

BeStar Technologies Inc.

Address: 761 N. 17th Street Unit 4, St. Charles, IL 60174
Tel: 847-261-2850 E-mail: sales@bestartech.com Web: www.bestartech.com

Document Number: 0012-69 Revision : A5 **Total Pages** : 5 Prepare by : Loki, Lo

: 31 December, 2012 Date

SoniCrest Brand Acoustic Components

www.jlsonicrest.com

Document Type : Specification

Product Type : Electro-magnetic Sound Generator Component

Part Number : HC0903F

A4 - update layout and format by Leo, Sin on 26 Jul., 2004	
A5 - update layout and format by Loki, Lo on 31 Dec., 2012	

This material is the property of BeStar Technologies Inc. Unauthorized copying or use of this material is prohibited.

1. Purpose and Scope

This document contains both general requirements, qualification requirements, and those specific electrical, mechanical requirements for this part.

2. Description

Ø9.5mm electro-magnetic sound generator, RoHS compliant.

3. Application

Computers and Peripherals, Portable Equipment, Automobile Electronics, etc.

4. Component Requirement

4.1 General Requirement

4.1.1. Operating Temperature Range : -20°C to +60°C

4.1.2. Storage Temperature Range : -30°C to +70°C

4.1.3. Housing Material : Noryl SE1

4.1.4. Weight : Approx. 1g

4.2 Electrical Requirement

4.2.1. Rated Voltage : 3V

4.2.2. Operating Voltage : 2 ~ 4 V

4.2.3. Rated Current : <=80mA

(Applying rated voltage and rated frequency)

4.2.4. Coil Resistance : $25 \pm 4 \Omega$

4.2.5. Sound Pressure Level at 10cm : >=82dB

(Applying rated voltage and rated frequency)

4.2.6. Rated Frequency : 3200Hz

Figure 1. Frequency Response

4.3 Mechanical Requirement

4.3.1. Layout and Dimension : See Section 7, Figure 3

4.4 Test Setup

Figure 2. Test Setup

Notes: Apply 3V from DC power supply, set 3200Hz from Signal Generator. Measure SPL using a calibrated SPL meter 10cm from the alert port. Sound level meter to be in accordance with IEC651 (1979) Type 1 and/or ANSI S1.4-1983. The meter must be checked on a daily basis using a calibrated acoustic calibrator recommended by the manufacturer. Measurement should be carried out in a free field environment or at least 40cm from any surface.

5. Reliability Test

- **5.1. Operating Life**: Subject samples to room condition for 96 hours with rated power and resonance frequency. Components must be fully stabilized before data is taken, which may require up to a 2 hours soak.
- **5.2. High Temperature**: Subject samples to +60°C and operate for 96 hours with rated power and resonance frequency. Components must be fully stabilized at temperature extremes before data is taken, which may require up to a 2 hours soak.
- **5.3. Low Temperature**: Subject samples to -20°C and operate for 96 hours with rated power and resonance frequency. Components must be fully stabilized at temperature extremes before data is taken, which may require up to a 2 hours soak.
- **5.4. Temperature Cycle**: Each temperature cycle shall consist of 30 minutes at -20°C, 15 minutes at +20°C, 30 minutes at +60°C and 15 minutes at +20°C. Test duration is for 10 cycles. Components must be fully stabilized at temperature extremes before data is taken, which may require up to a 2 hours soak.
- **5.5. Static Humidity**: Precondition at room temperature for 1 hour. Then expose to +40°C with 90 to 95% relative humidity for 96 hours. Finally dru at room ambient for 2 hours before taking final measurement.
- **5.6. Random Vibration**: Secure samples. Vibrated randomly $10\text{Hz} \sim 50\text{Hz} \sim 10\text{Hz}$ with 1.52mm peak amplitude and 1 minute sweep duration. The test duration is 2 hours per plane.
- **5.7. Mechanical Shock**: Secure samples as required. Then subject samples to half sine wave pules $(100\text{m/s}^2 \text{ for } 16\text{ms})$ for a total of 1000 ± 10 shocks.
- **5.8. Drop Test**: Drop samples with package naturally from the height of 1m onto a wooden board three times.

HC0903F Page 5 of 5

6. Mechanical Layout

Unit: mm

Tolerance : Linear $XX.X = \pm 0.3$

 $XX.XX = \pm 0.05$

Angular = $\pm 0.25^{\circ}$

(unless otherwise specified)

Figure 3. HC0903F Mechanical Layout