

MOSFET – Power, Single N-Channel, Logic Level, DFN5/DFNW5

30 V, 0.67 mΩ, 370 A

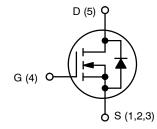
NVMFS4C01N, NVMFS4C301N

Features

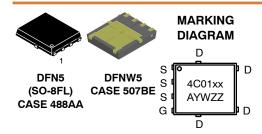
- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS4C01NWF Wettable Flanks Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)

Symbol	Parameter			Value	Unit
V_{DSS}	Drain-to-Source Voltage			30	V
V _{GS}	Gate-to-Source Voltage			±20	V
I _D	Continuous Drain Current $R_{\theta JC}$ (Notes 1, 3)	Steady	T _C = 25 °C	370	Α
P _D	Power Dissipation $R_{\theta JC}$ (Notes 1, 3)	State	T _C = 25 °C	161	W
I _D	Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2, 3)	Steady State	T _A = 25 °C	57	Α
P _D	Power Dissipation $R_{\theta JA}$ (Notes 1, 2, 3)	State	T _A = 25 °C	3.84	W
I _{DM}	Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	900	Α
T _J , T _{stg}	Operating Junction and Storage Temperature			-55 to 175	°C
I _S	Source Current (Body Diode)			110	Α
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 35 A)			862	mJ
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)


Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Junction-to-Case - Steady State	0.93	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 2)	39	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	0.67 m Ω @ 10 V	370 A
	0.95 mΩ @ 4.5 V	370 A

N-CHANNEL MOSFET

4C01N = Specific Device Code for NVMFS4C01N

4C01WF= Specific Device Code of NVMFS4C01NWF

A = Assembly Location

Y = Year W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFS4C01NT1G,	DFN5	1500 /
NVMFS4C301NET1G	(Pb-Free)	Tape & Reel
NVMFS4C01NT3G	DFN5 (Pb-Free)	5000 / Tape & Reel
NVMFS4C01NWFT1G,	DFNW5	1500 /
NVMFS4C301NWFET1G	(Pb-Free)	Tape & Reel

DISCONTINUED (Note 1)

NVMFS4C01NWFT3G	DFNW5	5000 /	
	(Pb-Free)	Tape & Reel	

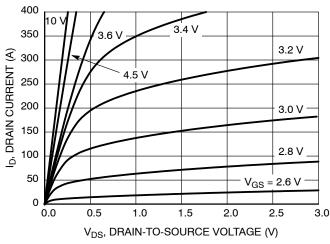
- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- DISCONTINUED: These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on <u>www.onsemi.com</u>.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)

Symbol	Parameter	Test Cond	Test Condition		Тур	Max	Unit
OFF CHAR	ACTERISTICS						
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
V _{(BR)DSS} /	Drain-to-Source Breakdown Voltage Temperature Coefficient				16.3		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V,	T _J = 25 °C			1	
		V _{DS} = 24 V	T _J = 125 °C			100	μΑ
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 \text{ V}, V_{C}$	_{aS} = 20 V			100	nA
ON CHARA	CTERISTICS (Note 4)						-
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{DS}$	_ = 250 μΑ	1.3		2.2	V
V _{GS(TH)} /T _J	Negative Threshold Temperature Coefficient				5.8		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V	I _D = 30 A		0.56	0.67	_
		V _{GS} = 4.5 V	I _D = 30 A		0.76	0.95	mΩ
9FS	Forward Transconductance	V _{DS} = 3 V, I _D = 30 A			183		S
R_{G}	Gate Resistance	T _A = 25 °C			1.0		Ω
CHARGES	AND CAPACITANCES				•		•
C _{ISS}	Input Capacitance			10144		pF	
Coss	Output Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			5073		
C _{RSS}	Reverse Transfer Capacitance	1		148			
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A			63		nC
Q _{G(TH)}	Threshold Gate Charge				18		
Q _{GS}	Gate-to-Source Charge				29		
Q_{GD}	Gate-to-Drain Charge				13		
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 30 A			139		nC
SWITCHING	CHARACTERISTICS (Note 5)						
t _{d(ON)}	Turn-On Delay Time				29		
t _r	Rise Time	V _{GS} = 4.5 V, V _{DS} =	15 V. In = 15 A.		68		ns
t _{d(OFF)}	Turn-Off Delay Time	R _G = 3.0	ο Ω΄ ΄		53		
t _f	Fall Time				36		1
DRAIN-SOL	JRCE DIODE CHARACTERISTICS						-
V_{SD}	Forward Diode Voltage	V _G s = 0 V.	T _J = 25 °C		0.73	1.1	
		$V_{GS} = 0 \text{ V},$ $I_{S} = 10 \text{ A}$	T _J = 125 °C		0.55		V
t _{RR}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$			87		
ta	Charge Time				43		ns
t _b	Discharge Time				44		
Q _{RR}	Reverse Recovery Charge				147		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

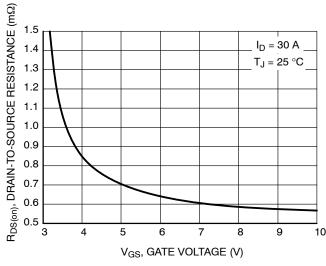
4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.


5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

400

350


 $V_{DS} = 3 V$

D, DRAIN CURRENT (A) 300 250 200 T_J = 25 °C 150 100 T_J = 150 °C 50 = −55 °C 0 1.5 2.5 3 3.5 4

Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics

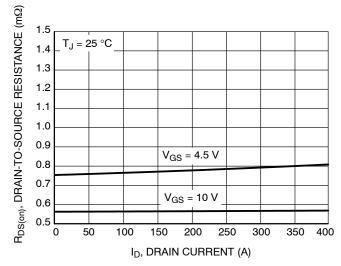
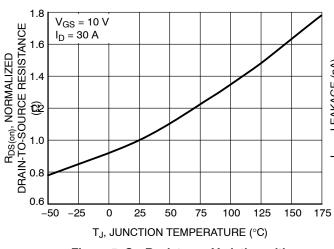



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

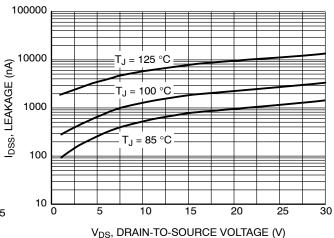


Figure 5. On-Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS (continued)

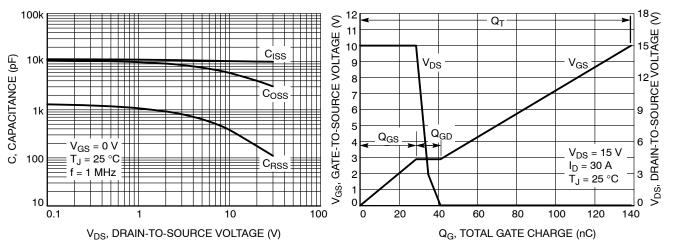


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

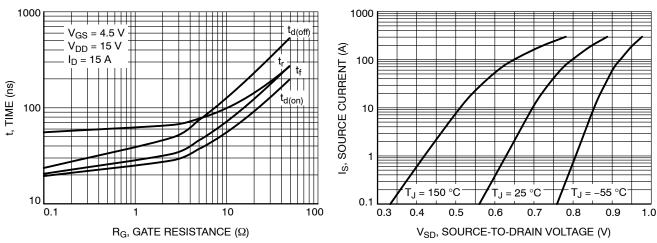


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

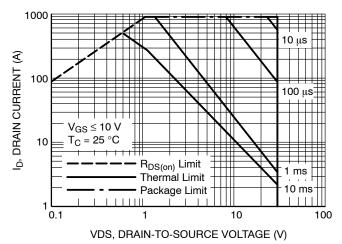


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS (continued)

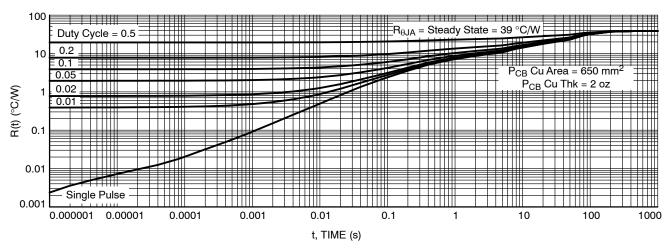


Figure 12. Thermal Impedance (Junction-to-Ambient)

Figure 13. Avalanche Characteristics

REVISION HISTORY

Revision	Description of Changes	Date
5	Added a new device core number – NVMFS4C301N and two OPNs – NVMFS4C301NET1G, NVMFS4C301NWFET1G. Updated the main title – added DFNW5 package.	8/26/2025

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

0.10

0.10

SIDE VIEW

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA **ISSUE N**

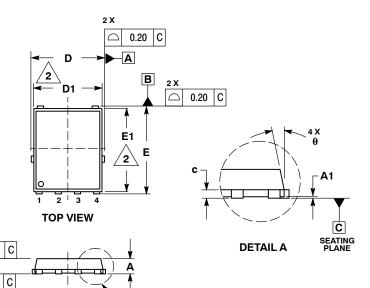
DATE 25 JUN 2018

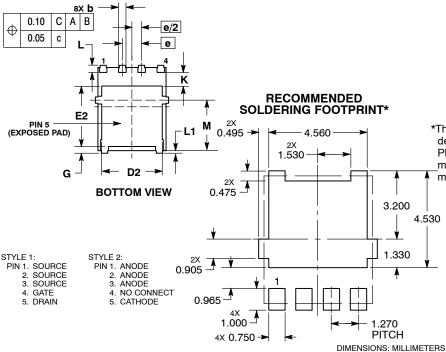
NOTES:

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е		1.27 BSC)	
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
М	3.00	3.40	3.80	
θ	0 °		12 °	

GENERIC MARKING DIAGRAM*




XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week = Lot Traceability ZZ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PIN 1

IDENTIFIER

DFNW5 4.90x5.90x1.00, 1.27P CASE 507BE

A

ISSUE B

DATE 19 SEP 2024

MAX

1.10

0.05

0.51

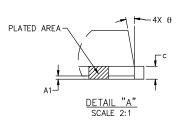
0.33

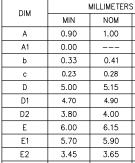
5.30

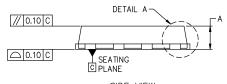
5.10

4.20

6.30

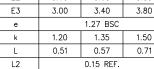

6.10


3.85

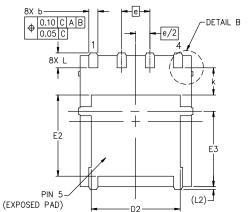

12°

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-2018.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS
- THIS PACKAGE CONTAINS WETTABLE FLANK DESIGN FEATURES TO AID IN FILLET FORMATION ON THE LEADS DURING MOUNTING.



CONSTRUCTION



6

0.

SIDE VIEW

TOP VIEW

BOTTOM VIEW

DETAIL "B" SCALE 2:1

2X 0.50-4.56 -1.53-2X 0.48 PACKAGE 3.20 OUTLINE 1.33 2X 0.91-4X 1.00 0.97 1.27 PIN 1 ID PITCH 4X 0.75

θ

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR Pb—FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

= Assembly Location Α Υ = Year

W = Work Week 77 = Lot Traceability

XXXXXX = Specific Device Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON33319H Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** DFNW5 4.90x5.90x1.00, 1.27P

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PAGE 1 OF 1

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales