4.32	5.33	
С	0.500	-	12.70	-	
D	0.016	0.022	0.41	0.56	
Е	0.100		2.54		
F	0.050		1.27		
G	0.125	0.165	3.18	4.19	
Н	0.080	0.105	2.03	2.67	
	0.015		0.38		

TO-92 (REV: R1)

LEAD CODE:

- 1) Emitter 2) Base

R1

3) Collector

MARKING: FULL PART NUMBER

R2 (24-July 2019)

www.centralsemi.com

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free guick ship samples (2nd day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- · Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits
- · Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA Main Tel: (631) 435-1110

Main Fax: (631) 435-1824 Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors:

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms