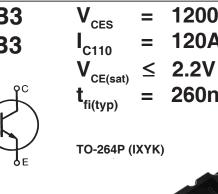
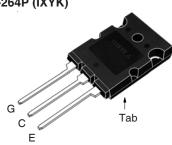
LIXYS 1200V XPT[™] IGBT GenX3[™]

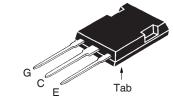

Advance Technical Information


IXYK120N120B3 IXYX120N120B3

High-Speed IGBT for 10-30 kHz Switching

Symbol	Test Conditions	Maximum Ratings			
V _{ces}	$T_{J} = 25^{\circ}C \text{ to } 175^{\circ}C$	1200	V		
V _{CGR}	$T_{J} = 25^{\circ}C$ to 175°C, $R_{GE} = 1M\Omega$	1200	V		
V _{GES}	Continuous	±20	V		
V _{GEM}	Transient	±30	V		
I _{C25}	$T_c = 25^{\circ}C$ (Chip Capability)	320	A		
	Terminal Current Limit	160	А		
I _{C110}	$T_c = 110^{\circ}C$	120	A		
I _{CM}	$T_c = 25^{\circ}C$, 1ms	800	А		
I _A	T _c = 25°C	60	A		
E _{AS}	$T_c = 25^{\circ}C$	2	J		
SSOA	$V_{GE} = 15V, T_{VJ} = 150^{\circ}C, R_{G} = 1\Omega$	I _{CM} = 240	A		
(RBSOA)	Clamped Inductive Load	$V_{ce} \leq V_{ces}$			
P _c	$T_c = 25^{\circ}C$	1500	W		
T,		-55 +175	°C		
T _{JM}		175	°C		
T _{stg}		-55 +175	°C		
T	Maximum Lead Temperature for Soldering	300	°C		
	1.6 mm (0.062in.) from Case for 10s	260	°C		
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in		
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb		
Weight	TO-264P	10	g		
	PLUS247	6	g		

Symbol (T _J = 25°C, U	Test Conditions Jnless Otherwise Specified)	Characteristic Values Min. Typ. Max.				
BV _{CES}	$I_{c} = 250 \mu A, V_{ge} = 0 V$	1200			V	
$V_{_{GE(th)}}$	I_{c} = 1mA, $V_{ce} = V_{ge}$	3.0		5.0	V	
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$ $T_{J} = 150^{\circ}C$			25 1.5	μA mA	
I _{GES}	V_{CE} = 0V, V_{GE} = ±20V			±200	nA	
V _{CE(sat)}	I_{c} = 100A, V_{ge} = 15V, Note 1 T_{J} = 150°C		1.8 2.4	2.2	V V	



1200V

120A

260ns

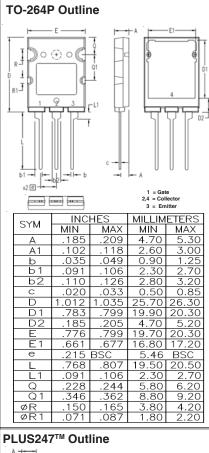
PLUS247 (IXYX)

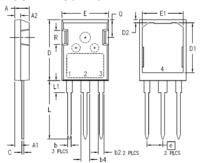
G = Gate = Emitter Е C = Collector Tab = Collector

Features

- Square RBSOA
- International Standard Packages
- · Positive Thermal Coefficient of Vce(sat)
- Avalanche Rated
- High Current Handling Capability

Advantages


- High Power Density
- Low Gate Drive Requirement


Applications

- High Frequency Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

	Γ	XYS				
		t Conditions	teristic V	eristic Values		
$(T_{J} = 25)$	°C Ur	nless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}		$I_{c} = 60A, V_{ce} = 10V, Note 1$	40	70	S	
C _{ies})			9800	pF	
C _{oes}	}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		567	pF	
C _{res}	J			215	pF	
Q _{g(on)}				400	nC	
Q _{ge}	}	$I_{c} = I_{c110}, V_{ge} = 15V, V_{ce} = 0.5 \bullet V_{ces}$		70	nC	
Q _{gc}	J			190	nC	
t _{d(on)})			30	ns	
t _{ri}		Inductive load, T _{.1} = 25°C		54	ns	
E _{on}		$I_{c} = 100A, V_{GE} = 15V$		9.7	mJ	
t _{d(off)}	Ì	$V_{cE} = 0.8 \cdot V_{cES}, R_{g} = 1\Omega$		340	ns	
t _{fi}		Note 2		260	ns	
E _{off}	J			21.5	mJ	
t _{d(on)})			29	ns	
t _{ri}		Inductive load, T _J = 150°C		55	ns	
E _{on}		I _c = 100A, V _{ge} = 15V		14.7	mJ	
t _{d(off)}	($V_{ce} = 0.8 \bullet V_{ces}, R_{g} = 1\Omega$		420	ns	
t _{ri}		Note 2		406	ns	
E _{off}	J			27.9	mJ	
R _{thJC}					0.10 °C/W	
R _{thCS}				0.15	°C/W	

IXYK120N120B3 IXYX120N120B3

Terminals: 1 - Gate 2,4 - Collector

SYM	INC	HES	MILLIMETERS			
SIM	MIN	MAX	MIN	MAX		
А	.190	.205	4.83	5.21		
A1	.090	.100	2,29	2.54		
A2	.075	.085	1.91	2.16		
b	.045	.055	1.14	1.40		
b2	.075	.087	1.91	2.20		
b4	.115	.126	2.92	3.20		
С	.024	.031	0.61	0.80		
D	.819	.840	20.80	21.34		
D1	.650	.690	16.51	17.53		
D2	.035	.050	0.89	1.27		
E	.620	.635	15.75	16.13		
E1	.520	.560	13.08	14.22		
е	.215	BSC	5.45	5.45 BSC		
L	.780	.810	19.81	20,57		
L1	.150	.170	3.81	4.32		
Q	.220	.244	5.59	6.20		
R	.170	.190	4.32	4,83		

Notes:

- 1. Pulse test, t \leq 300µs, duty cycle, d \leq 2%.
- 2. Switching times & energy losses may increase for higher V_{ce} (clamp), T_{J} or R_{g} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the	Bight to Change	limite T	Lest Conditions	and Dimensions
INTO Reserves life	night to Change	ELITTING, I	rest Conditions,	and Dimensions.

IXYS MOSFETs and IGBTs are covered 4,835,					6,404,065 B1				
by one or more of the following U.S. patents: 4,860,	72 5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
4,881,	06 5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.