

Cortina Systems[®] IXF1104 4-Port Gigabit Ethernet Media Access Controller

Datasheet

The Cortina Systems[®] IXF1104 4-Port Gigabit Ethernet Media Access Controller (IXF1104 MAC) supports IEEE 802.3* 10/100/1000 Mbps applications. The IXF1104 MAC supports a System Packet Interface Phase 3 (SPI3) system interface to a network processor or ASIC, and concurrently supports copper and fiber physical layer devices (PHYs).

The copper PHY interface supports the standard and reduced pin-count Gigabit Media Independent Interface (GMII and RGMII) for high-port-count applications. For fiber applications the integrated Serializer/ Deserializer (SerDes) on each port supports direct connection to optical modules to reduce PCB area requirements and system cost.

Product Features

- Four Independent Ethernet MAC Ports for Copper or Fiber Physical layer connectivity.
 - IEEE 802.3 compliant
 - Independent Enable/Disable of any port
- Copper Mode:
 - RGMII for 10/100/1000 Mbps links
 - GMII for 1000 Mbps full-duplex links
 - IEEE 802.3 MDIO interface
- Fiber Mode:
 - Integrated SerDes interface for direct connection to 1000BASE-X optical modules
 - IEEE 802.3 auto-negotiation or forced mode
 - Supports SFP MSA-compatible transceivers
- SPI3 interface supports data transfers up to 4 Gbps in both modes:
 - 32-bit Multi-PHY mode (133 MHz)
 - 4 x 8-bit Single-PHY mode (125 MHz)
- IEEE 802.3-compliant Flow Control
 - Loss-less up to 9.6 KB packets and 5 km links
 - Jumbo frame support for 9.6 KB packets
- Internal per-channel FIFOs: 32 KB Rx, 10 KB Tx
- Flexible 32/16/8-bit CPU interface

- Programmable Packet handling
 - Filter broadcast, multicast, unicast, VLAN and errored packets
 - Automatically pad undersized Tx packets
 - Remove CRC from Rx packets
- Performance Monitoring and Diagnostics
 - RMON Statistics
 - CRC calculation and error detection
 - Detection of length error, runt, or overly large packets
 - Counters for dropped and errored packets
 - Loopback modes
 - JTAG boundary scan
- .18 m CMOS process technology
 - 1.8 V core, 2.5 V RGMII, GMII, OMI, and 3.3 V SPI3 and CPU
- Operating Temperature Ranges:
 - Copper Mode: -40 °C to +85 °CFiber Mode: 0 °C to +70 °C
- Package Options:
 - 552-ball Plastic FC-BGA (Leaded)
 - 552-ball Plastic FC-BGA (RoHS)
 - 552-ball Ceramic BGA (contact your Cortina Sales Representative)

Applications

- Load Balancing Systems
- MultiService Switches
- Web Caching Appliances
- Intelligent Backplane Interfaces
- Edge Routers
- Redundant Line Cards

- Base Station Controllers and Transceivers
- Serving GPRS Support Nodes (SGSN)
- Gateway GPRS Support Nodes (GGSN)
- Packet Data Serving Nodes (PDSN)
- DSL Access Multiplexers (DSLAM)
- Cable Modem Termination Systems (CMTS)

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH CORTINA SYSTEMS® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

EXCEPT AS PROVIDED IN CORTINA'S TERMS AND CONDITIONS OF SALE OF SUCH PRODUCTS, CORTINA ASSUMES NO LIABILITY WHATSOEVER, AND CORTINA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF CORTINA PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Cortina products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Cortina Systems[®] and the Cortina Systems logo are the trademarks or registered trademarks of Cortina Systems, Inc. and its subsidiaries in the U.S. and other countries. Other names and brands may be claimed as the property of others.

Copyright © 2002 - 2008 Cortina Systems, Inc. All rights reserved.

Revision History

Revision 13.2 Revision Date: 17 September 2008

- Updated Figure 39, 1000BASE-T Receive Interface Timing, on page 137.
- Updated the Tcdwd and Tcdrh parameter values in Table 53, CPU Interface AC Signal Parameters, on page 143.
- Updated the Tdatd, Tlath and Tlatl parameter values in Table 57, LED Interface AC Timing Parameters, on page 147.
- Replaced the FC-PBGA package drawings in Section 9.3.2, Plastic Ball Grid Array Package Diagram, on page 216.
- · Replaced occurences of "2.5V LVTTL" with "2.5V CMOS".
- Removed caution specifying that "IXF1104 MAC input signals are not 5 V tolerant" in Section 7.1, DC Specifications, on page 128 and added a note stating that "All 3.3V LVTTL input buffers are 5V tolerant, and all 2.5V CMOS input buffers are 3.3V LVTTL level tolerant.
- Updated signal names shown in Figure 31, Figure 32, Figure 47and Figure 48 to match the signal tables.

Revision 13.1 Revision Date: 01 August 2008

Removed the ordering information from Table 156, *Package Description, on page 213*. This information is now available from www.cortina-systems.com.

Revision 13.0 Revision Date: 30 June 2008

Updated Section 9.0, *Mechanical Specifications, on page 213* to reflect the change to the Flip Chip-Plastic Ball Grid Array (FC-PBGA) package. This chapter includes new package dimensions, part numbers and diagrams.

Revision 12.2 Revision Date: 12 May 2008

- · Updated document with the new corporate logo and template.
- Updated Figure 6, Analog Power Supply Filter Network, on page 63.
- Updated Figure 12, MPHY Receive Logical Timing, on page 82.
- Updated Table 40, DC Specifications, on page 128.
- Updated Figure 39, 1000BASE-T Receive Interface Timing, on page 137.
- Updated the RxRuntErrors counter description. See page 169.

Revision 12.1 Revision Date: 14 September 2007

Removed the marking and ordering information. This information is now available from www.cortina-systems.com.

Revision 12.0 Revision Date: 20 July 2007

· DC coupling is not supported and references were removed.

Revision Number: 11.0 Revision Date: 24 April 2007		
Page #	Page # Description	
	Updated the CBGA package side-view drawing (Figure 55, CBGA Package Side View Diagram).	
	 Added the FCPBGA package side-view drawing (Figure 57, FC-PBGA Package Diagram (Top and Side View), on page 216). 	
N/A	Updated Electrical specs. on UPX_ADD, UPX_BADD, UPX_DATA, UPX_CS_L, UPX_WR_L, UPX_RD_L, UPX_RDY_L, UPX_WIDTH, TCLK, SYS_RES_L, and CLK123 (Table 7 on page 51, Table 12 on page 55, and Table 13 on page 55).	
	 Updated the description of the MDIO Soft Reset Register (0x506) to include a definition of a "reset" (Table 106, MDIO Soft Reset (\$0x506), on page 182). 	

Revision Number: 10.0 Revision Date: 28 November 2006	
Page #	Description
N/A	First release of this document from Cortina Systems, Inc.

Revision Number: 009 Revision Date: 27-Oct-2005	
Page #	Description
page 69	Modified Figure 8, Ethernet Frame Format [changed Preamble byte count to 7 bytes].
page 130	Table 44, RGMII Power [changed V _{CC} to V _{DD in} I _{IH} and I _{IL}]
page 105	Added bullet to Section 5.7.3, <i>I</i> ² C Module Configuration Interface: The I2C interface only supports random single-byte reads and does not guarantee coherency when reading two-byte registers.
page 216	Replaced Figure 57, FC-PBGA Package Diagram (Top and Side View), on page 216.
page 205	Modified Table 146, SPI3 Receive Configuration (\$0x701).
page 211	Modified Table 153, Optical Module Control Ports 0 - 3 (\$0x79A): changed default values.
page 212	Modified Table 154, I ² C Control Ports 0 - 3 (\$0x79B).
page 227	Modified Table 213, I2C Data Ports 0 - 9 (\$0x79F) (changed address from \$0x79C to \$0x79F).
N/A	Added 552-ball Flip Chip-PBGA (FC-PBGA) and Product Ordering Number information.

Revision Number: 008 Revision Date: August 1, 2005 (Sheet 1 of 2)	
Page #	Description
N/A	Added 552-ball Ceramic Ball Grid Array (CBGA) compliant with RoHS and Product Ordering Number information.
N/A	Added 552-ball Flip Chip-PBGA (FC-PBGA) and Product Ordering Number information.
page 55	Modified Table 12, JTAG Interface Signal Descriptions: changed Standard to 3.3 V LVTTL from 2.5 V CMOS.
page 69	Modified Figure 9, PAUSE Frame Format [changed Preamble byte count to 7 bytes].
page 82	Modified Figure 11, MPHY Transmit Logical Timing [updated TDAT[31:0]].
page 82	Modified Figure 12, MPHY Receive Logical Timing [updated RDAT[31:0]].
page 85	Modified Figure 14, SPHY Transmit Logical Timing [updated TDAT[7:0]].
page 85	Modified Figure 15, SPHY Receive Logical Timing [updated RDAT[7:0] and RPRTY].
page 116	Modified Figure 31, <i>Read Timing Diagram - Asynchronous Interface</i> : changed uPx_ADD[12:0] to uPx_ADD[10:0].
page 119	Added paragraphs two and three under Section 5.11, Loopback Modes.
page 122	Changed 3.3 V CMOS to 2.5 V CMOS under Section 5.12.5, JTAG Clock, on page 122.
page 125	Added Section 6.2, Disable and Enable Port Sequences.
page 130	Modified Table 44, $RGMII$ Power [changed V_{OH} , V_{OL} , V_{IH} , V_{IL} minimum conditions to V_{DD} and changed V_{IN} value to V_{DD} + .3].
page 131	Modified Table 45, SPI3 Receive Interface Signal Parameters [changed RFCLK duty cycle to 45 min and 55 max; Changed Min for RFCLK frequency to 90].
page 134	Modified Table 46, SPI3 Transmit Interface Signal Parameters [changed TFCLK duty cycle to 45 min and 55 max].
page 140	Changed MDC to MDIO Output delay max for t3 for 2.5 MHz from 200 to 300 in Table 51, MDIO Timing Parameters, on page 140.
page 162	Modified Table 88, TX Config Word (\$ Port_Index + 0x17) [changed default value for the register from "0x0001A0" to "0x000001A0" and changed default value for bit 6 (Half Duplex) from 1 to 0].

Revision Number: 008 Revision Date: August 1, 2005 (Sheet 2 of 2)	
Page #	Description
page 173	Modified Table 94, <i>PHY Control</i> (\$ <i>Port Index + 0x60</i>) [added "Need one-sentence descriptions of register" and register default value].
page 174	Modified Table 95, <i>PHY Status</i> (\$ <i>Port Index</i> + 0x61) [added "Need one-sentence descriptions of register" and register default value].
page 175	Modified Table 96, <i>PHY Identification 1</i> (\$ <i>Port Index + 0x62</i>) [added "Need one-sentence descriptions of register" and register default value].
page 175	Modified Table 97, PHY Identification 2 (\$ Port Index + 0x63) [added "Need one-sentence descriptions of register" and register default value].
page 176	Modified Table 98, Auto-Negotiation Advertisement (\$ Port Index + 0x64) [added "Need one-sentence descriptions of register" and register default value].
page 177	Modified Table 99, <i>Auto-Negotiation Link Partner Base Page Ability (\$ Port Index + 0x65)</i> [added "Need one-sentence descriptions of register" and register default value].
page 178	Modified Table 100, <i>Auto-Negotiation Expansion</i> (\$ Port Index + 0x66) [added "Need one-sentence descriptions of register" and register default value].
page 179	Modified Table 101, Auto-Negotiation Next Page Transmit (\$ Port Index + 0x67) [added "Need one-sentence descriptions of register" and register default value].
page 202	Modified Table 142, MDIO Single Read and Write Data (\$0x681) [changed MDIO write data to "MDIO write data to external device"].
page 203	Modified Table 145, SPI3 Transmit and Global Configuration (\$0x700) [changed default value for bits 3:0 from "0" to "1" and changed default value for entire register from "0x0020000F" to "0x00200000"].
page 205	Modified Table 146, SPI3 Receive Configuration (\$0x701) [changed default value for bits 11:8 from "0xF" to "0x1"].
page 211	Modified Table 153, Optical Module Control Ports 0 - 3 (\$0x79A) [changed default value for bits 16:13 from "0xF" to "0x1"].
page 216	Added Figure 57, FC-PBGA Package Diagram (Top and Side View), on page 216.
229	Added Section 9.4, "RoHS Compliance" on page 229.

	Revision Number: 007 Revision Date: March 24, 2004 (Sheet 1 of 5)	
Page #	Description	
All	Globally replaced GBIC with Optical Module Interface.	
All	Globally edited signal names.	
All	Globally changed SerDes and PLL analog power ball names as follows: TXAVTT and RXAVTT changed to AVDD1P8_2 TXAV25 and RXAV25 changed to AVDD2P5_2 PLL1_VDDA and PLL2_VDDA changed to AVDD1P8_1 PLL3_VDDA changed to AVDD2P5_1 PLL1_GNDA, PLL2_GNDA, and PLL3_GNDA changed to GND	
1	Reworded and rearranged the Product Features section on page one Changed Jumbo frame support from "10 kbytes" to "9.6 KB".	
21	Changed heading to Section 2.0, "General Description" [was Section 2.0, "Block Diagram"].	
23/37	Reversed sections as follows: Section 3.0, "Ball Assignments and Ball List Tables" Section 4.0, "Ball Assignments and Signal Descriptions"	

Revision Number: 007 Revision Date: March 24, 2004 (Sheet 2 of 5)	
Page #	Description
24	Modified Table 1 "Ball List in Alphanumeric Order by Signal Name": Changed A10 from VCC to VDD Changed C12 from VCC to VDD Changed D11 from VCC to VDD Changed J20 from GND to VDD Changed Ball A1 from NC to No Pad. Changed Balls A2, A3, A22, A23, A24, B1, B2, B23, B24, C1, C24, AB1, AB24, AC1, AC2, AC23, AC24, AD1,
	AD2, AD3, AD22, AD23, AD24 from NC to No Ball.
30	Modified Table 2 "Ball List in Alphanumeric Order by Ball Location" Changed A10 from VCC to VDD Changed C12 form VCC to VDD Changed D11 from VCC to VDD Changed J20 from GND to VDD
	Changed Ball A1 from NC to No Pad. Changed Balls A2, A3, A22, A23, A24, B1, B2, B23, B24, C1, C24, AB1, AB24, AC1, AC2, AC23, AC24, AD1, AD2, AD3, AD22, AD23, AD24 from NC to No Ball.
38	Updated Figure 4 "Interface Signals" [modified SPI3 interface signals and added MPHY and SPHY categories; modified signal names].
39	Broke old Table 1, "IXF1104 Signal Descriptions" into the following: Table 3 "SPI3 Interface Signal Descriptions" on page 39 through Table 14 "Power Supply Signal Descriptions" on page 56
39	Modified Table 3 "SPI3 Interface Signal Descriptions" on page 39 [edited description for DTPA; added text to TFCLK description; added text to RFCLK description].
50	Modified Table 6 "RGMII Interface Signal Descriptions" [Added Ball Designators; added notes under descriptions].
51	Modified Table 7 "CPU Interface Signal Descriptions" [UPX_DATA[16]: deleted J10, added M10].
53	Modified Table 9 "Optical Module Interface Signal Descriptions" [added Ball Designators].
54	Modified Table 10 "MDIO Interface Signal Descriptions" [moved note from MDC to MDIO].
56	Modified Table 14 "Power Supply Signal Descriptions" [added Ball Designators A4, A21, and AD21 to GND; added AVDD1P8_1, AVDD1P8_2, AVDD2P5_1, and AVDD2P5_2].
39	Modified Section 4.3, "Signal Description Tables" [changed heading from "Signal Naming Conventions; added new headings Section 4.1.1, "Signal Name Conventions" and Section 4.1.2, "Register Address Conventions"; and added/enhanced material under headings.
58	Added new Section 4.5, "Multiplexed Ball Connections" with Table 16 "Line Side Interface Multiplexed Balls" and Table 17 "SPI3 MPHY/SPHY Interface".
63	Modified Section 4.7, "Power Supply Sequencing" [changed language under this section and added Section 4.7.1, "Power-Up Sequence" and Section 4.7.2, "Power-Down Sequence"].
63	Modified Table 5 "Power Supply Sequencing" [deleted 3.3 V Supplies Stable; changed Apply 1.8 V to VDD, AVDD1P8_1, and AVDD1P8_2; changed Apply 2.5 V to AVDD2P5_1 and AVDD2P5_2].
61	Modified Table 18 "Definition of Output and Bi-directional Balls During Hardware Reset" [changed comments for Optical Modules].
64	Modified Table 20 "Pull-Up/Pull-Down and Unused Ball Guidelines" [changed TRST_L to pull-down; added MDIO, UPX_RDY_L, I ² C_DATA_3:0, and TX_DISABLE_3:0].
64	Added new Section 4.9, "Analog Power Filtering" [including Figure 6 "Analog Power Supply Filter Network" on page 65 and Table 21 "Analog Power Balls" on page 65].
66	Modified/edited text under Section 5.1, "Media Access Controller (MAC)" [rearranged and created new bullets].
67	Modified first paragraph under Section 5.1.1.1, "Padding of Undersized Frames on Transmit".
67	Modified entire Section 5.1.1.3, "Filtering of Receive Packets".
68	Added new Section 5.1.1.3.6, "Filter CRC Error Packets".

	Revision Number: 007 Revision Date: March 24, 2004 (Sheet 3 of 5)	
Page #	Description	
69	Added note under Table 22 "CRC Errored Packets Drop Enable Behavior".	
69	Added new Section 5.1.2, "Flow Control" including Figure 7 "Packet Buffering FIFO", Figure 8 "Ethernet Frame Format", and Figure 9 "PAUSE Frame Format".	
73	Replaced Section 5.1.2.1.5, "Transmit Pause Control Interface" [added Table 23 "Valid Decodes for TXPAUSEADD[2:0]" and modified Table 10 "Transmit Pause Control Interface".	
74	Modified Figure 10 "Transmit Pause Control Interface"	
75	Added note under Section 5.1.3.1, "Configuration".	
76	Added table note to Table 24 "Operational Mode Configuration Registers".	
77	Added note under Section 5.1.4.3, "Fiber Forced Mode".	
79	Modified Section 5.1.6.2, "TX Statistics" [added text to third sentence in first paragraph].	
79	Modified Section 5.1.6.3, "Loss-less Flow Control" [changed "two kilometers" to "five kilometers" in last sentence.	
80	Modified Section 5.1.7.1.2, "RX FIFO" [changed 10 KB to 9.6 KB; added text to last paragraph].	
83	Rewrote/replaced Section 5.2, "SPI3 Interface".	
86	Edited signal names in Figure 13 "MPHY 32-Bit Interface".	
90	Edited signal names in Figure 16 "SPHY Connection for Two IXF1104 MAC Ports (8-Bit Interface)".	
91	Added new Section 5.2.2.9, "SPI3 Flow Control". [Removed old "Packet-Level and Byte-Level Transfers" section.}	
94	Modified Figure 17 "MAC GMII Interconnect" [edited signal names].	
NA	Removed old Section 5.3.3 Electrical Requirements and Table 27 "Electrical Requirements" – changed Input high current Max from 40 to 15 and Input low current Min from -600 to -15.	
96	Added a note under Section 5.4, "Reduced Gigabit Media Independent Interface (RGMII)".	
96	Modified Figure 18 "RGMII Interface" [edited signal names].	
98	Modified Figure 19 "TX_CTL Behavior" [changed signal names].	
98	Modified Figure 20 "RX_CTL Behavior" [changed signal names].	
99	Modified Section 5.5, "MDIO Control and Interface" [changed 3.3 us to 3.3 ms in fourth paragraph, third sentence].	
103	Modified/replaced all text under Section 5.6, "SerDes Interface" on page 103 [added Table 29 "SerDes Driver TX Power Levels"].	
NA	Removed old Section 5.6.2.4 AC/DC Coupling.	
NA	Removed old Section 5.6.2.9 System Jitter.	
107	Modified Table 30 "IXF1104 MAC-to-SFP Optical Module Interface Connections" [edited signal names].	
107	Modified/replaced text and deleted old "Figure 19. Typical GBIC Module Functional Diagram" under Section 5.7, "Optical Module Interface"].	
108	Modified second sentence under Section 5.7.2.2.1, "MOD_DEF_0:3".	
109	Modified second sentence under Section 5.7.2.2.3, "RX_LOS_0:3".	
109	Removed third paragraph under Section 5.7.2.2.7, "RX_LOS_INT".	
110	Modified first and second paragraphs under Section 5.7.3, "I ² C Module Configuration Interface".	
111	Modified Section 5.7.3.3, "I2C Write Operation" [edited portions of text].	
116	Modified Table 31 "LED Interface Signal Descriptions" [changed 0.5 MHz to 720 Hz for LED_CLK under Signal Description].	
119	Modified Table 35 "LED Behavior (Fiber Mode)" [changed links under Description to "Link LED Enable (\$0x502)"].	
NA	Removed old Figure 30 "CPU – External and Internal Connections".	

	Revision Number: 007 Revision Date: March 24, 2004 (Sheet 4 of 5)	
Page #	Description	
123	Modified Table 37 "Byte Swapper Behavior" [edited/added new values].	
123	Modified second paragraph under Section 5.10, "TAP Interface (JTAG)"	
126	Modified Figure 33 "SPI3 Interface Loopback Path".	
126	Added note under Section 5.11.2, "Line Side Interface Loopback".	
127	Modified Figure 34 "Line Side Interface Loopback Path".	
127	Changed Section 5.12, "Clocks" [from GBIC output clock to I ² C Clock].	
129	Changed Section 5.12.6, "I2C Clock" [from GBIC Clock to I ² C Clock].	
130	Added new Section 6.0, "Applications".	
132	Modified Table 39 "Absolute Maximum Ratings" [changed SerDes analog power to AVDD1P8_2 and AVDD2P5_2; changed "PLL1_VDDA and PLL2_VDDA to AVDD1P8_1; changed PLL3_VDDA to AVDD2P5_1.	
133	Modified Table 40 "Recommended Operating Conditions" [changed SerDes analog power to AVDD1P8_2 and AVDD2P5_2; changed "PLL1_VDDA and PLL2_VDDA to AVDD1P8_1; changed PLL3_VDDA to AVDD2P5_1.	
134	Modified Table 42 "SerDes Transmit Characteristics" [included SerDes power driver level information].	
142	Modified Table 49 "GMII 1000BASE-T Transmit Signal Parameters" (changed Min values for t1 and t2.	
143	Modified Table 50 "GMII 1000BASE-T Receive Signal Parameters" (changed Min values for t1 and t2.	
146	Replaced old MDIO Timing diagram and table with Figure 43 "MDIO Write Timing Diagram", Figure 44 "MDIO Read Timing Diagram", and Table 52 "MDIO Timing Parameters".	
156	Broke up the old Register Map into Table 59 "MAC Control Registers (\$ Port Index + Offset)", Table 60 "MAC RX Statistics Registers (\$ Port Index + Offset)", Table 61 "MAC TX Statistics Registers (\$ Port Index + Offset)", Table 62 "PHY Autoscan Registers (\$ Port Index + Offset)", Table 63 "Global Status and Configuration Registers (\$ 0x500 - 0X50C)", Table 64 "RX FIFO Registers (\$ 0x580 - 0x58F)", Table 65 "TX FIFO Registers (\$ 0x600 - 0x63E)", Table 66 "MDIO Registers (\$ 0x680 - 0x683)", Table 67 "SPI3 Registers (\$ 0x700 - 0x716)", Table 68 "SerDes Registers (\$ 0x780 - 0x798)", and Table 69 "Optical Module Registers (\$ 0x799 - 0x79F)".	
159	Edited Table 63 "Global Status and Configuration Registers (\$ 0x500 - 0X50C)" [no offset].	
159	Edited Table 64 "RX FIFO Registers (\$ 0x580 - 0x5BF)" [no offset].	
160	Edited Table 65 "TX FIFO Registers (\$ 0x600 - 0x63E)" [no offset].	
161	Edited Table 66 "MDIO Registers (\$ 0x680 - 0x683)" [no offset].	
161	Edited Table 67 "SPI3 Registers (\$ 0x700 - 0x716)" [no offset].	
162	Edited Table 68 "SerDes Registers (\$ 0x780 - 0x798)" [no offset].	
162	Edited Table 69 "Optical Module Registers (\$ 0x799 - 0x79F)" [no offset].	
163	Modified Table 71 "Desired Duplex (\$ Port_Index + 0x02)" [changed 100 Mbps to 1000 Mbps in register description.	
167	Modified Table 82 "MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10)" [Added text to register description.]	
168	Modified Table 84 "FC Enable (\$ Port_Index + 0x12)" [changed description for bits 1:0].	
169	Modified Table 88 "RX Config Word (\$ Port_Index + 0x16)" [edited Register Description text; changed description and type for bits 13:12].	
170	Modified Table 89 "TX Config Word (\$ Port_Index + 0x17)" [edited description and type for bits 14, 13:12.	
171	Modified Table 90 "Diverse Config Write (\$ Port_Index + 0x18)" [edited description and type for bits 18:8; changed bits 3:1 to Reserved; added table note 2].	
172	Renamed/modified Table 91 "RX Packet Filter Control (\$ Port_Index + 0x19)" [old register name - added RX to heading; added table note 2].	
174	Modified Table 93 "MAC RX Statistics (\$ Port_Index + 0x20 - + 0x39)" [added note to RxPauseMacControlReceivedCounter description; edited note 3 and added note 4].	
178	Modified Table 94 "MAC TX Statistics (\$ Port_Index +0x40 - +0x58)" [changed "1526-max" to "1523 - max frame size" for Txpkts1519toMaxOctets description].	

Revision Number: 007 Revision Date: March 24, 2004 (Sheet 5 of 5)		
		Page #
193	Modified Table 113 "RX FIFO High Watermark Port 0 (\$0x580)", Table 114 "RX FIFO High Watermark Port 1 (\$0x581)", Table 115 "RX FIFO High Watermark Port 2 (\$0x582)", and Table 116 "RX FIFO High Watermark Port 3 (\$0x583)" [changed bits 11:0 description].	
195	Renamed and modified Table 121 "RX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x594 – 0x597)" [old register name: RX FIFO Number of Frames Removed Ports 0 to 3; renamed bit names to match register names; removed "This register gets updated after one cycle of sw reset is applied" under Description].	
196	Modified Table 123 "RX FIFO Errored Frame Drop Enable (\$0x59F)" [renamed bit names to match register name].	
198	Renamed/modified Table 125 "RX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x5A2 - 0x5A5)" on page 198 [older register name: RX FIFO Dropped Packet Counter for Ports 0 to 3; renamed bit names to match register name].	
199	Modified Table 126 "RX FIFO SPI3 Loopback Enable for Ports 0 - 3 (\$0x5B2)" [renamed heading and bit name; changed description and type for bits 7:0].	
201	Renamed Table 128 "RX FIFO Transfer Threshold Port 0 (\$0x5B8)" on page 201 [from "RX FIFO Jumbo Packet Size; changed bit names and edited/added text under description].	
207	Modified Table 136 "Loop RX Data to TX FIFO (Line-Side Loopback) Ports 0 - 3 (\$0x61F)" [renamed heading and bit name].	
208	Modified Table 138 "TX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x621 – 0x624)" [renamed from TX FIFO Number of Frames Removed Ports 3 - 0].	
209	Modified Table 139 "TX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x625 – 0x629)" [renamed from TX FIFO Number of Dropped Packets Ports 0-3 and text under the description].	
210	Modified Table 141 "TX FIFO Port Drop Enable (\$0x63D)" [changed description for bits 3:0].	
211	Modified Table 142 "MDIO Single Command (\$0x680)" [changed default; changed description and default for bits 9:8; changed default for bits 4:0].	
212	Modified Table 144 "Autoscan PHY Address Enable (\$0x682)" [added note to register description].	
213	Modified Table 146 "SPI3 Transmit and Global Configuration (\$0x700)" [broke out bits 19:16, 7:4, and 3:0 and changed description text].	
215	Modified Table 147 "SPI3 Receive Configuration (\$0x701)" [broke out bits and modified all text adding SPHY and MPHY modes].	
221	Modified Table 152 "Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794)" [deleted second paragraph of the Register Description; renamed bits to match caption; changed text under Description].	
222	Added note under Section 8.4.11, "Optical Module Register Overview".	
222	Modified Table 153 "Optical Module Status Ports 0-3 (\$0x799)" [edited register description].	
222	Modified Table 154 "Optical Module Control Ports 0 - 3 (\$0x79A)" [changed register description].	
NA	Removed/Reserved Table 190 "TX and RX AC/DC Coupling Selection (\$7x780)".	
NA	Deleted old Figure 19, "Typical GBIC Module Functional Diagram" under Section 5.7, "Optical Module Interface".	
NA	Removed old Section 5.1.1.5, "Pause Command Frames."	
180(old)	Removed old Table 13. TX FIFO Mini Frame Size for MAC and Padding Enable Port 0 to 3 Register (Addr: 0x63E) and replaced with Reserved.	
	Revision Number: 006 Revision Date: August 21, 2003 (Sheet 1 of 2)	
Page #	Description	
19	Modified Table 1 "IXF1104 Signal Descriptions"	
53	Modified Section 5.1.1.1, "Padding of Undersized Frames on Transmit".	
60	Modified text for etherStatsCollision in Table 9 "RMON Additional Statistics".	

Revision Number: 006 Revision Date: August 21, 2003 (Sheet 2 of 2)	
Page #	Description
87	Modified Table 17 "IXF1104-to-Optical Module Interface Connections"
65	Modified first paragraph under Section 5.3.1.2, "Clock Rates".
87	Modified Section 5.8.2.1, "High-Speed Serial Interface".
100	Modified Figure 27 "Microprocessor — External and Internal Connections".
110	Changed PECL to LVDS under Section 6.1, "DC Specifications".
113	Modified table note 4 in Table 32 "SPI3 Receive Interface Signal Parameters".
119	Modified Table 37 "SerDes Timing Parameters".
125	Modified Table 40 "Microprocessor Interface Write Cycle AC Signal Parameters".
140	Modified Table 53 "IPG Receive and Transmit Time Register (Addr: Port_Index + 0x0A - + 0x0C)".
143	Modified Table 60 "Short Runts Threshold Register (Addr: Port_Index + 0x14)".
143	Modified Table 61 "Discard Unknown Control Frame Register (Addr: Port_Index + 0x15)".
143	Modified Table 62 "RX Config Word Register Bit Definition (Addr: Port_Index + 0x16)".
145	Modified Table 64 "DiverseConfigWrite Register (Addr: Port_Index + 0x18)".
148	Modified Table 67 "RX Statistics Registers (Addr: Port_Index + 0x20 - + 0x39)".
163	Modified Table 82 "Microprocessor Interface Register (Addr: 0x508)".
164	Modified Table 84 "LED Flash Rate Register (Addr: 0x50A)".
169	Modified Table 93 "RX FIFO Errored Frame Drop Enable Register (Addr: 0x59F)".
170	Modified Table 96 "RX FIFO Loopback Enable for Ports 0 - 3 Register (Addr: 0x5B2)".
171	Added Table 98 "RX FIFO Jumbo Packet Size 0-3 Register (Addr: 0x5B8 – 0x5BB".
172	Added Table 99 "RX FIFO Jumbo Packet Size Port 0 Register Bit Definitions (Addr: 0x5B8)".
172	Added Table 100 "RX FIFO Jumbo Packet Size Port 1 Register Bit Definitions (Addr: 0x5B9)".
172	Added Table 101 "RX FIFO Jumbo Packet Size Port 2 Register Bit Definitions (Addr: 0x5BA)".
172	Added Table 102 "RX FIFO Jumbo Packet Size Port 3 Register Bit Definitions (Addr: 0x5BB)".
178	Modified Table 110 "TX FIFO Number of Dropped Packets Register Ports 0-3 (Addr: 0x625 – 0x629)".
177	Modified Table 108 "TX FIFO Port Reset Register (Addr: 0x620)".
177	Modified Table 108 "TX FIFO Port Reset Register (Addr: 0x620)".
177	Modified Table 107 "Loop RX Data to TX FIFO Register Ports 0 - 3 (Addr: 0x61F)".
179	Added Table 111 "TX FIFO Occupancy Counter for Ports 0 - 3 Registers (Addr: 0x62D – 0x630)".
180	Added Table 112 "TX FIFO Port Drop Enable Register (Addr: 0x63D)".
181	Modified Table 114 "MDI Single Command Register (Addr: 0x680)".
186	Added Table 122 "Tx and Rx Power-Down Register (Addr: 0x787)".
194	Replaced Figure 53 "IXF1104 Example Package Marking".

	Revision 005 Revision Date: April 30, 2003	
Page #	Description	
	Initial external release.	

IXF1104 MAC Datasheet 278757, Revision 13.2 17 September 2008

Revisions 001 through 004 Revision Date: April 2001 - December 2002	
Page #	Description
	Internal releases.

Contents

1.0	Intro	oduction	21
	1.1	What You Will Find in This Document	21
	1.2	Related Documents	21
2.0	Gene	eral Description	22
3.0		Assignments and Ball List Tables	
0.0	3.1	Ball Assignments	
	3.1	Ball List Tables	
	5.2	3.2.1 Balls Listed in Alphabetic Order by Signal Name	
		3.2.2 Balls Listed in Alphabetic Order by Ball Location	
4.0	Ball	Assignments and Signal Descriptions	36
	4.1	Naming Conventions	
		4.1.1 Signal Name Conventions	
		4.1.2 Register Address Conventions	
	4.2	Interface Signal Groups	
	4.3	Signal Description Tables	
	4.4	Multiplexed Ball Connections	
		4.4.1 GMII/RGMII/SerDes/OMI Multiplexed Ball Connections	
		4.4.2 SPI3 MPHY/SPHY Ball Connections	
	4.5	Ball State During Reset	
	4.6	Power Supply Sequencing	61
		4.6.1 Power-Up Sequence	61
		4.6.2 Power-Down Sequence	61
	4.7	Pull-Up/Pull-Down Ball Guidelines	
	4.8	Analog Power Filtering	62
5.0	Fund	ctional Descriptions	64
	5.1	Media Access Controller (MAC)	64
		5.1.1 Features for Fiber and Copper Mode	
		5.1.2 Flow Control	
		5.1.3 Mixed-Mode Operation	
		5.1.4 Fiber Mode	
		5.1.5 Copper Mode	
		5.1.6 Jumbo Packet Support	
		5.1.7 Packet Buffer Dimensions	
		5.1.8 RMON Statistics Support	
	5.2	SPI3 Interface	
		5.2.1 MPHY Operation	
		5.2.2 MPHY Logical Timing	
	- 0	5.2.3 Pre-Pending Function	
	5.3	Gigabit Media Independent Interface (GMII)	
		5.3.1 GMII Signal Multiplexing	
	ΕΛ	5.3.2 GMII Interface Signal Definition	
	5.4	Reduced Gigabit Media Independent Interface (RGMII)	
		5.4.1 Multiplexing of Data and Control	
		5.4.2 Timing Specifics	
		5.4.4 10/100 Mbps Functionality	
		5.4.4 TO/ TOO IVIDPS FUNCTIONALITY	95

	5.5	MDIO (Control and Interface	95
	0.0	5.5.1	MDIO Address	
		5.5.2	MDIO Register Descriptions	
		5.5.3	Clear When Done	
		5.5.4	MDC Generation	
		5.5.5	Management Frames	
		5.5.6	Single MDI Command Operation	
		5.5.7	MDI State Machine	
		5.5.8	Autoscan Operation	
	5.6		s Interface	
	0.0	5.6.1	Features	
		5.6.2	Functional Description	
	5.7		Module Interface	
	5.7	5.7.1	IXF1104 MAC-Supported Optical Module Interface Signals	
		5.7.2	Functional Descriptions	
		5.7.3	I ² C Module Configuration Interface	
	5.8		terface	
	5.0	5.8.1	Modes of Operation	
		5.8.2	LED Interface Signal Description	
		5.8.3	Mode 0: Detailed Operation	
		5.8.4	Mode 1: Detailed Operation	
		5.8.5	Power-On, Reset, Initialization	
		5.8.6	LED DATA Decodes	
	5.9	0.0.0	nterface	
	0.0	5.9.1	Functional Description	
		5.9.2	Endian	
	5.10		terface (JTAG)	
	5.10		TAP State Machine	
			Instruction Register and Supported Instructions	
			ID Register	
			Boundary Scan Register	
		5.10.5	· ·	
	5.11		ack Modes	
	5.11		SPI3 Interface Loopback	
			Line Side Interface Loopback	
	5.12		Line Gide Interface Ecoppack	
	0.12		System Interface Reference Clocks	
			SPI3 Receive and Transmit Clocks	
			RGMII Clocks	
			MDC Clock	
			JTAG Clock	
			I ² C Clock	
			LED Clock	
6.0	Δnnli			
5.0				
	6.1	_	e Port Mode Initialization Sequence	
	6.2		e and Enable Port Sequences	
		6.2.1 6.2.2	Disable Port Sequence	
			Enable Port Sequence	
7.0	Elect	rical Sp	ecifications	126

	7.1	DC Specifications	128
		7.1.1 Undershoot / Overshoot Specifications	
		7.1.2 RGMII Electrical Characteristics	
	7.2	SPI3 AC Timing Specifications	
		7.2.1 Receive Interface Timing	
		7.2.2 Transmit Interface Timing	
	7.3	RGMII AC Timing Specification	
	7.4	GMII AC Timing Specification	
		7.4.1 1000 Base-T Operation	
	7.5	SerDes AC Timing Specification	
	7.6	MDIO AC Timing Specification	
		7.6.1 MDC High-Speed Operation Timing	139
		7.6.2 MDC Low-Speed Operation Timing	
		7.6.3 MDIO AC Timing	
	7.7	Optical Module and I ² C AC Timing Specification	
		7.7.1 I ² C Interface Timing	
	7.8	CPU AC Timing Specification	
		7.8.1 CPU Interface Read Cycle AC Timing	
		7.8.2 CPU Interface Write Cycle AC Timing	
	7.9	Transmit Pause Control AC Timing Specification	
	7.10		
	7.11	System AC Timing Specification	146
	7.12	LED AC Timing Specification	147
8.0	Regis	ister Set	148
	8.1	Document Structure	148
	8.2	Graphical Representation	
	8.3	Per Port Registers	
	8.4	Register Map	
		8.4.1 MAC Control Registers	
		8.4.2 MAC RX Statistics Register Overview	
		8.4.3 MAC TX Statistics Register Overview	
		8.4.4 PHY Autoscan Registers	
		8.4.5 Global Status and Configuration Register Overview	
		8.4.6 RX FIFO Register Overview	
		8.4.7 TX FIFO Register Overview	
		8.4.8 MDIO Register Overview	
		8.4.9 SPI3 Register Overview	
		8.4.10 SerDes Register Overview	
		8.4.11 Optical Module Register Overview	210
9.0	Mech	hanical Specifications	213
	9.1	Overview	
		9.1.1 Features	
	9.2	Package Specifics	
	9.3	Package Information	
		9.3.1 CBGA Package Diagrams	
		9.3.2 Plastic Ball Grid Array Package Diagram	

List of Figures

1	Block Diagram	22
2	Internal Architecture	23
3	552-Ball Assignments (Top View)	
4	Interface Signals	37
5	Power Supply Sequencing	
6	Analog Power Supply Filter Network	
7	Packet Buffering FIFO	
8	Ethernet Frame Format	
9	PAUSE Frame Format	
10	Transmit Pause Control Interface	
11	MPHY Transmit Logical Timing	
12	MPHY Receive Logical Timing	
13	MPHY 32-Bit Interface	
14	SPHY Transmit Logical Timing	
15	SPHY Receive Logical Timing	
16	SPHY Connection for Two IXF1104 MAC Ports (8-Bit Interface)	
17	MAC GMII Interconnect	
18	RGMII Interface	
19	TX CTL Behavior	
20	RX CTL Behavior	
21	Management Frame Structure (Single-Frame Format)	
22	MDI State	
23	SerDes Receiver Jitter Tolerance	
24	I ² C Random Read Transaction	
25	Data Validity Timing	108
26	Start and Stop Definition Timing	109
27	Acknowledge Timing	
28	Random Read	110
29	Mode 0 Timing	111
30	Mode 1 Timing	113
31	Read Timing Diagram - Asynchronous Interface	116
32	Write Timing Diagram - Asynchronous Interface	117
33	SPI3 Interface Loopback Path	120
34	Line Side Interface Loopback Path	121
35	SPI3 Receive Interface Timing	131
36	SPI3 Transmit Interface Timing	133
37	RGMII Interface Timing	
38	1000BASE-T Transmit Interface Timing	136
39	1000BASE-T Receive Interface Timing	137
40	SerDes Timing Diagram	138
41	MDC High-Speed Operation Timing	139
42	MDC Low-Speed Operation Timing	139
43	MDIO Write Timing Diagram	140
44	MDIO Read Timing Diagram	140
45	Bus Timing Diagram	141
46	Write Cycle Diagram	141
47	CPU Interface Read Cycle AC Timing	142
48	CPU Interface Write Cycle AC Timing	
49	Pause Control Interface Timing	144

IXF1104 MAC Datasheet 278757, Revision 13.2 17 September 2008

50	JTAG AC Timing	145
	LED AC Interface Timing	
53	Memory Overview Diagram	
54	Register Overview Diagram	149
55	CBGA Package Diagram (Top and Side View)	214
56	CBGA Package Diagram (Bottom View)	215
57	FC-PBGA Package Diagram (Top and Side View)	216
58	FC-PBGA Package Diagram (Bottom View)	217

List of Tables

1	Ball List in Alphanumeric Order by Signal Name	25
2	Ball List in Alphanumeric Order by Ball Location	
3	SPI3 Interface Signal Descriptions	
4	SerDes Interface Signal Descriptions	
5	GMII Interface Signal Descriptions	
6	RGMII Interface Signal Descriptions	
7	CPU Interface Signal Descriptions	
8	Transmit Pause Control Interface Signal Descriptions	52
9	Optical Module Interface Signal Descriptions	
10	MDIO Interface Signal Descriptions	
11	LED Interface Signal Descriptions	
12	JTAG Interface Signal Descriptions	
13	System Interface Signal Descriptions	
14	Power Supply Signal Descriptions	
15	Line Side Interface Multiplexed Balls	
16	SPI3 MPHY/SPHY Interface	
17	Definition of Output and Bi-directional Balls During Hardware Reset	
18	Power Supply Sequencing	
19	Pull-Up/Pull-Down and Unused Ball Guidelines	
20	Analog Power Balls	
21	CRC Errored Packets Drop Enable Behavior	
22	Valid Decodes for TXPAUSEADD[2:0]	
23	Operational Mode Configuration Registers	
24	RMON Additional Statistics	
25	GMII Interface Signal Definitions	
26	RGMII Signal Definitions	
27	TX_ER and RX_ER Coding Description	
28	SerDes Driver TX Power Levels	
29	IXF1104 MAC-to-SFP Optical Module Interface Connections	103
30	LED Interface Signal Descriptions	111
31	Mode 0 Clock Cycle to Data Bit Relationship	112
32	Mode 1 Clock Cycle to Data Bit Relationship	113
33	LED_DATA# Decodes	113
34	LED Behavior (Fiber Mode)	114
35	LED Behavior (Copper Mode)	115
36	Byte Swapper Behavior	118
37	Instruction Register Description	
38	Absolute Maximum Ratings	126
39	Recommended Operating Conditions	127
40	DC Specifications	
41	SerDes Transmit Characteristics	128
42	SerDes Receive Characteristics	
43	Undershoot / Overshoot Limits	129
44	RGMII Power	
45	SPI3 Receive Interface Signal Parameters	
46	SPI3 Transmit Interface Signal Parameters	
47	RGMII Interface Timing Parameters	
48	GMII 1000BASE-T Transmit Signal Parameters	
49	GMII 1000BASE-T Receive Signal Parameters	137

CORTINA

50	SerDes Timing Parameters	
51	MDIO Timing Parameters	
52	I ² C AC Timing Characteristics	
53	CPU Interface AC Signal Parameters	
54	Transmit Pause Control Interface Timing Parameters	144
55	JTAG AC Timing Parameters	145
56	System Reset AC Timing Parameters	146
57	LED Interface AC Timing Parameters	147
58	MAC Control Registers (\$ Port Index + Offset)	149
59	MAC RX Statistics Registers (\$ Port Index + Offset)	150
60	MAC TX Statistics Registers (\$ Port Index + Offset)	151
61	PHY Autoscan Registers (\$ Port Index + Offset)	151
62	Global Status and Configuration Registers (\$ 0x500 - 0X50C)	
63	RX FIFO Registers (\$ 0x580 - 0x5BF)	
64	TX FIFO Registers (\$ 0x600 - 0x63E)	
65	MDIO Registers (\$ 0x680 - 0x683)	
66	SPI3 Registers (\$ 0x700 - 0x716)	
67	SerDes Registers (\$ 0x780 - 0x798)	
68	Optical Module Registers (\$ 0x799 - 0x79F)	
69	Station Address (\$ Port_Index +0x00 – +0x01)	
70	Desired Duplex (\$ Port_Index + 0x02)	
71	FD FC Type (\$ Port_Index + 0x03)	
72	Collision Distance (\$ Port_Index + 0x05)	
73	Collision Threshold (\$ Port_Index + 0x06)	
74	FC TX Timer Value (\$ Port_Index + 0x07)	
75	FD FC Address (\$ Port_Index + 0x08 – + 0x09)	
76	IPG Receive Time 1 (\$ Port_Index + 0x0A)	
77	IPG Receive Time 2 (\$ Port_Index + 0x0B)	
78	IPG Transmit Time (\$ Port_Index + 0x0C)	
79	Pause Threshold (\$ Port_Index + 0x0E)	
80	Max Frame Size (Addr: Port_Index + 0x0F)	
81	MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10)	
82	Flush TX (\$ Port_Index + 0x11)	
83	FC Enable (\$ Port_Index + 0x12)	
84	FC Back Pressure Length (\$ Port_Index + 0x13)	
85	Short Runts Threshold (\$ Port_Index + 0x14)	
86	Discard Unknown Control Frame (\$ Port_Index + 0x14)	
87	RX Config Word (\$ Port_Index + 0x16)	
88	TX Config Word (\$ Port_Index + 0x17)	
89	Diverse Config Write (\$ Port_Index + 0x18)	
90	RX Packet Filter Control (\$ Port_Index + 0x19)	
91	Port Multicast Address (\$ Port_Index +0x1A - +0x1B)	104
92	MAC RX Statistics (\$ Port_Index + 0x20 – + 0x39)	
	• – ,	
93	MAC TX Statistics (\$ Port_Index +0x40 - +0x58)	
94	PHY Control (\$ Port Index + 0x60)	
95	PHY Status (\$ Port Index + 0x61)	
96	PHY Identification 1 (\$ Port Index + 0x62)	
97	PHY Identification 2 (\$ Port Index + 0x63)	
98	Auto-Negotiation Advertisement (\$ Port Index + 0x64)	
99	Auto-Negotiation Link Partner Base Page Ability (\$ Port Index + 0x65)	
100	Auto-Negotiation Expansion (\$ Port Index + 0x66)	1/8

CORTINA

101	Auto-Negotiation Next Page Transmit (\$ Port Index + 0x67)	
102	Port Enable (\$0x500)	
103	Interface Mode (\$0x501)	
104	Link LED Enable (\$0x502)	
105	MAC Soft Reset (\$0x505)	
106	MDIO Soft Reset (\$0x506)	
107	CPU Interface (\$0x508)	
108	LED Control (\$0x509)	
109 110	LED Flash Rate (\$0x50A)LED Fault Disable (\$0x50B)	
111	JTAG ID (\$0x50C)	
112	RX FIFO High Watermark Port 0 (\$0x580)	
113	RX FIFO High Watermark Port 1 (\$0x581)	
114	RX FIFO High Watermark Port 2 (\$0x582)	
115	RX FIFO High Watermark Port 3 (\$0x583)	
116	RX FIFO Low Watermark Port 0 (\$0x58A)	
117	RX FIFO Low Watermark Port 1 (\$0x58B)	
118	RX FIFO Low Watermark Port 2 (\$0x58C)	
119	RX FIFO Low Watermark Port 3 (\$0x58D)	
120	RX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x594 – 0x597)	
121	RX FIFO Port Reset (\$0x59E)	
122	RX FIFO Errored Frame Drop Enable (\$0x59F)	
123	RX FIFO Overflow Event (\$0x5A0)	
124	RX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x5A2 - 0x5A5)	
125	RX FIFO SPI3 Loopback Enable for Ports 0 - 3 (\$0x5B2)	
126	RX FIFO Padding and CRC Strip Enable (\$0x5B3)	
127	RX FIFO Transfer Threshold Port 0 (\$0x5B8)	
128	RX FIFO Transfer Threshold Port 1 (\$0x5B9)	
129	RX FIFO Transfer Threshold Port 2 (\$0x5BA)	192
130	RX FIFO Transfer Threshold Port 3 (\$0x5BB)	193
131	TX FIFO High Watermark Ports 0 - 3 (\$0x600 – 0x603)	193
132	TX FIFO Low Watermark Register Ports 0 - 3 (\$0x60A – 0x60D)	195
133	TX FIFO MAC Threshold Register Ports 0 - 3 (\$0x614 – 0x617)	
134	TX FIFO Overflow/Underflow/Out of Sequence Event (\$0x61E)	
135	Loop RX Data to TX FIFO (Line-Side Loopback) Ports 0 - 3 (\$0x61F)	
136	TX FIFO Port Reset (\$0x620)	
137	TX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x621 – 0x624)	
138	TX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x625 – 0x629)	
139	TX FIFO Occupancy Counter for Ports 0 - 3 (\$0x62D - 0x630)	
140	TX FIFO Port Drop Enable (\$0x63D)	
141	MDIO Single Command (\$0x680)	
142	MDIO Single Read and Write Data (\$0x681)	
143	Autoscan PHY Address Enable (\$0x682)	
144	MDIO Control (\$0x683)	
145	SPI3 Transmit and Global Configuration (\$0x700)	
146	SPI3 Receive Configuration (\$0x701)	
147	Address Parity Error Packet Drop Counter (\$0x70A)	
148	TX Driver Power Level Ports 0 - 3 (\$0x784)	
149	TX and RX Power-Down (\$0x787)	
150	RX Signal Detect Level Ports 0 - 3 (\$0x793)	
151	Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794)	210

IXF1104 MAC Datasheet 278757, Revision 13.2 17 September 2008

450	Outline I Mandalla Otatua Danta O 2 (#04700)	044
152	Optical Module Status Ports 0-3 (\$0x799)	211
153	Optical Module Control Ports 0 - 3 (\$0x79A)	211
154	I ² C Control Ports 0 - 3 (\$0x79B)	212
155	I ² C Data Ports 0 - 3 (\$0x79F)	212
	Package Description	

1.0 Introduction

This document contains information on the Cortina Systems[®] IXF1104 4-Port Gigabit Ethernet Media Access Controller (IXF1104 MAC), a four-port Gigabit Media Access Controller that supports IEEE 802.3 10/100/1000 Mbps applications from Cortina Systems, Inc. (Cortina).

1.1 What You Will Find in This Document

This document contains the following sections:

- Section 2.0, General Description, on page 22 provides the block diagram system architecture.
- Section 3.0, Ball Assignments and Ball List Tables, on page 24 shows the signal naming methodology and signal descriptions.
- Section 4.0, *Ball Assignments and Signal Descriptions*, on page 36 illustrates and lists the IXF1104 ball grid diagram with two ball list tables (by signal name and ball location)
- Section 5.0, Functional Descriptions, on page 64 gives detailed information about the operation of the IXF1104 including general features, and interface types and descriptions.
- Section 7.0, *Electrical Specifications*, on page 126 provides information on the product-operating parameters, electrical specifications, and timing parameters.
- Section 8.0, Register Set, on page 148 illustrates and lists the memory map, detailed descriptions, default values for the register set, and detailed information on each register.
- Section 9.0, Mechanical Specifications, on page 213 illustrates the packaging information.

1.2 Related Documents

Document
IXF1104 Media Access Controller Design and Layout Guide
IXF1104 Media Access Controller Thermal Design Considerations
IXF1104 Media Access Controller Development Kit Manual
IXF1104 Media Access Controller Specification Update

2.0 General Description

The IXF1104 MAC provides up to a 4.0 Gbps interface to four individual 10/100/1000 Mbps full-duplex or 10/100 Mbps half-duplex-capable Ethernet Media Access Controllers (MACs). The network processor is supported through a System Packet Interface Phase 3 (SPI3) media interface. The following PHY interfaces are selected on a per-port basis:

- Serializer/Deserializer (SerDes) with Optical Module Interface support
- Gigabit Media Independent Interface (GMII)
- · Reduced Gigabit Media Independent Interface (RGMII).

Figure 1 illustrates the IXF1104 MAC block diagram.

Figure 1 Block Diagram

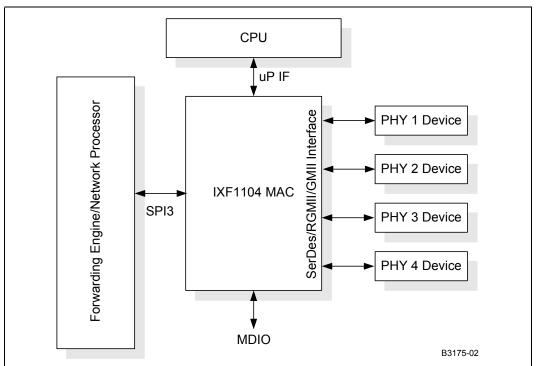
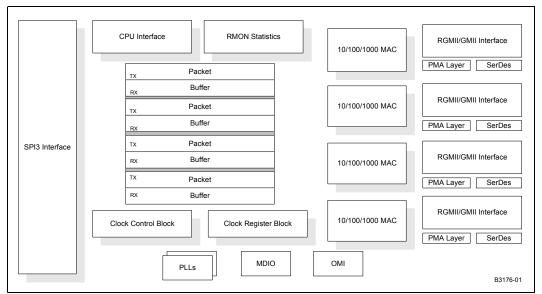
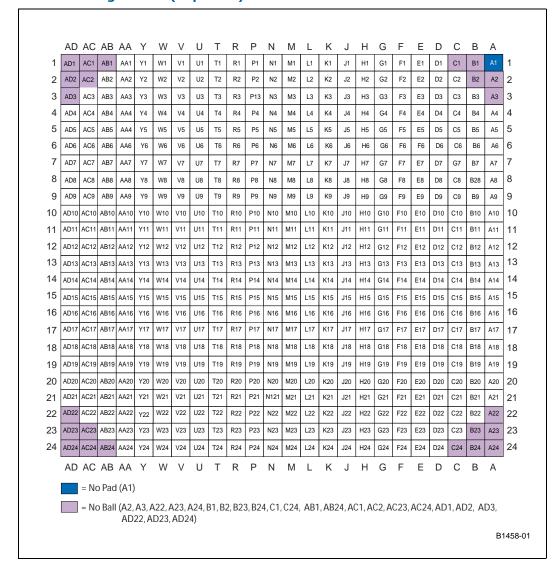



Figure 2 illustrates the IXF1104 MAC internal architecture.

Figure 2 Internal Architecture



3.0 Ball Assignments and Ball List Tables

3.1 Ball Assignments

See Figure 3, Table 1, *Ball List in Alphanumeric Order by Signal Name*, on page 25, and Table 2, *Ball List in Alphanumeric Order by Ball Location*, on page 30 for the IXF1104 MAC ball assignments.

Figure 3 552-Ball Assignments (Top View)

3.2 Ball List Tables

3.2.1 Balls Listed in Alphabetic Order by Signal Name

Table 1 shows the ball locations and signal names arranged in alphanumeric order by signal name.

The following table notes relate to Table 1 and Table 2:

1. GMII Ball Connection:

See Table 15 for connection in RGMII or fiber mode.

2. SPI3 Ball Connection:

See Table 16 for proper SPHY and MPHY connection.

3. Fiber Mode Ball Connection:

See Table 15 for use in RGMII and GMII (copper mode).

Table 1 Ball List in Alphanumeric Order by Signal Name

	Ball
Signal Name	Location
AVDD1P8_1	A5
AVDD1P8_1	A20
AVDD1P8_2	T23
AVDD1P8_2	AB16
AVDD2P5_1	AD20
AVDD2P5_2	R18
AVDD2P5_2	U14
CLK125	AD19
COL_0 ¹	AB6
COL_1 ¹	AB10
COL_2 ¹	AD15
COL_3 ¹	AB17
CRS_0 ¹	AA5
CRS_1 ¹	AA9
CRS_2 ¹	AB15
CRS_3 ¹	AC16
DTPA_0 ²	D3
DTPA_1 ²	L1
DTPA_2 ²	A9
DTPA_3 ²	J7
GND	В6
GND	B10
GND	B15
GND	B19
GND	D4
GND	D8

Signal Name	Ball Location
GND	D12
GND	D13
GND	D17
GND	D21
GND	F2
GND	F6
GND	F10
GND	F15
GND	F19
GND	F23
GND	H4
GND	H8
GND	H12
GND	H13
GND	H17
GND	H21
GND	J10
GND	J15
GND	K2
GND	K6
GND	K9
GND	K11
GND	K14
GND	K16
GND	K19
GND	K23
GND	L10

Signal Name	Ball Location
GND	L12
GND	L13
GND	L15
GND	M4
GND	M8
GND	M11
GND	M14
GND	M17
GND	M21
GND	N4
GND	N8
GND	N11
GND	N14
GND	N17
GND	N21
GND	P10
GND	P12
GND	P13
GND	P15
GND	R2
GND	R6
GND	R9
GND	R11
GND	R14
GND	R16
GND	R19
GND	R23

Signal Name	Ball Location
GND	T10
GND	T15
GND	U4
GND	U8
GND	U12
GND	U13
GND	U17
GND	U21
GND	W2
GND	W6
GND	W10
GND	W15
GND	W19
GND	W23
GND	AA4
GND	AA8
GND	AA12
GND	AA13
GND	AA17
GND	AA21
GND	AC6
GND	AC10
GND	AC15
GND	AC19
GND	AC14
GND	L20
GND	L5
GND	R7
GND	AB12
GND	A4
GND	A21
GND	AD21
I ² C_CLK	L23
I ² C_DATA_0 ³	L24
I ² C_DATA_1 ³	M24
I ² C_DATA_2 ³	N24
I ² C_DATA_3 ³	P24
LED_CLK	K24
LED_DATA	M22

Signal Name	Ball Location
LED_LATCH	L22
MDC ⁴	W24
MDIO ⁴	V21
MOD_DEF_INT	N22
NC	D24
NC	E12
NC	F11
NC	G15
NC	H7
NC	H18
NC	J21
NC	K7
NC	K18
NC	K20
NC	K22
NC	L18
NC	L19
NC	L21
NC	M7
NC	M18
NC	M20
NC	N3
NC	N18
NC	P2
NC	P4
NC	P6
NC	P7
NC	P8
NC	P17
NC	P18
NC	R5
NC	R10
NC	R12
NC	R13
NC	R15
NC	R20
NC	T6
NC	T7
NC	Т8
-	

Signal Name	Ball Location
NC	T9
NC	T21
NC	T22
NC	U5
NC	U7
NC	U9
NC	U11
NC	U18
NC	V9
NC	V10
NC	V11
NC	V13
NC	AB18
NC	AD4
NC	AD5
No Ball	A2
No Ball	A3
No Ball	A22
No Ball	A23
No Ball	A24
No Ball	B1
No Ball	B2
No Ball	B23
No Ball	B24
No Ball	C1
No Ball	C24
No Ball	AB1
No Ball	AB24
No Ball	AC1
No Ball	AC2
No Ball	AC23
No Ball	AC24
No Ball	AD1
No Ball	AD2
No Ball	AD3
No Ball	AD22
No Ball	AD23
No Ball	AD24
No Pad	A1

Signal Name	Ball Location
PTPA ²	B11
RDAT_0 ²	A15
RDAT_1 ²	A14
RDAT_2 ²	B14
RDAT_3 ²	C14
RDAT_4 ²	C13
RDAT_5 ²	D14
RDAT_6 ²	E14
RDAT_7 ²	F14
RDAT_8 ²	A17
RDAT_9 ²	C17
RDAT_10 ²	D16
RDAT_11 ²	E16
RDAT_12 ²	F16
RDAT_13 ²	E17
RDAT_14 ²	E18
RDAT_15 ²	F18
RDAT_16 ²	B20
RDAT_17 ²	B22
RDAT_18 ²	C20
RDAT_19 ²	C21
RDAT_20 ²	C22
RDAT_21 ²	D22
RDAT_22 ²	E22
RDAT_23 ²	E21
RDAT_24 ²	G18
RDAT_25 ²	G19
RDAT_26 ²	G20
RDAT_27 ²	G21
RDAT_28 ²	G22
RDAT_29 ²	G23
RDAT_30 ²	G24
RDAT_31 ²	F24
RENB_0 ²	A13
RENB_1 ²	A18
RENB_2 ²	C19
RENB_3 ²	E24
REOP_0 ²	C16
REOP_1 ²	D18

Signal Name	Ball Location
REOP_2 ²	C23
REOP_3 ²	J19
RERR_0 ²	A16
RERR_1 ²	G17
RERR_2 ²	D20
RERR_3 ²	H20
RFCLK ²	A19
RMOD0 ²	G14
RMOD1 ²	G13
RPRTY_0 ²	E15
RPRTY_1 ²	G16
RPRTY_2 ²	E20
RPRTY_3 ²	F20
RSOP_0 ²	B16
RSOP_1 ²	C18
RSOP_2 ²	E23
RSOP_3 ²	J18
RSX ²	E13
RVAL_0 ²	C15
RVAL_1 ²	B18
RVAL_2 ²	E19
RVAL_3 ²	F22
RX_DV_0 ¹	V5
RX_DV_1 ¹	AB11
RX_DV_2 ¹	Y24
RX_DV_3 ¹	V18
RX_ER_0 ¹	W5
RX_ER_1 ¹	Y12
RX_ER_2 ¹	AA22
RX_ER_3 ¹	U20
RX_LOS_INT ³	P19
RX_N_0 ³	R22
RX_N_1 ³	U22
RX_N_2 ³	R24
RX_N_3 ³	V24
RX_P_0 ³	P22
RX_P_1 ³	V22
RX_P_2 ³	T24
RX_P_3 ³	U24

	Ball
Signal Name	Location
RXC_0 ¹	V4
RXC_1 ¹	AD11
RXC_2 ¹	AA24
RXC_3 ¹	V23
RXD0_0 ¹	V8
RXD0_1 ¹	Y9
RXD0_2 ¹	Y20
RXD0_3 ¹	Y17
RXD1_0 ¹	V7
RXD1_1 ¹	Y11
RXD1_2 ¹	Y21
RXD1_3 ¹	Y18
RXD2_0 ¹	W7
RXD2_1 ¹	W11
RXD2_2 ¹	Y22
RXD2_3 ¹	Y19
RXD3_0 ¹	Y7
RXD3_1 ¹	W9
RXD3_2 ¹	Y23
RXD3_3 ¹	W18
RXD4_0 ¹	Y6
RXD4_1 ¹	AD10
RXD4_2 ¹	W22
RXD4_3 ¹	T16
RXD5_0 ¹	Y5
RXD5_1 ¹	AC11
RXD5_2 ¹	V20
RXD5_3 ¹	T17
RXD6_0 ¹	AB5
RXD6_1 ¹	AA11
RXD6_2 ¹	V19
RXD6_3 ¹	T18
RXD7_0 ¹	AC5
RXD7_1 ¹	Y10
RXD7_2 ¹	W20
RXD7_3 ¹	T19
STPA ²	C11
SYS_RST_L	AD12
TADR0 ²	A11

Signal Name	Ball Location
TADR1 ²	A12
TCLK	J22
TDAT0 ²	В3
TDAT1 ²	C2
TDAT2 ²	C3
TDAT3 ²	D1
TDAT4 ²	C4
TDAT5 ²	C5
TDAT6 ²	B5
TDAT7 ²	C6
TDAT8 ²	F1
TDAT9 ²	G1
TDAT10 ²	G2
TDAT11 ²	H1
TDAT12 ²	J1
TDAT13 ²	J2
TDAT14 ²	J3
TDAT15 ²	H3
TDAT16 ²	E5
TDAT17 ²	E6
TDAT18 ²	E7
TDAT19 ²	E8
TDAT20 ²	E9
TDAT21 ²	E10
TDAT22 ²	F9
TDAT23 ²	C8
TDAT24 ²	G4
TDAT25 ²	G5
TDAT26 ²	G6
TDAT27 ²	G7
TDAT28 ²	G8
TDAT29 ²	G9
TDAT30 ²	F5
TDAT31 ²	F7
TDI	J24
TDO	H24
TENB_0 ²	B7
TENB_1 ²	E2
TENB_2 ²	C9

Signal Name	Ball Location
TENB_3 ²	J4
TEOP_0 ²	A7
TEOP_1 ²	F3
TEOP_2 ²	E4
TEOP_3 ²	H5
TERR_0 ²	A8
TERR_1 ²	K1
TERR_2 ²	E11
TERR_3 ²	J8
TFCLK ²	D7
TMOD0 ²	A6
TMOD1 ²	D9
TMS	H22
TPRTY_0 ²	D5
TPRTY_1 ²	G3
TPRTY_2 ²	B9
TPRTY_3 ²	J6
TRST_L	J23
TSOP_0 ²	C7
TSOP_1 ²	E3
TSOP_2 ²	C10
TSOP_3 ²	J5
TSX	E1
TX_EN_0 ¹	AB2
TX_EN_1 ¹	Y8
TX_EN_2 ¹	AC22
TX_EN_3 ¹	V12
TX_ER_0 ¹	W1
TX_ER_1 ¹	AD6
TX_ER_2 ¹	AD17
TX_ER_3 ¹	AB13
TX_FAULT_INT ³	P23
TX_N_0 ³	Y14
TX_N_1 ³	AD14
TX_N_2 ³	Y16
TX_N_3 ³	AD18
TX_P_0 ³	Y13
TX_P_1 ³	AD13
TX_P_2 ³	W16
·	•

Signal Name	Ball Location
TX_P_3 ³	AC18
TXC_0 ¹	AA1
TXC_1 ¹	AD7
TXC_2 ¹	AC20
TXC_3 ¹	AB14
TXD0_0 ¹	Y1
TXD0_1 ¹	AC7
TXD0_2 ¹	AB20
TXD0_3 ¹	V14
TXD1_0 ¹	Y2
TXD1_1 ¹	AB7
TXD1_2 ¹	AB21
TXD1_3 ¹	V15
TXD2_0 ¹	Y3
TXD2_1 ¹	AB9
TXD2_2 ¹	AB22
TXD2_3 ¹	V16
TXD3_0 ¹	AA3
TXD3_1 ¹	AD9
TXD3_2 ¹	AB23
TXD3_3 ¹	V17
TXD4_0 ¹	AB3
TXD4_1 ¹	AA7
TXD4_2 ¹	AD16
TXD4_3 ¹	AA14
TXD5_0 ¹	AC3
TXD5_1 ¹	AB8
TXD5_2 ¹	AB19
TXD5_3 ¹	Y15
TXD6_0 ¹	AB4
TXD6_1 ¹	AD8
TXD6_2 ¹	AA20
TXD6_3 ¹	AA16
TXD7_0 ¹	Y4
TXD7_1 ¹	AC9
TXD7_2 ¹	AA18
TXD7_3 ¹	W14
TXPAUSE_ADD0	N20
TXPAUSE_ADD1	P20

Signal Name	Ball Location
TXPAUSE_ADD2	P21
TXPAUSEFR	T20
UPX_ADD0	P3
UPX_ADD1	N1
UPX_ADD2	P1
UPX_ADD3	R1
UPX_ADD4	T1
UPX_ADD5	U1
UPX_ADD6	V1
UPX_ADD7	V2
UPX_ADD8	V3
UPX_ADD9	U3
UPX_ADD10	Т3
UPX_BADD0	T2
UPX_BADD1	W3
uPx_Cs_L	R3
UPX_DATA0	L2
UPX_DATA1	K3
UPX_DATA2	L3
UPX_DATA3	M3
UPX_DATA4	L4
UPX_DATA5	N5
UPX_DATA6	M5
UPX_DATA7	K5
UPX_DATA8	P5
UPX_DATA9	L6
UPX_DATA10	L7
UPX_DATA11	N7
UPX_DATA12	L8
UPX_DATA13	H9
UPX_DATA14	J9
UPX_DATA15	N10
UPX_DATA16	M10
UPX_DATA17	K10
UPX_DATA18	G10
UPX_DATA19	H11
UPX_DATA20	G11
UPX_DATA21	K12
UPX_DATA22	G12

Signal Name	Ball Location
UPX_DATA23	K13
UPX_DATA24	H14
UPX_DATA25	K15
UPX_DATA26	N15
UPX_DATA27	M15
UPX_DATA28	J16
UPX_DATA29	H16
UPX_DATA30	J17
UPX_DATA31	L17
uPx_Rd_L	V6
uPx_Rdy_L	M1
UPX_WIDTH0	U16
UPX_WIDTH1	T5
uPx_Wr_L	T4
VDD	D6
VDD	D10
VDD	D15
VDD	D19
VDD	F4
VDD	F21
VDD	H10
VDD	H15
VDD	J11
VDD	J14
VDD	K4
VDD	K8
VDD	K17
VDD	K21
VDD	L9
VDD	L11
VDD	L14
VDD	L16
VDD	P9
VDD	P11
VDD	P14
VDD	P16
VDD	R4
VDD	R8
VDD	R17

Signal Name	Ball Location
VDD	R21
VDD	T11
VDD	T14
VDD	U10
VDD	U15
VDD	W4
VDD	W21
VDD	AA6
VDD	AA10
VDD	AA15
VDD	AA19
VDD	C12
VDD	D11
VDD	J20
VDD	A10
VDD2	B4
VDD2	B8
VDD2	B12
VDD2	D2
VDD2	F8
VDD2	F12
VDD2	H2
VDD2	H6
VDD2	J12
VDD2	M2
VDD2	M6
VDD2	M9
VDD2	M12
VDD3	B13
VDD3	B17
VDD3	B21
VDD3	D23
VDD3	F13
VDD3	F17
VDD3	H19
VDD3	H23
VDD3	J13
VDD3	M13
VDD3	M16

Signal Name	Ball Location
VDD3	M19
VDD3	M23
VDD4	N13
VDD4	N16
VDD4	N19
VDD4	N23
VDD4	T13
VDD4	U19
VDD4	U23
VDD4	W13
VDD4	W17
VDD4	AA23
VDD4	AC13
VDD4	AC17
VDD4	AC21
VDD5	N2
VDD5	N6
VDD5	N9
VDD5	N12
VDD5	T12
VDD5	U2
VDD5	U6
VDD5	W8
VDD5	W12
VDD5	AA2
VDD5	AC4
VDD5	AC8
VDD5	AC12

3.2.2 Balls Listed in Alphabetic Order by Ball Location

Table 2 shows the ball locations and signal names arranged in order by ball location.

Table 2 Ball List in Alphanumeric Order by Ball Location

Ball Location	Signal Name
A1	No Pad
A2	No Ball
A3	No Ball
A4	GND
A5	AVDD1P8_1

Ball Location	Signal Name
A6	TMOD0 ²
A7	TEOP_0 ²
A8	TERR_0 ²
A9	DTPA_2 ²
A10	VDD

Ball Location	Signal Name
A11	TADR0 ²
A12	TADR1 ²
A13	RENB_0 ²
A14	RDAT_1 ²
A15	RDAT_0 ²

Ball Location	Signal Name
A16	RERR_0 ²
A17	RDAT 8 ²
A18	RENB_1 ²
A19	RFCLK ²
A20	AVDD1P8_1
A21	GND
A22	No Ball
A23	No Ball
A24	No Ball
B1	No Ball
B2	No Ball
В3	TDAT0 ²
B4	VDD2
B5	TDAT6 ²
В6	GND
В7	TENB_0 ²
В8	VDD2
В9	TPRTY_2 ²
B10	GND
B11	PTPA ²
B12	VDD2
B13	VDD3
B14	RDAT_2 ²
B15	GND
B16	RSOP_0 ²
B17	VDD3
B18	RVAL_1 ²
B19	GND
B20	RDAT_16 ²
B21	VDD3
B22	RDAT_17 ²
B23	No Ball
B24	No Ball
C1	No Ball
C2	TDAT1 ²
C3	TDAT2 ²
C4	TDAT4 ²
C5	TDAT5 ²
C6	TDAT7 ²

Ball Location	Signal Name
C7	TSOP_0 ²
C8	TDAT23 ²
C9	TENB_2 ²
C10	TSOP_2 ²
C11	STPA ²
C12	VDD
C13	RDAT_4 ²
C14	RDAT_3 ²
C15	RVAL_0 ²
C16	REOP_0 ²
C17	RDAT_9 ²
C18	RSOP_1 ²
C19	RENB_2 ²
C20	RDAT_18 ²
C21	RDAT_19 ²
C22	RDAT_20 ²
C23	REOP_2 ²
C24	No Ball
D1	TDAT3 ²
D2	VDD2
D3	DTPA_0 ²
D4	GND
D5	TPRTY_0 ²
D6	VDD
D7	TFCLK ²
D8	GND
D9	TMOD1 ²
D10	VDD
D11	VDD
D12	GND
D13	GND
D14	RDAT_5 ²
D15	VDD
D16	RDAT_10 ²
D17	GND
D18	REOP_1 ²
D19	VDD
D20	RERR_2 ²
D21	GND

Ball Location	Signal Name
D22	RDAT_21 ²
D23	VDD3
D24	NC
E1	TSX
E2	TENB_1 ²
E3	TSOP_1 ²
E4	TEOP_2 ²
E5	TDAT16 ²
E6	TDAT17 ²
E7	TDAT18 ²
E8	TDAT19 ²
E9	TDAT20 ²
E10	TDAT21 ²
E11	TERR_2 ²
E12	NC
E13	RSX ²
E14	RDAT_6 ²
E15	RPRTY_0 ²
E16	RDAT_11 ²
E17	RDAT_13 ²
E18	RDAT_14 ²
E19	RVAL_2 ²
E20	RPRTY_2 ²
E21	RDAT_23 ²
E22	RDAT_22 ²
E23	RSOP_2 ²
E24	RENB_3 ²
F1	TDAT8 ²
F2	GND
F3	TEOP_1 ²
F4	VDD
F5	TDAT30 ²
F6	GND
F7	TDAT31 ²
F8	VDD2
F9	TDAT22 ²
F10	GND
F11	NC
F12	VDD2

Ball Location	Signal Name
F13	VDD3
F14	RDAT_7 ²
F15	GND
F16	RDAT_12 ²
F17	VDD3
F18	RDAT_15 ²
F19	GND
F20	RPRTY_3 ²
F21	VDD
F22	RVAL_3 ²
F23	GND
F24	RDAT_31 ²
G1	TDAT9 ²
G2	TDAT10 ²
G3	TPRTY_1 ²
G4	TDAT24 ²
G5	TDAT25 ²
G6	TDAT26 ²
G7	TDAT27 ²
G8	TDAT28 ²
G9	TDAT29 ²
G10	UPX_DATA18
G11	UPX_DATA20
G12	UPX_DATA22
G13	RMOD1 ²
G14	RMOD0 ²
G15	NC
G16	RPRTY_1 ²
G17	RERR_1 ²
G18	RDAT_24 ²
G19	RDAT_25 ²
G20	RDAT_26 ²
G21	RDAT_27 ²
G22	RDAT_28 ²
G23	RDAT_29 ²
G24	RDAT_30 ²
H1	TDAT11 ²
H2	VDD2
НЗ	TDAT15 ²

	I
Ball Location	Signal Name
H4	GND
H5	TEOP_3 ²
H6	VDD2
H7	NC
H8	GND
H9	UPX_DATA13
H10	VDD
H11	UPX_DATA19
H12	GND
H13	GND
H14	UPX_DATA24
H15	VDD
H16	UPX_DATA29
H17	GND
H18	NC
H19	VDD3
H20	RERR_3 ²
H21	GND
H22	TMS
H23	VDD3
H24	TDO
J1	TDAT12 ²
J2	TDAT13 ²
J3	TDAT14 ²
J4	TENB_3 ²
J5	TSOP_3 ²
J6	TPRTY_3 ²
J7	DTPA_3 ²
J8	TERR_3 ²
J9	UPX_DATA14
J10	GND
J11	VDD
J12	VDD2
J13	VDD3
J14	VDD
J15	GND
J16	UPX_DATA28
J17	UPX_DATA30
J18	RSOP_3 ²

Ball	
Location	Signal Name
J19	REOP_3 ²
J20	VDD
J21	NC
J22	TCLK
J23	TRST_L
J24	TDI
K1	TERR_1 ²
K2	GND
K3	UPX_DATA1
K4	VDD
K5	UPX_DATA7
K6	GND
K7	NC
K8	VDD
K9	GND
K10	UPX_DATA17
K11	GND
K12	UPX_DATA21
K13	UPX_DATA23
K14	GND
K15	UPX_DATA25
K16	GND
K17	VDD
K18	NC
K19	GND
K20	NC
K21	VDD
K22	NC
K23	GND
K24	LED_CLK
L1	DTPA_1 ²
L2	UPX_DATA0
L3	UPX_DATA2
L4	UPX_DATA4
L5	GND
L6	UPX_DATA9
L7	UPX_DATA10
L8	UPX_DATA12
L9	VDD

Ball Location	Signal Name
L10	GND
L11	VDD
L12	GND
L13	GND
L14	VDD
L15	GND
L16	VDD
L17	UPX_DATA31
L18	NC
L19	NC
L20	GND
L21	NC
L22	LED_LATCH
L23	I ² C_CLK
L24	I ² C_DATA_0 ³
M1	uPx_Rdy_L
M2	VDD2
M3	UPX_DATA3
M4	GND
M5	UPX_DATA6
M6	VDD2
M7	NC
M8	GND
M9	VDD2
M10	UPX_DATA16
M11	GND
M12	VDD2
M13	VDD3
M14	GND
M15	UPX_DATA27
M16	VDD3
M17	GND
M18	NC
M19	VDD3
M20	NC
M21	GND
M22	LED_DATA
M23	VDD3
M24	I ² C_DATA_1 ³

	I
Ball Location	Signal Name
N1	UPX_ADD1
N2	VDD5
N3	NC
N4	GND
N5	UPX_DATA5
N6	VDD5
N7	UPX_DATA11
N8	GND
N9	VDD5
N10	UPX_DATA15
N11	GND
N12	VDD5
N13	VDD4
N14	GND
N15	UPX_DATA26
N16	VDD4
N17	GND
N18	NC
N19	VDD4
N20	TXPAUSE_ADD0
N21	GND
N22	MOD_DEF_INT
N23	VDD4
N24	I ² C_DATA_2 ³
P1	UPX_ADD2
P2	NC
P3	UPX_ADD0
P4	NC
P5	UPX_DATA8
P6	NC
P7	NC
P8	NC
P9	VDD
P10	GND
P11	VDD
P12	GND
P13	GND
P14	VDD
P15	GND

r	1
Ball Location	Signal Name
P16	VDD
P17	NC
P18	NC
P19	RX_LOS_INT ³
P20	TXPAUSE_ADD1
P21	TXPAUSE_ADD2
P22	RX_P_0 ³
P23	TX_FAULT_INT ³
P24	I ² C_DATA_3 ³
R1	UPX_ADD3
R2	GND
R3	uPx_Cs_L
R4	VDD
R5	NC
R6	GND
R7	GND
R8	VDD
R9	GND
R10	NC
R11	GND
R12	NC
R13	NC
R14	GND
R15	NC
R16	GND
R17	VDD
R18	AVDD2P5_2
R19	GND
R20	NC
R21	VDD
R22	RX_N_0 ³
R23	GND
R24	RX_N_2 ³
T1	UPX_ADD4
T2	UPX_BADD0
T3	UPX_ADD10
T4	uPx_Wr_L
T5	UPX_WIDTH1
T6	NC

Ball Location	Signal Name
T7	NC
T8	NC
Т9	NC
T10	GND
T11	VDD
T12	VDD5
T13	VDD4
T14	VDD
T15	GND
T16	RXD4_3 ¹
T17	RXD5_3 ¹
T18	RXD6_3 ¹
T19	RXD7_3 ¹
T20	TXPAUSEFR
T21	NC
T22	NC
T23	AVDD1P8_2
T24	RX_P_2 ³
U1	UPX_ADD5
U2	VDD5
U3	UPX_ADD9
U4	GND
U5	NC
U6	VDD5
U7	NC
U8	GND
U9	NC
U10	VDD
U11	NC
U12	GND
U13	GND
U14	AVDD2P5_2
U15	VDD
U16	UPX_WIDTH0
U17	GND
U18	NC
U19	VDD4
U20	RX_ER_3 ¹
U21	GND

	Ī
Ball Location	Signal Name
U22	RX_N_1 ³
U23	VDD4
U24	RX_P_3 ³
V1	UPX_ADD6
V2	UPX_ADD7
V3	UPX_ADD8
V4	RXC_0 ¹
V5	RX_DV_0 ¹
V6	uPx_Rd_L
V7	RXD1_0 ¹
V8	RXD0_0 ¹
V9	NC
V10	NC
V11	NC
V12	TX_EN_3 ¹
V13	NC
V14	TXD0_3 ¹
V15	TXD1_3 ¹
V16	TXD2_3 ¹
V17	TXD3_3 ¹
V18	RX_DV_3 ¹
V19	RXD6_2 ¹
V20	RXD5_2 ¹
V21	MDIO ⁴
V22	RX_P_1 ³
V23	RXC_3 ¹
V24	RX_N_3 ³
W1	TX_ER_0 ¹
W2	GND
W3	UPX_BADD1
W4	VDD
W5	RX_ER_0 ¹
W6	GND
W7	RXD2_0 ¹
W8	VDD5
W9	RXD3_1 ¹
W10	GND
W11	RXD2_1 ¹
W12	VDD5

Ball Location	Signal Name
W13	VDD4
W14	TXD7_3 ¹
W15	GND
W16	TX_P_2 ³
W17	VDD4
W18	RXD3_3 ¹
W19	GND
W20	RXD7_2 ¹
W21	VDD
W22	RXD4_2 ¹
W23	GND
W24	MDC ⁴
Y1	TXD0_0 ¹
Y2	TXD1_0 ¹
Y3	TXD2_0 ¹
Y4	TXD7_0 ¹
Y5	RXD5_0 ¹
Y6	RXD4_0 ¹
Y7	RXD3_0 ¹
Y8	TX_EN_1 ¹
Y9	RXD0_1 ¹
Y10	RXD7_1 ¹
Y11	RXD1_1 ¹
Y12	RX_ER_1 ¹
Y13	TX_P_0 ³
Y14	TX_N_0 ³
Y15	TXD5_3 ¹
Y16	TX_N_2 ³
Y17	RXD0_3 ¹
Y18	RXD1_3 ¹
Y19	RXD2_3 ¹
Y20	RXD0_2 ¹
Y21	RXD1_2 ¹
Y22	RXD2_2 ¹
Y23	RXD3_2 ¹
Y24	RX_DV_2 ¹
AA1	TXC_0 ¹
AA2	VDD5
AA3	TXD3_0 ¹

Ball Location	Signal Name
AA4	GND
AA5	CRS_0 ¹
AA6	VDD
AA7	TXD4_1 ¹
AA8	GND
AA9	CRS_1 ¹
AA10	VDD
AA11	RXD6_1 ¹
AA12	GND
AA13	GND
AA14	TXD4_3 ¹
AA15	VDD
AA16	TXD6_3 ¹
AA17	GND
AA18	TXD7_2 ¹
AA19	VDD
AA20	TXD6_2 ¹
AA21	GND
AA22	RX_ER_2 ¹
AA23	VDD4
AA24	RXC_2 ¹
AB1	No Ball
AB2	TX_EN_0 ¹
AB3	TXD4_0 ¹
AB4	TXD6_0 ¹
AB5	RXD6_0 ¹
AB6	COL_0 ¹
AB7	TXD1_1 ¹
AB8	TXD5_1 ¹
AB9	TXD2_1 ¹
AB10	COL_1 ¹
AB11	RX_DV_1 ¹
AB12	GND
AB13	TX_ER_3 ¹
AB14	TXC_3 ¹
AB15	CRS_2 ¹
AB16	AVDD1P8_2
AB17	COL_3 ¹
AB18	NC
<u> </u>	

Ball Location	Signal Name
AB19	TXD5_2 ¹
AB20	TXD0_2 ¹
AB21	TXD1_2 ¹
AB22	TXD2_2 ¹
AB23	TXD3_2 ¹
AB24	No Ball
AC1	No Ball
AC2	No Ball
AC3	TXD5_0 ¹
AC4	VDD5
AC5	RXD7_0 ¹
AC6	GND
AC7	TXD0_1 ¹
AC8	VDD5
AC9	TXD7_1 ¹
AC10	GND
AC11	RXD5_1 ¹
AC12	VDD5
AC13	VDD4
AC14	GND
AC15	GND
AC16	CRS_3 ¹
AC17	VDD4
AC18	TX_P_3 ³
AC19	GND
AC20	TXC_2 ¹
AC21	VDD4
AC22	TX_EN_2 ¹
AC23	No Ball
AC24	No Ball
AD1	No Ball
AD2	No Ball
AD3	No Ball
AD4	NC
AD5	NC
AD6	TX_ER_1 ¹
AD7	TXC_1 ¹
AD8	TXD6_1 ¹
AD9	TXD3_1 ¹
1	

Ball Location	Signal Name
AD10	RXD4_1 ¹
AD11	RXC_1 ¹
AD12	SYS_RST_L
AD13	TX_P_1 ³
AD14	TX_N_1 ³
AD15	COL_2 ¹
AD16	TXD4_2 ¹
AD17	TX_ER_2 ¹
AD18	TX_N_3 ³
AD19	CLK125
AD20	AVDD2P5_1
AD21	GND
AD22	No Ball
AD23	No Ball
AD24	No Ball

4.0 Ball Assignments and Signal Descriptions

4.1 Naming Conventions

4.1.1 Signal Name Conventions

Signal names begin with a Signal Mnemonic, and can also contain one or more of the following designations: a differential pair designation, a serial designation, a port designation (RGMII interface), and an active low designation. Signal naming conventions are as follows:

Differential Pair + Port Designation. The positive and negative components of differential pairs tied to a specific port are designated by the Signal Mnemonic, immediately followed by an underscore and either P (positive component) or N (negative component), and an underscore followed by the port designation. For example, SerDes interface signals for port 0 are identified as TX P 0 and TX N 0.

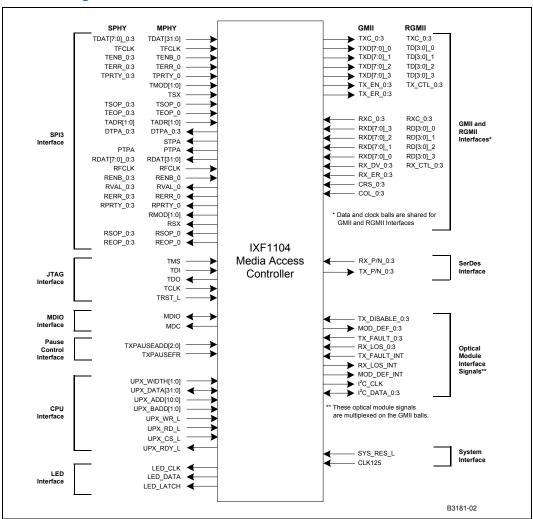
Serial Designation. A set of signals that are not tied to any specific port are designated by the Signal Mnemonic, followed by a bracketed serial designation. For example, the set of 11 CPU Address Bus signals is identified as UPX_ADD[10:0].

Port Designation. Individual signals that apply to a particular port are designated by the Signal Mnemonic, immediately followed by an underscore and the Port Designation. For example, RGMII Transmit Control signals are identified as TX_CTL_0, TX_CTL_1, TX_CTL_2, and so on.

Port Bus Designation. A set of bus signals that apply to a particular port are designated by the Signal Mnemonic, immediately followed by a bracketed bus designation, followed by an underscore and the port designation. For example, RGMII transmit data bus signals are identified as TD[3:0]_0, TD[3:0]_1, TD[3:0]_2, and so on.

Active Low Designation. A control input or indicator output that is active Low is designated by a final suffix consisting of an underscore followed by an upper case "L". For example, the CPU cycle complete identifier is shown as UPX RDY L.

4.1.2 Register Address Conventions


Registers located in on-chip memory are accessed using a register address, which is provided in Hex notation. A Register Address is indicated by the dollar sign (\$), followed by the memory location in Hex.

4.2 Interface Signal Groups

This section describes the IXF1104 MAC signals in groups according to the associated interface or function. Figure 4 shows the various interfaces available on the IXF1104 MAC.

Figure 4 Interface Signals

4.3 Signal Description Tables

The I/O signals, power supplies, or ground returns associated with each IXF1104 MAC connection ball are described in Table 3 through Table 14.

Table 3 SPI3 Interface Signal Descriptions (Sheet 1 of 8)

Signal Name		Ball	-	Chan dand	Description	
MPHY	SPHY	Designator	Type Standard			
TDAT31 TDAT30 TDAT29 TDAT28 TDAT27 TDAT26 TDAT25 TDAT25 TDAT24	TDAT7_3 TDAT6_3 TDAT5_3 TDAT4_3 TDAT3_3 TDAT2_3 TDAT1_3 TDAT0_3	F7 F5 G9 G8 G7 G6 G5 G4	Input	3.3 V LVTTL	Transmit Data Bus. Carries payload data to the IXF1104 MAC egress path. Mode Bits 32-bit Multi-PHY [31:24] 4 x 8 Single-PHY [7:0] for port 3	
TDAT23 TDAT22 TDAT21 TDAT20 TDAT19 TDAT18 TDAT17 TDAT16	TDAT7_2 TDAT6_2 TDAT5_2 TDAT4_2 TDAT3_2 TDAT2_2 TDAT1_2 TDAT0_2	C8 F9 E10 E9 E8 E7 E6	Input	3.3 V LVTTL	Transmit Data Bus. Carries payload data to the IXF1104 MAC egress path. Mode Bits 32-bit Multi-PHY [23:16] 4 x 8 Single-PHY [7:0] for port 2	
TDAT15 TDAT14 TDAT13 TDAT12 TDAT11 TDAT10 TDAT9 TDAT8	TDAT7_1 TDAT6_1 TDAT5_1 TDAT4_1 TDAT3_1 TDAT2_1 TDAT1_1 TDAT0_1	H3 J3 J2 J1 H1 G2 G1 F1	Input	3.3 V LVTTL	Transmit Data Bus. Carries payload data to the IXF1104 MAC egress path. Mode Bits 32-bit Multi-PHY [15:8] 4 x 8 Single-PHY [7:0] for port 1	
TDAT7 TDAT6 TDAT5 TDAT4 TDAT3 TDAT2 TDAT1 TDAT0	TDAT7_0 TDAT6_0 TDAT5_0 TDAT4_0 TDAT3_0 TDAT2_0 TDAT1_0 TDAT0_0	C6 B5 C5 C4 D1 C3 C2 B3	Input	3.3 V LVTTL	Transmit Data Bus. Carries payload data to the IXF1104 MAC egress path. Mode Bits 32-bit Multi-PHY 7:0] 4 x 8 Single-PHY [7:0] for port 0	
TFCLK	TFCLK	D7	Input	3.3 V LVTTL	Transmit Clock. TFCLK is the clock associated with all transmit signals. Data and control lines are sampled on the rising edge of TFCLK (frequency operation range 90 - 133 MHz).	
TPRTY_0	TPRTY_0 TPRTY_1 TPRTY_2 TPRTY_3	D5 G3 B9 J6	Input	3.3 V LVTTL	Transmit Parity. TPRTY indicates odd parity for the TDAT bus. TPRTY is valid only when a channel asserts either TENB or TSX. Odd parity is the default configuration; however, even parity can be selected (see Table 145, SPI3 Transmit and Global Configuration (\$0x700), on page 203). 32-bit Multi-PHY mode: TPRTY_0 is the parity bit covering all 32 bits. 4 x 8 Single-PHY mode: TPRTY_0:3 bits correspond to the respective TDAT[3:0]_n channels.	

Table 3 SPI3 Interface Signal Descriptions (Sheet 2 of 8)

Signal Name		Ball	T	Chandand	Description
МРНҮ	SPHY	Designator	Туре	Standard	Description
TENB_0	TENB_0 TENB_1 TENB_2 TENB_3	B7 E2 C9 J4	Input	3.3 V LVTTL	Transmit Write Enable. TENB_0:3 asserted causes an attached PHY to process TDAT[n], TMOD, TSOP, TEOP and TERR signals. 32-bit Multi-PHY mode: TENB_0 is the enable bit for all 32 bits. 4 x 8 Single-PHY mode: TENB_0:3 bits correspond to the respective TDAT[3:0]_n channels and their associated control and status signals.
TERR_0	TERR_0 TERR_1 TERR_2 TERR_3	A8 K1 E11 J8	Input	3.3 V LVTTL	Transmit Error. TERR indicates that there is an error in the current packet. TERR is valid when simultaneously asserted with TEOP and TENB. 32-bit Multi-PHY mode: TERR_0 is the bit asserted for all 32 bits. 4 x 8 Single-PHY mode: Each bit of TERR_0:3 corresponds to the respective TDAT[3:0]_n channel.
TSOP_0	TSOP_0 TSOP_1 TSOP_2 TSOP_3	C7 E3 C10 J5	Input	3.3 V LVTTL	Transmit Start-of-Packet. TSOP indicates the start of a packet and is valid when asserted simultaneously with TENB. 32-bit Multi-PHY mode: TSOP_0 is the bit asserted for all 32 bits. 4 x 8 Single-PHY mode: Each bit of TSOP_0:3 corresponds to the respective TDAT[3:0]_n channel.
TEOP_0	TEOP_0 TEOP_1 TEOP_2 TEOP_3	A7 F3 E4 H5	Input	3.3 V LVTTL	Transmit End-of-Packet. TEOP indicates the end of a packet and is valid when asserted simultaneously with TENB. 32-bit Multi-PHY mode: TEOP_0 is the bit asserted for all 32 bits. 4 x 8 Single-PHY mode: Each bit of TEOP_0:3 corresponds to the respective TDAT[3:0]_n channel.

Table 3 SPI3 Interface Signal Descriptions (Sheet 3 of 8)

Signa	l Name	Ball	-	Character of	Paradation
МРНҮ	SPHY	Designator	Туре	Standard	Description
TMOD1 TMOD0	NA	D9 A6	Input	3.3 V LVTTL	TMOD[1:0] Transmit Word Modulo. 32-bit Multi-PHY mode: TMOD[1:0] indicates the valid data bytes of TDAT[31:0]. During transmission, TMOD[1:0] should always be "00" until the last double word is transferred on TDAT[31:0]. TMOD[1:0] specifies the valid bytes of TDAT when TEOP is asserted: TMOD[1:0] - Valid Bytes of TDAT 00 = 4 bytes [31:0] 01 = 3 bytes [31:8] 10 = 2 bytes [31:16] 11 = 1 byte [31:24] TENB must be asserted simultaneously for TMOD[1:0] to be valid. 4 x 8 Single-PHY mode: MOD[1:0] is not required.
TSX	NA	E1	Input	3.3 V LVTTL	Transmit Start of Transfer. 32-bit Multi-PHY mode: TSX asserted with TENB = 1 indicates that the PHY address is present on TDAT[7:0]. The valid values on TDAT[7:0] are 3, 2, 1, and 0. When TENB = 0, TSX is not used by the PHY device. Note: Only TDAT[1:0] are relevant; all other bits are "Don't Care". 4 x 8 Single-PHY mode: TSX is not used.
TADR1 TADR0	TADR1 TADR0	A12 A11	Input	3.3 V LVTTL	TADR[1:0] Transmit PHY Address. The value on TADR[1:0] selects one of the PHY ports that drives the PTPA signal after the rising edge of TFCLK.
DTPA_0 DTPA_1 DTPA_2 DTPA_3	DTPA_0 DTPA_1 DTPA_2 DTPA_3	D3 L1 A9 J7	Output	3.3 V LVTTL	DTPA_0:3 Direct Transmit Packet Available. A direct status indication for transmit FIFOs of ports 0:3. When High, DTPA indicates that the amount of data in the TX FIFO is below the TX FIFO High watermark. When the High watermark is crossed, DTPA transitions Low to indicate that the TX FIFO is almost full. It stays Low until the amount of data in the TX FIFO goes back below the TX FIFO Low watermark. At this point, DTPA transitions High to indicate that the programmed number of bytes are now available for data transfers. Note: For more information, see Table 131, TX FIFO High Watermark Ports 0 - 3 (\$0x600 - 0x603), on page 193 and Table 132, TX FIFO Low Watermark Register Ports 0 - 3 (\$0x60A - 0x60D), on page 195. DTPA is updated on the rising edge of TFCLK.

Table 3 SPI3 Interface Signal Descriptions (Sheet 4 of 8)

Signa	l Name	Ball	Tuno	Ctandard	Description
MPHY	SPHY	Designator	Туре	Standard	Description
STPA	NA	C11	Output	3.3 V LVTTL	Selected-PHY Transmit Packet Available. STPA is only meaningful in a 32-bit multi-PHY mode. STPA is a direct status indication for transmit FIFOs of ports 0:3. When High, STPA indicates that the amount of data in the TX FIFO, specified by the latest in-band address, is below the TX FIFO High watermark. When the High watermark is crossed, STPA transitions Low to indicate the TX FIFO is almost full. It stays Low until the amount of data in the TX FIFO goes back below the TX FIFO Low watermark. At this point, STPA transitions High to indicate that the programmed number of bytes are now available for data transfers. Note: For more information, see Table 131, TX FIFO High Watermark Ports 0 - 3 (\$0x600 - 0x603), on page 193 and Table 132, TX FIFO Low Watermark Register Ports 0 - 3 (\$0x60A - 0x60D), on page 195. STPA provides the status indication for the selected port to avoid FIFO overflows while polling is performed. The port reported by STPA is updated on the following rising edge of TFCLK after TSX is sampled as
PTPA	PTPA	B11	Output	3.3 V LVTTL	asserted. STPA is updated on the rising edge of TFCLK. Polled-PHY Transmit Packet Available. PTPA allows the polling of the port selected by the TADR address bus. When High, PTPA indicates that the amount of data in the TX FIFO is below the TX FIFO High watermark. When the High watermark is crossed, PTPA transitions Low to indicate that the TX FIFO is almost full. It stays Low until the amount data in the TX FIFO goes back below the TX FIFO Low watermark. At this point, PTPA transitions High to indicate that the programmed number of bytes are now available for data transfers. Note: For more information, see Table 131, TX FIFO High Watermark Ports 0 - 3 (\$0x600 - 0x603), on page 193 and Table 132, TX FIFO Low Watermark Register Ports 0 - 3 (\$0x60A - 0x60D), on page 195. The port reported by PTPA is updated on the following rising edge of TFCLK after the port address on TADR is sampled by the PHY device. PTPA is updated on the rising edge of TFCLK.

Table 3 SPI3 Interface Signal Descriptions (Sheet 5 of 8)

Signal Name		Ball	Tuna	Standard	Description	
MPHY	SPHY	Designator	Туре	Standard	Description	
RDAT31 RDAT30 RDAT29 RDAT28 RDAT27 RDAT26 RDAT25 RDAT24	RDAT7_3 RDAT6_3 RDAT5_3 RDAT4_3 RDAT3_3 RDAT2_3 RDAT1_3 RDAT0_3	F24 G24 G23 G22 G21 G20 G19 G18	Output	3.3 V LVTTL	Receive Data Bus. RDAT carries payload data and in-band addresses from the IXF1104 MAC. Mode Bits 32-bit Multi-PHY [31:24] 4 x 8 Single-PHY [7:0] for port 3	
RDAT23 RDAT22 RDAT21 RDAT20 RDAT19 RDAT18 RDAT17 RDAT16	RDAT7_2 RDAT6_2 RDAT5_2 RDAT4_2 RDAT3_2 RDAT2_2 RDAT1_2 RDAT0_2	E21 E22 D22 C22 C21 C20 B22 B20	Output	3.3 V LVTTL	Receive Data Bus. RDAT carries payload data and in-band addresses from the IXF1104 MAC. Mode Bits 32-bit Multi-PHY [23:16] 4 x 8 Single-PHY [7:0] for port 2	
RDAT15 RDAT14 RDAT13 RDAT12 RDAT11 RDAT10 RDAT9 RDAT8	RDAT7_1 RDAT6_1 RDAT5_1 RDAT4_1 RDAT3_1 RDAT2_1 RDAT1_1 RDAT0_1	F18 E18 E17 F16 E16 D16 C17 A17	Output	3.3 V LVTTL	Receive Data Bus. RDAT carries payload data and in-band addresses from the IXF1104 MAC. Mode Bits 32-bit Multi-PHY [15:8] 4 x 8 Single-PHY [7:0] for port 1	
RDAT7 RDAT6 RDAT5 RDAT4 RDAT3 RDAT2 RDAT1 RDAT0	RDAT7_0 RDAT6_0 RDAT5_0 RDAT4_0 RDAT3_0 RDAT2_0 RDAT1_0 RDAT0_0	F14 E14 D14 C13 C14 B14 A14	Output	3.3 V LVTTL	Receive Data Bus. RDAT carries payload data and in-band addresses from the IXF1104 MAC. Mode Bits 32-bit Multi-PHY [7:0] 4 x 8 Single-PHY [7:0] for port 0	
RFCLK	RFCLK	A19	Input	3.3 V LVTTL	Receive Clock. RFCLK is the clock associated with all receive signals. Data and controls are driven on the rising edge of RFCLK (frequency operation range 90 - 133 MHz).	
RPRTY_0	RPRTY_0 RPRTY_1 RPRTY_2 RPRTY_3	E15 G16 E20 F20	Output	3.3 V LVTTL	Receive Parity. RPRTY indicates odd parity for the RDAT bus. RPRTY is valid only when a channel asserts RENB or RSX. Odd parity is the default configuration; however, even parity can be selected (see Table 146 on page 205). 32-bit Multi-PHY mode: RPRTY_0 is the parity bit for all 32 bits. 4 x 8 Single-PHY mode: Each bit of RPRTY_0:3 corresponds to the respective RDAT[3:0]_n channel.	

Table 3 SPI3 Interface Signal Descriptions (Sheet 6 of 8)

Signal Name		Ball	Туре	Standard	Description	
MPHY	SPHY	Designator	Туре	Standard	Description	
RENB_0	RENB_0 RENB_1 RENB_2 RENB_3	A13 A18 C19 E24	Input	3.3 V LVTTL	Receive Read Enable. The RENB signal controls the flow of data from the receive FIFOs. During data transfer, RVAL must be monitored as it indicates if the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, RERR, and RSX are valid. The system may de-assert RENB at any time if it is unable to accept data from the IXF1104 MAC. When RENB is sampled Low, a read is performed from the receive FIFO and the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX and RVAL signals are updated on the following rising edge of RFCLK. When RENB is sampled High by the PHY device, a read is not performed, and the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX, and RVAL signals remain unchanged on the following rising edge of RFCLK. 32-bit Multi-PHY Mode: RENB_0 covers all receive bits. 4 x 8 Single-PHY Mode: The RENB_0:3 bits correspond to the per-port data and control signals.	
RERR_0	RERR_0 RERR_1 RERR_2 RERR_3	A16 G17 D20 H20	Output	3.3 V LVTTL	Receive Error. RERR indicates that the current packet is in error. RERR is only asserted when REOP is asserted. Conditions that can cause RERR to be set include FIFO overflow, CRC error, code error, and runt or giant packets. Note: RERR can only be set for these conditions if bit 0 in Table 146, SPI3 Receive Configuration (\$0x701), on page 205 is set to 1. RERR is considered valid only when RVAL is asserted. 32-bit Multi-PHY mode: RERR_0 covers all 32 bits. 4 x 8 Single-PHY mode: The RERR_0:3 bits correspond to the RDAT[7:0]_n channels. (n = 0, 1, 2, or 3)	

Table 3 SPI3 Interface Signal Descriptions (Sheet 7 of 8)

Signal Name		Ball Type		Standard	Description
МРНҮ	SPHY	Designator	Туре	Standard	Description
RVAL_0	RVAL_0 RVAL_1 RVAL_2 RVAL_3	C15 B18 E19 F22	Output	3.3 V LVTTL	Receive Data Valid. RVAL indicates the validity of the receive data signals. RVAL is Low between transfers and assertion of RSX. It is also Low when the IXF1104 MAC pauses a transfer due to an empty receive FIFO. When a transfer is paused by holding RENB High, RVAL holds its value unchanged, although no new data is present on RDAT[31:0] until the transfer resumes. When RVAL is High, the RDAT[31:0], RMOD[1:0], RSOP, REOP, and RERR signals are valid. When RVAL is Low, the RDAT[31:0], RMOD[1:0], RSOP, REOP, and RERR signals are invalid and must be disregarded. The RSX signal is valid only when RVAL is Low. 32-bit Multi-PHY mode: RVAL_0 covers all receive bits. 4 x 8 Single-PHY mode: The RVAL_0:3 bits correspond to the per-port data and control signals.
RSOP_0	RSOP_0 RSOP_1 RSOP_2 RSOP_3	B16 C18 E23 J18	Output	3.3 V LVTTL	Receive Start of Packet. RSOP indicates the start of a packet when asserted with RVAL. 32-bit Multi-PHY mode: RSOP_0 covers all 32 bits. 4 x 8 Single-PHY mode: The RSOP_0:3 bits correspond to the RDAT[7:0]_n channels.

Table 3 SPI3 Interface Signal Descriptions (Sheet 8 of 8)

Signal Name		Ball	T	Chandand	Paradiation
МРНҮ	SPHY	Designator	Туре	Standard	Description
REOP_0	REOP_0 REOP_1 REOP_2 REOP_3	C16 D18 C23 J19	Output	3.3 V LVTTL	Receive End of Packet. REOP indicates the end of a packet when asserted with RVAL. 32-bit Multi-PHY mode: REOP_0 covers all 32 bits. 4 x 8 Single-PHY mode: The REOP_0:3 bits correspond to the RDAT[7:0]_n channels.
RMOD1 RMOD0	NA	G13 G14	Output	3.3 V LVTTL	Receive Word Modulo: 32-bit Multi-PHY mode: RMOD[1:0] indicates the valid bytes of data in RDAT[31:0]. During transmission, RMOD is always "00", except when the last double- word is transferred on RDAT[31:0]. RMOD[1:0] specifies the valid packet data bytes on RDAT[31:0] when REOP is asserted. RMOD[1:0] Valid Bytes of RDAT 00 = 4 bytes [31:0] 01 = 3 bytes [31:8] 10 = 2 bytes [31:16] 11 = 1 byte [31:24] 4 x 8 Single-PHY mode: RMOD[1:0] is not required. RMOD is considered valid only when RVAL is simultaneously asserted. RENB must be asserted for RMOD[1:0] to be valid.
RSX	NA	E13	Output	3.3 V LVTTL	Receive Start of Transfer. 32-bit Multi-PHY mode: RSX indicates when the in-band port address is present on the RDAT bus. When RSX is High and RVAL = 0, the value of RDAT[7:0] is the address of the receive FIFO to be selected. Subsequent data transfers on RDAT are from the FIFO specified by this in-band address. Values of 0, 1, 2, and 3 select the corresponding port. RSX is ignored when RVAL is de-asserted. 4 x 8 Single-PHY mode: RSX is ignored.

Table 4 SerDes Interface Signal Descriptions

Signal Name	Ball Designator	Туре	Standard	Description
TX_P_0 TX_P_1 TX_P_2 TX_P_3	Y13 AD13 W16 AC18	Output	SerDes	Transmit Differential Output, Positive.
TX_N_0 TX_N_1 TX_N_2 TX_N_3	Y14 AD14 Y16 AD18	Output	SerDes	Transmit Differential Output, Negative.
RX_P_0 RX_P_1 RX_P_2 RX_P_3	P22 V22 T24 U24	Input	SerDes	Receive Differential Input, Positive. ¹
RX_N_0 RX_N_1 RX_N_2 RX_N_3	R22 U22 R24 V24	Input	SerDes	Receive Differential Input, Negative. ¹

^{1.} Internally terminated differentially with 100 Ω_{\cdot}

Table 5 GMII Interface Signal Descriptions (Sheet 1 of 2)

Signal Name	Ball Designator	Туре	Standard	Description
TXD7_0 TXD6_0 TXD5_0 TXD4_0 TXD3_0 TXD2_0 TXD1_0 TXD0_0	Y4 AB4 AC3 AB3 AA3 Y3 Y2 Y1			
TXD7_1 TXD6_1 TXD5_1 TXD4_1 TXD3_1 TXD2_1 TXD1_1 TXD0_1	AC9 AD8 AB8 AA7 AD9 AB9 AB7 AC7	Output	2.5 V	Transmit Data. Each bus carries eight data bits [7:0] of the transmitted data stream to the PHY device. RGMII Mode: When a port is configured in copper mode and the RGMII interface is selected, only bits
TXD7_2 TXD6_2 TXD5_2 TXD4_2 TXD3_2 TXD2_2 TXD1_2 TXD0_2	AA18 AA20 AB19 AD16 AB23 AB22 AB21 AB20	Culput	CMOS	TXD[3:0]_n are used. The data is transmitted on both edges of TXC_0:3. Fiber Mode: The following signals have multiplexed functions when a port is configured in fiber mode: TXD4_n: TX_DISABLE_0:3
TXD7_3 TXD6_3 TXD5_3 TXD4_3 TXD3_3 TXD2_3 TXD1_3 TXD0_3	W14 AA16 Y15 AA14 V17 V16 V15			
TX_EN_0 TX_EN_1 TX_EN_2 TX_EN_3	AB2 Y8 AC22 V12	Output	2.5 V CMOS	Transmit Enable. TX_EN indicates that valid data is being driven on the corresponding Transmit Data: TXD_0, TXD_1, TXD_2, and TXD_3.
TX_ER_0 TX_ER_1 TX_ER_2 TX_ER_3	W1 AD6 AD17 AB13	Output	2.5 V CMOS	Transmit Error: TX_ER indicates a transmit error in the corresponding Transmit Data: TXD_0, TXD_1, TXD_2, and TXD_3.
TXC_0 TXC_1 TXC_2 TXC_3	AA1 AD7 AC20 AB14	Output	2.5 V CMOS	Source Synchronous Transmit Clock. This clock is supplied synchronous to the transmit data bus in either RGMII or GMII mode. Note: Shares the same balls as RXC
Note: Refer to the RO	 	ed data and	d clock signal	on the RGMII interface.

Cortina Systems $^{\circledR}$ IXF1104 4-Port Gigabit Ethernet Media Access Controller

Table 5 GMII Interface Signal Descriptions (Sheet 2 of 2)

Signal Name	Ball Designator	Туре	Standard	Description	
RXD7_0 RXD6_0 RXD5_0 RXD4_0 RXD3_0 RXD2_0 RXD1_0 RXD0_0 RXD7_1 RXD6_1 RXD5_1 RXD4_1 RXD3_1 RXD2_1 RXD1_1 RXD0_1 RXD1_1 RXD0_1 RXD1_2 RXD6_2 RXD6_2 RXD6_2 RXD5_2 RXD6_2 RXD5_2 RXD6_2 RXD5_2 RXD6_2 RXD6_2 RXD6_2 RXD6_3 RXD0_2	AC5 AB5 Y5 Y6 Y7 W7 V7 V8 Y10 AA11 AC11 AD10 W9 W11 Y11 Y9 W20 V19 V20 V22 Y23 Y22 Y21 Y20 T19 T18 T17 T16 W18 Y19	Input	2.5 V CMOS	Receive Data: Each bus carries eight data bits [7:0] of the received data stream. RGMII Mode: When a port ID is configured in copper mode and the RGMII interface is selected, only bits RXD[3:0]_n are used to receive data. Fiber Mode: The following signals have multiplexed functions when a port is configured in fiber mode: RXD4_n: MOD_DEF_0:3 RXD5_n: TX_FAULT_0:3 RXD6_n: RX_LOS_0:3	
RXD1_3 RXD0_3	Y18 Y17				
RX_DV_0 RX_DV_1 RX_DV_2 RX_DV_3	V5 AB11 Y24 V18	Input	2.5 V CMOS	Receive Data Valid. RX_DV indicates that valid data is being driven on Receive Data: RXD[7:0]_n.	
RX_ER_0 RX_ER_1 RX_ER_2 RX_ER_3	W5 Y12 AA22 U20	Input	2.5 V CMOS	Receive Error. RX_ER indicates an error in Receive Data: RXD[7:0]_n.	
CRS_0 CRS_1 CRS_2 CRS_3	AA5 AA9 AB15 AC16	Input	2.5 V CMOS	Carrier Sense. CRS indicates the PHY device has detected a carrier.	
RXC_0 RXC_1 RXC_2 RXC_3	V4 AD11 AA24 V23	Input	2.5 V CMOS	Receiver Reference Clock. RXC operates at: 125 MHz for 1 Gigabit Note: Shares the same balls as RXC on the RGMII interface.	
Note: Refer to the RGMII interface for shared data and clock signals.					

Cortina Systems $^{\circledR}$ IXF1104 4-Port Gigabit Ethernet Media Access Controller

Table 6 RGMII Interface Signal Descriptions (Sheet 1 of 2)

Signal Name	Ball Designator	Туре	Standard	Description	
TXC_0 TXC_1 TXC_2 TXC_3	AA1 AD7 AC20 AB14	Output	2.5 V CMOS	Source Synchronous Transmit Clock. This clock is supplied synchronous to the transmit data bus in either RGMII or GMII mode.	
TD3_0 TD2_0 TD1_0 TD0_0	AA3 Y3 Y2 Y1				
TD3_1 TD2_1 TD1_1 TD0_1	AD9 AB9 AB7 AC7	Output	2.5 V	Transmit Data. Bits [3:0] are clocked on the rising edge of TXC. Bits [7:4] are clocked on the falling edge of TXC.	
TD3_2 TD2_2 TD1_2 TD0_2	AB23 AB22 AB21 AB20	Odiput	CMOS	CMOS	Note: Shares data signals TXD[3:0]_n with the GMII interface.
TD3_3 TD2_3 TD1_3 TD0_3	V17 V16 V15 V14				
TX_CTL_0 TX_CTL_1 TX_CTL_2 TX_CTL_3	AB2 Y8 AC22 V12	Output	2.5 V CMOS	Transmit Control. TX_CTL is TX_EN on the rising edge of TXC and a logical derivative of TX_EN and TX_ER on the falling edge of TXC. Note: TX_CTL multiplexes with TX_EN_n on the GMII interface.	

Table 6 RGMII Interface Signal Descriptions (Sheet 2 of 2)

Signal Name	Ball Designator	Туре	Standard	Description	
RXC_0 RXC_1 RXC_2 RXC_3	V4 AD11 AA24 V23	Input	2.5 V CMOS	Receiver Reference Clock. Operates at: 125 MHz for 1 Gigabit 25 MHz for 100 Mbps 2.5 MHz for 10 Mbps Note: Shares the same balls as RXC on the GMII interface.	
RD3_0 RD2_0 RD1_0 RD0_0 RD3_1 RD2_1 RD1_1 RD1_1 RD0_1 RD3_2 RD2_2 RD1_2 RD0_2 RD3_3 RD2_3 RD1_3 RD0_3	Y7 W7 V7 V8 W9 W11 Y11 Y9 Y23 Y22 Y21 Y20 W18 Y19 Y18 Y17	Input	2.5 V CMOS	Receive Data. Bits [3:0] are clocked on the rising edge of RXC. Bits [7:4] are clocked on the falling edge of RXC. Note: Shares balls with RXD[3:0]_0 on the GMII interface.	
RX_CTL_0 RX_CTL_1 RX_CTL_2 RX_CTL_3	V5 AB11 Y24 V18	Input	2.5 V CMOS	Receive Control. RX_CTL is RX_DV on the rising edge of RXC are a logical derivative of RX_DV and RERR on the falling edge of RXC. Note: RX_CTL shares the same balls as RX_D on the GMII interface.	

Table 7 CPU Interface Signal Descriptions (Sheet 1 of 2)

Signal Name	Ball Designator	Туре	Standard	Description
UPX_ADD10 UPX_ADD9 UPX_ADD8 UPX_ADD7 UPX_ADD6 UPX_ADD5 UPX_ADD4 UPX_ADD3 UPX_ADD2 UPX_ADD1 UPX_ADD1 UPX_ADD0	T3 U3 V3 V2 V1 U1 T1 R1 P1 N1	Input	2.5V CMOS	UPX_ADD is the address bus from the microprocessor.
UPX_BADD1 UPX_BADD0	W3 T2	Input	2.5V CMOS	16-bit mode: The data word select uses UPX_BADD1. 8-bit mode: UPX_BADD[1:0] selects the individual bytes.
UPX_DATA31 UPX_DATA30 UPX_DATA29 UPX_DATA29 UPX_DATA28 UPX_DATA26 UPX_DATA26 UPX_DATA25 UPX_DATA23 UPX_DATA21 UPX_DATA21 UPX_DATA19 UPX_DATA18 UPX_DATA16 UPX_DATA15 UPX_DATA15 UPX_DATA16 UPX_DATA11 UPX_DATA11 UPX_DATA12 UPX_DATA12 UPX_DATA12 UPX_DATA11 UPX_DATA11 UPX_DATA11 UPX_DATA11 UPX_DATA11 UPX_DATA11 UPX_DATA10 UPX_DATA10 UPX_DATA6 UPX_DATA6 UPX_DATA6 UPX_DATA6 UPX_DATA4 UPX_DATA1 UPX_DATA1 UPX_DATA1	L17 J17 H16 J16 M15 N15 K15 H14 K13 G12 K12 G11 H11 G10 K10 N10 J9 H9 L8 N7 L7 L6 P5 K5 M5 N5 L4 M3 L3 K3 L2	Input/ Output	3.3V LVTTL	Data bus. 32-bit mode: Uses [31:0] 16-bit mode: Uses [15:0] 8-bit mode: Uses [7:0]
UPX_CS_L	R3	Input	2.5V CMOS	Chip Select. Active Low.
UPX_WR_L	T4	Input	2.5V CMOS	Write Strobe. Active Low.
UPX_RD_L	V6	Input	2.5V CMOS	Read Strobe. Active Low.

Table 7 CPU Interface Signal Descriptions (Sheet 2 of 2)

Signal Name	Ball Designator	Туре	Standard	Description	
UPX_RDY_L	M1	Open Drain Output*	3.3V LVTTL	Cycle complete indicator. Active Low. Note: An external pull-up resistor is required proper operation. Note: *Dual-mode I/O Normal operation: Open drain output Boundary Scan Mode: Standard CMG output	
UPX_WIDTH1 UPX_WIDTH0	T5 U16	Input	2.5V CMOS	Data bus width select. UPX_WIDTH[1:0] specifies the CPU bus width. UPX_WIDTH[1:0] Mode 00 8-bit 01 16-bit 1x 32-bit	

Table 8 Transmit Pause Control Interface Signal Descriptions

Signal Name	Ball Designator	Туре	Standard	Description	
TXPAUSEADD2 TXPAUSEADD1 TXPAUSEADD0	P21 P20 N20	Input	2.5 V CMOS	TXPAUSEADD[2:0] is the port selection address for pause frame insertion.	
TXPAUSEFR	T20	Input	2.5 V CMOS	TX Pause Interface Strobe.	

Table 9 Optical Module Interface Signal Descriptions (Sheet 1 of 2)

Signal Name	Ball Designator	Туре	Standard	Description
TX_DISABLE_0 TX_DISABLE_1 TX_DISABLE_2 TX_DISABLE_3	AB3 AA7 AD16 AA14	Open Drain Output*	2.5 V CMOS	Transmit Disable: TX_DISABLE_0:3 outputs disable the Optical Module Interface transmitter. An external pull-up resistor usually resident in an optical module is required for proper operation. Note: These signals are multiplexed with the TXD[4]_n bits of the GMII Interface Note: *Dual-mode I/O Normal operation: Open drain output Boundary Scan Mode: Standard CMOS output
MOD_DEF_0 MOD_DEF_1 MOD_DEF_2 MOD_DEF_3	Y6 AD10 W22 T16	Input	2.5 V CMOS	MOD_DEF_0:3 inputs determine when an Optical Module Interface is present. Note: These signals are multiplexed with the RXD[4]_n bits of the GMII interface.
RX_LOS_0 RX_LOS_1 RX_LOS_2 RX_LOS_3	AB5 AA11 V19 T18	Input	2.5 V CMOS	RX_LOS_0:3 inputs determine when the Optical Module Interface receiver loses synchronization. *Note: These signals are multiplexed with the RXD[6]_n bits of the GMII interface.
TX_FAULT_0 TX_FAULT_1 TX_FAULT_2 TX_FAULT_3	Y5 AC11 V20 T17	Input	2.5 V CMOS	TX_FAULT_0:3 inputs determine an Optical Module Interface transmitter fault. Note: These signals are multiplexed with the RXD[5]_n bits of the GMII Interface.
RX_LOS_INT	P19	Open Drain Output*	2.5 V CMOS	Receiver Loss of Signal Interrupt. RX_LOS_INT is an open drain interrupt output to signal an RX_LOS condition. Note: An external pull-up resistor is required for proper operation. Note: *Dual-mode I/O Normal operation: Open drain output Boundary Scan Mode: Standard CMOS output
TX_FAULT_INT	P23	Open Drain Output*	2.5 V CMOS	Transmitter Fault Interrupt. TX_FAULT_INT is an open drain interrupt output that signals a TX_FAULT condition. Note: An external pull-up resistor is required for proper operation. Note: *Dual-mode I/O Normal operation: Open drain output Boundary Scan Mode: Standard CMOS output

Table 9 Optical Module Interface Signal Descriptions (Sheet 2 of 2)

Signal Name	Ball Designator	Туре	Standard	Description
MOD_DEF_INT	N22	Open Drain Output*	2.5 V CMOS	Module Definition Interrupt. MOD_DEF_INT is an open drain interrupt output that signals a MOD_DEF condition. Note: An external pull-up resistor is required for proper operation. Note: *Dual-mode I/O Normal operation: Open drain output Boundary Scan Mode: Standard CMOS output
I ² C_CLK	L23	Output	2.5 V CMOS	I ² C_CLK is the clock used for the I ² C bus interface.
I ² C DATA_0 I ² C DATA_1 I ² C DATA_2 I ² C DATA_3	L24 M24 N24 P24	Input/ Open Drain Output*	2.5 V CMOS	I ² C Data Bus. I ² C DATA_0:3 are the data I/Os for the I ² C bus interface. Note: An external pull-up resistor is required for proper operation. Note: *Dual-mode I/O Normal operation: Input/ open drain output Boundary Scan Mode: Standard CMOS output

Table 10 MDIO Interface Signal Descriptions

Signal Name	Ball Designator	Туре	Standard	Description		
		l	0.5.1	MDIO is the management data input and output.		
MDIO	V21	Input/ Output	2.5 V CMOS	Note: An external pull-up resistor is required for proper operation.		
MDC	W24	Output	2.5 V CMOS	MDC is the management clock to external devices		

Table 11 LED Interface Signal Descriptions

Signal Name	Ball Designator	Туре	Standard	Description	
LED_CLK	K24	Output	2.5 V CMOS	LED_CLK is the clock output for the LED block.	
LED_DATA	M22	Output	2.5 V CMOS	LED_DATA is the data output for the LED block.	
LED_LATCH	L22	Output	2.5 V CMOS	LED_LATCH is the latch enable for the LED block.	

Table 12 JTAG Interface Signal Descriptions

Signal Name	Ball Designator	Туре	Standard	Description	
TCLK	J22	Input	3.3 V LVTTL	JTAG Test Clock	
TMS	H22	Input	3.3 V LVTTL	Test Mode Select	
TDI	J24	Input	3.3 V LVTTL	Test Data Input	
TDO	H24	Output	3.3 V LVTTL	Test Data Output	
TRST_L	J23	Input	3.3 V LVTTL	Test Reset; reset input for JTAG test	

Table 13 System Interface Signal Descriptions

Signal Name	Ball Designator	Туре	Standard	Description	
CLK125	AD19	Input	3.3 V LVTTL	CLK125 is the input clock to PLL; 125 MHz +/- 50 ppm	
SYS_RES_L	AD12	Input	2.5 V CMOS	SYS_RES_L is the system hard reset (active Low).	

Table 14 Power Supply Signal Descriptions (Sheet 1 of 2)

Signal Name		Ball Des	ignator		Туре	Standard	Description
GND	A4 B15 D12 F2 F19 H12 J10 K9 K19 L12 M4 M17 N11 P10 R2 R11 R23 U21 W15 AA8 AA21 AC14	A21 B19 D13 F6 F23 H13 J15 K11 K23 L13 M8 M21 N14 P12 R6 R14 T10 U12 W2 W19 AA12 AB12 AC15	B6 D4 D17 F10 H4 H17 K2 K14 L5 L15 M11 N4 N17 P13 R7 R16 T15 U13 W6 W23 AA13 AC6 AC19	B10 D8 D21 F15 H8 H21 K6 K16 L10 L20 M14 N8 N21 P15 R9 R19 U4 U17 W10 AA4 AA17 AC10 AD21	Input	_	Digital ground
AVDD1P8_1	A5	A20			Input	1.8 V	Analog 1.8 V supply
AVDD1P8_2	AB16	T23			Input	1.8 V	Analog 1.8 V supply
AVDD2P5_1	AD20				Input	2.5 V	Analog 2.5 V supply
AVDD2P5_2	U14	R18			Input	2.5 V	Analog 2.5 V supply

Table 14 Power Supply Signal Descriptions (Sheet 2 of 2)

Signal Name		Ball Des	ignator		Туре	Standard	Description
VDD	A10 D11 F21 J14 K17 L14 P14 R17 U10 AA6	C12 D15 H10 J20 K21 L16 P16 R21 U15 AA10	D6 D19 H15 K4 L9 P9 R4 T11 W4	D10 F4 J11 K8 L11 P11 R8 T14 W21 AA19	Input	1.8 V	Digital 1.8 V supply
VDD2	B4 F8 J12 M12	B8 F12 M2	B12 H2 M6	D2 H6 M9	Input	3.3 V	Digital 3.3 V supply
VDD3	B13 F13 J13 M23	B17 F17 M13	B21 H19 M16	D23 H23 M19	Input	3.3 V	Digital 3.3 V supply
VDD4	N13 T13 W17 AC21	N16 U19 AA23	N19 U23 AC13	N23 W13 AC17	Input	2.5 V	Digital 2.5 V supply
VDD5	N2 T12 W12 AC12	N6 U2 AA2	N9 U6 AC4	N12 W8 AC8	Input	2.5 V	Digital 2.5 V supply

4.4 Multiplexed Ball Connections

4.4.1 GMII/RGMII/SerDes/OMI Multiplexed Ball Connections

Table 15 lists the balls used for the line-side interfaces (GMII, RGMII, SerDes/OMI) and provides a guide to connect these balls. Some of these balls are multiplexed depending on the mode of operation selected for that port.

Note: Do not connect any balls marked as unused (NC).

Table 15 Line Side Interface Multiplexed Balls (Sheet 1 of 2)

Copper Mode		Fiber Mode						
GMII Signal	RGMII Signal	Optical Module/ SerDes Signal	Unused Port	Ball Designator				
TXC_0:3	TXC_0:3	NC	NC	AA1	AD7	AC20	AB14	
TXD[3:0]_0 TXD[3:0]_1 TXD[3:0]_2 TXD[3:0]_3	TD[3:0]_0 TD[3:0]_1 TD[3:0]_2 TD[3:0]_3	NC	NC	AA3 AD9 AB23 V17	Y3 AB9 AB22 V16	Y2 AB7 AB21 V15	Y1 AC7 AB20 V14	
TXD4_0:3	NC	TX_DISABLE_0:3 ²	NC	AB3	AA7	AD16	AA14	

^{1.} An external pull-up resistor is required with most optical modules.

^{2.} An open drain I/O, external 4.7 k Ω pull-up resistor is required.

Table 15 Line Side Interface Multiplexed Balls (Sheet 2 of 2)

Copper Mode		Fiber Mode					
GMII Signal	RGMII Signal	Optical Module/ SerDes Signal	Unused Port	Ball Designator			
TXD[7:5]_0 TXD[7:5]_1 TXD[7:5]_2 TXD[7:5]_3	NC	NC	NC	Y4 AC9 AA18 W14	AB4 AD8 AA20 AA16	AC3 AB8 AB19 Y15	
TX_EN_0:3	TX_CTL_0:3	NC	NC	AB2	Y8	AC22	V12
TX_ER_0:3	NC	NC	NC	W1	AD6	AD17	AB13
RXC_0:3	RXC_0:3	GND	GND	V4	AD11	AA24	V23
RXD[3:0]_0 RXD[3:0]_1 RXD[3:0]_2 RXD[3:0]_3	RD[3:0]_0 RD[3:0]_1 RD[3:0]_2 RD[3:0]_3	GND	GND	Y7 W9 Y23 W18	W7 W11 Y22 Y19	V7 Y11 Y21 Y18	V8 Y9 Y20 Y17
RXD4_0:3	GND	MOD_DEF_0:3 ¹	GND	Y6	AD10	W22	T16
RXD5_0:3	GND	TX_FAULT_0:3 ¹	GND	Y5	AC11	V20	T17
RXD6_0:3	GND	RX_LOS_0:3 ¹	GND	AB5	AA11	V19	T18
RXD7_0:3	GND	GND	GND	AC5	Y10	W20	T19
RX_DV_0:3	RX_CTL_0:3	GND	GND	V5	AB11	Y24	V18
RX_ER_0:3	GND	GND	GND	W5	Y12	AA22	U20
CRS_0:3	GND	GND	GND	AA5	AA9	AB15	AC16
COL_0:3	GND	GND	GND	AB6	AB10	AD15	AB17
GND	GND	RX_P_0:3	GND	P22	V22	T24	U24
GND	GND	RX_N_0:3	GND	R22	U22	R24	V24
NC	NC	TX_P_0:3	NC	Y13	AD13	W16	AC18
NC	NC	TX_N_0:3	NC	Y14	AD14	Y16	AD18
NC	NC	TX_FAULT_INT ²	NC	P23			
NC	NC	RX_LOS_INT ²	NC	P19			
NC	NC	MOD_DEF_INT ²	NC	N22			
MDC	MDC	NC	NC	W24			
MDIO ²	MDIO ²	NC	NC	V21			
NC	NC	I ² C_CLK	NC	L23			
NC	NC	I ² C_DATA_0:3 ²	NC	L24	M24	N24	P24

^{1.} An external pull-up resistor is required with most optical modules. 2. An open drain I/O, external 4.7 k Ω pull-up resistor is required.

4.4.2 **SPI3 MPHY/SPHY Ball Connections**

Table 16 lists the balls used for the SPI3 Interface and provides a guide to connect these balls in MPHY and SPHY mode.

Table 16 SPI3 MPHY/SPHY Interface (Sheet 1 of 2)

SPI3 Signals			Ball Number			Commonto
MPHY	SPHY		Ball I	Number		Comments
TDAT[31:24]	TDAT[7:0]_3	F7 G7	F5 G6	G9 G5	G8 G4	
TDAT[23:16]	TDAT[7:0]_2	C8 E8	F9 E7	E10 E6	E9 E5	MPHY: Consists of a single 32-bit data bus
TDAT[15:8]	TDAT[7:0]_1	H3 H1	J3 G2	J2 G1	J1 F1	SPHY: Separate 8-bit data bus for each Ethernet port
TDAT[7:0]	TDAT[7:0]_0	C6 D1	B5 C3	C5 C2	C4 B3	
TFCLK	TFCLK	D7				To achieve maximum bandwidth, set TFCLK as follows: MPHY: 133 MHz SPHY: 125 MHz.
TPRTY_0	TPRTY_0	D5				MPHY: Use TPRTY_0 as the TPRTY
GND	TPRTY_1	G3				signal.
GND	TPRTY_2	В9				SPHY: Each port has its own dedicated
GND	TPRTY_3	J6				TPRTY_ <i>n</i> signal.
TENB_0	TENB_0	B7				MDUV: Lice TEND, 0 on the TEND
VDD2	TENB_1	E2				MPHY: Use TENB_0 as the TENB signal.
VDD2	TENB_2	C9				SPHY: Each port has its own dedicated
VDD2	TENB_3	J4				TENB_n signal.
TERR_0	TERR_0	A8				MDHY: Hee TERR A se the TERR
GND	TERR_1	K1				MPHY: Use TERR_0 as the TERR signal.
GND	TERR_2	E11				SPHY: Each port has its own dedicated TERR <i>n</i> signal
GND	TERR_3	J8				- TERK_// Sigilal
TSOP_0	TSOP_0	C7				MDHV: Lies TSOD A se the TSOD
GND	TSOP_1	E3				MPHY: Use TSOP_0 as the TSOP signal.
GND	TSOP_2	C10				SPHY: Each port has a dedicated TSOP <i>n</i> signal.
GND	TSOP_3	J5				- 130F_// Signal.
TEOP_0	TEOP_0	A7				MPHY: Use TEOP_0 as the TEOP
GND	TEOP_1	F3				signal.
GND	TEOP_2	E4				SPHY: Each port has a dedicated TEOP <i>n</i> signal.
GND	TEOP_3	H5				- TEOP_II signal.
TMOD[1:0]	GND	D9	A6			TSX and TMOD[1:0] are only applicable
TSX	GND	E1				in MPHY mode.
TADR[1:0]	TADR[1:0]	A12	A11			Used to address port for PTPA signal.
PTPA	PTPA	B11				PTPA can be used in MPHY and SPHY modes.
DTPA_0:3	DTPA_0:3	D3	L1	A9	J7	DTPA is available on a per-port basis in both MPHY and SPHY modes.
STPA	NC	C11				STPA is only applicable in MPHY mode.

Table 16 SPI3 MPHY/SPHY Interface (Sheet 2 of 2)

SPI3	SPI3 Signals		D-II A	J		Comments
MPHY	SPHY		ван г	Number		Comments
RDAT[31:24]	RDAT[7:0]_3	F24 G21	G24 G20	G23 G19	G22 G18	
RDAT[23:16]	RDAT[7:0]_2	E21 C21	E22 C20	D22 B22	C22 B20	MPHY: Consists of a single 32 bit data bus.
RDAT[15:8]	RDAT[7:0]_1	F18 E16	E18 D16	E17 C17	F16 A17	SPHY: Separate 8-bit data bus for each Ethernet port.
RDAT[7:0]	RDAT[7:0]_0	F14 C14	E14 B14	D14 A15	C13 A14,	
RFCLK	RFCLK	A19				To achieve maximum bandwidth, set RFCLK as follows: MPHY: 133 MHz. SPHY: 125 MHz.
RPRTY_0	RPRTY_0	E15				MPHY: Use RPRTY_0 as the RPRTY
NC	RPRTY_1	G16				signal.
NC	RPRTY_2	E20				SPHY: Each port has a dedicated RPRTY <i>n</i> signal.
NC	RPRTY_3	F20				- RPRTT_// Signal.
RENB_0	RENB_0	A13				MDIN Lies DEND O so the DEND
VDD2	RENB_1	A18				MPHY: Use RENB_0 as the RENB signal.
VDD2	RENB_2	C19				SPHY: Each port has a dedicated
VDD2	RENB_3	E24				- RENB_ <i>n</i> signal
RERR_0	RERR_0	A16				MDIN Has DEDD Assitts DEDD
NC	RERR_1	G17				MPHY: Use RERR_0 as the RERR signal.
NC	RERR_2	D20				SPHY: Each port has a dedicated
NC	RERR_3	H20				- RERR_ <i>n</i> signal
RVAL_0	RVAL_0	C15				MDING Has DVAL O as the DVAL
NC	RVAL_1	B18				- MPHY: Use RVAL_0 as the RVAL signal.
NC	RVAL_2	E19				SPHY: Each port has a dedicated RVAL <i>n</i> signal.
NC	RVAL_3	F22				- RVAL_// Signal.
RSOP_0	RSOP_0	B16				MDHV. Has TSOD 0 as the TSOD
NC	RSOP_1	C18				- MPHY: Use TSOP_0 as the TSOP signal.
NC	RSOP_2	E23				SPHY: Each port has a dedicated
NC	RSOP_3	J18				- TSOP_ <i>n</i> signal.
REOP_0	REOP_0	C16				MPHY: Hoo TEOD O so the TEOD
NC	REOP_1	D18				- MPHY: Use TEOP_0 as the TEOP signal.
NC	REOP_2	C23				SPHY: Each port has a dedicated
NC	REOP_3	J19				- TEOP_ <i>n</i> signal.
RMOD[1:0]	NC	G13	G14			RSX and RMOD[1:0] are applicable
RSX	NC	E13				only in MPHY mode.

4.5 Ball State During Reset

Table 17 Definition of Output and Bi-directional Balls During Hardware Reset (Sheet 1 of 2)

Interface	Ball Name	Ball Reset State	Comment
	DTPA_0:3	0x0	-
	STPA	0x0	-
	PTPA	0x0	-
	RDAT[31:0]	0x00000000	-
	RVAL_0:3	0x0	-
SPI3	RERR_0:3	0x0	-
	RPRTY_0:3	0x0	-
	RMOD[1:0]	0x0	-
	RSX	0x0	-
	RSOP_0:3	0x0	-
	REOP_0:3	0x0	-
JTAG	TDO	0x0	-
MDIO	MDIO	High Z	Bi-directional
MDIO	MDC	0x0	-
CPU	UPX_DATA[31:0]	High Z	Bi-directional
CPU	UPX_RDY_L	0X1	Open-drain output, requires an external pull-up
	LED_CLK	0x0	-
LED	LED_DATA	0x0	-
	LED_LATCH	0x0	-
	TXC_0:3	High Z	Fiber mode is the default. Copper interfaces are disabled.
	TXD[7:0]_0	High Z	Fiber mode is the default. Bit 4 is driven by the optical module as MOD_DEF_0.
	TXD[7:0]_1	High Z	Fiber mode is the default. Bit 4 is driven by the optical module as MOD_DEF_1.
GMII/RGMII	TXD[7:0]_2	High Z	Fiber mode is the default. Bit 4 is driven by the optical module as MOD_DEF_2.
	TXD[7:0]_3	High Z	Fiber mode is the default. Bit 4 is driven by the optical module as MOD_DEF_3.
	TX_EN_0:3	High Z	Fiber mode is the default. Copper interfaces are disabled.
	TX_ER_0:3	High Z	Fiber mode is the default. Copper interfaces are disabled.
RGMII	TX_CTL_0:3	High Z	Fiber mode is the default. Copper interfaces are disabled.
SerDes	TX_P_0:3	0x0	-
	TX_N_0:3	0x0	-
Note: Z = Hig	gh impedance.		

Table 17 Definition of Output and Bi-directional Balls During Hardware Reset (Sheet 2 of 2)

Interface	Ball Name	Ball Reset State	Comment			
	TX_FAULT_INT	High Z	Open-drain output, requires external pull-up.			
	RX_LOS_INT	High Z	Open-drain output, requires external pull-up.			
Optical Module	MOD_DEF_INT	High Z	Open-drain output, requires external pull-up.			
	I ² C_CLK	0x1	-			
	I ² C_DATA_0:3	0xF	Open-drain output, requires external pull-up.			
Note: Z = Hig	Note: Z = High impedance.					

4.6 Power Supply Sequencing

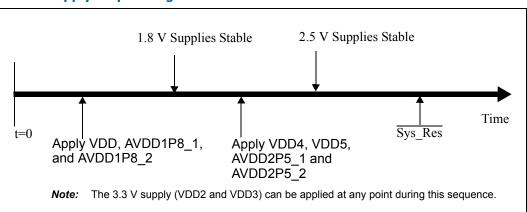
Follow the power-up and power-down sequences described in this section to ensure correct IXF1104 MAC operation. The sequence described in Section 4.6 covers all IXF1104 MAC digital and analog supplies.

Caution: Failure to follow the sequence described in this section might damage the IXF1104 MAC.

4.6.1 Power-Up Sequence

Ensure that the 1.8 V analog and digital supplies are applied and stable prior to application of the 2.5 V analog and digital supplies.

4.6.2 Power-Down Sequence


Remove the 2.5 V supplies prior to removing the 1.8 V power supplies (the reverse of the power-up sequence).

Caution:

Damage can occur to the ESD structures within the analog I/Os if the 2.5 V digital and analog supplies exceed the 1.8 V digital and analog supplies by more than 2.0 V during power-up or power-down.

Figure 5 and Table 18 provide the IXF1104 MAC power supply sequencing.

Figure 5 Power Supply Sequencing

Table 18 Power Supply Sequencing

Power Supply	Power-Up Order	Time Delta to Next Supply ¹	Notes
VDD, AVDD1P8_1, AVDD1P8_2	First	0	1.8 V supplies
VDD4, VDD5, AVDD2P5_1, AVDD2P5_2	Second	10 µs	2.5 V supplies

The value of 10 µs given is a nominal value only. The exact time difference between the application of the 2.5 V analog supply is determined by a number of factors, depending on the power management method used.

Note: To avoid damage to the IXF1104 MAC, the TXAV25 supply must not exceed the VDD supply by more

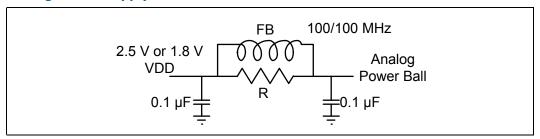
than 2 V at any time during the power-up or power-down sequence.

Note: The 3.3 V supply (VDD2 and VDD3) can be applied at any point during this sequence.

4.7 Pull-Up/Pull-Down Ball Guidelines

The signals shown in Table 19 require the addition of a pull-up or pull-down resistor to the board design for normal operation. Any balls marked as unused (NC) should be unconnected.

Table 19 Pull-Up/Pull-Down and Unused Ball Guidelines


Pin Name	Pull-Up/Pull-Down	Comments
TX_FAULT_INT	Pull-up	4.7 k Ω to 2.5 V. Optical module signal with open-drain I/O.
RX_LOS_INT	Pull-up	4.7 k Ω to 2.5 V. Optical module signal with open-drain I/O.
MOD_DEF_INT	Pull-up	4.7 k Ω to 2.5 V. Optical module signal with open-drain I/O.
TDI	Pull-up	10 k Ω to 3.3 V. JTAG test pin.
TDO	Pull-up	10 k Ω to 3.3 V. JTAG test pin.
TMS	Pull-up	10 k Ω to 3.3 V. JTAG test pin.
TCLK	Pull-up	10 k Ω to 3.3 V. JTAG test pin.
TRST_L	Pull-down	10 k Ω to ground. JTAG test pin.
MDIO	Pull-up	4.7 k Ω to 2.5 V
UPX_RDY_L	Pull-up	4.7 k Ω to 3.3 V
I ² C_DATA_0:3	Pull-up	4.7 k Ω to 2.5 V
TX_DISABLE_0:3	Pull-up	4.7 k Ω to 2.5 V

4.8 Analog Power Filtering

Table 20 illustrates an analog power supply filter network and Table 20 lists the analog power balls.

Figure 6 Analog Power Supply Filter Network

Table 20 Analog Power Balls

Signal Name	Ba Desig		Comments
AVDD1P8_1	A5	A20	Need to provide a filter (see Figure 6).
AVDD2P5_1	AD20		R: AVDD1P8_1 and AVDD2P5_1 = 5.6 Ω resistor.
AVDD1P8_2	AB16	T23	Need to provide a filter (see Figure 6).
AVDD2P5_2	U14	R18	R: AVDD1P8_2 and AVDD2P5_2 = 1.0 Ω resistor.

5.0 Functional Descriptions

5.1 Media Access Controller (MAC)

The IXF1104 MAC main functional block consists of four independent 10/100/1000 Mbps Ethernet MACs, which support interfaces for fiber and copper connectivity.

- Copper Mode:
 - RGMII for 10/100/1000 Mbps full-duplex operation and 10/100 Mbps half-duplex operation
 - GMII for 1000 Mbps full-duplex operation
- · Fiber Mode:
 - Integrated SerDes/OMI interface for direct connection to optical modules
 - 1000 Mbps full-duplex operation in fiber mode

The following features support copper and fiber modes:

- · Programmable Options:
 - Automatic padding of transmitted packets that are less than the minimum frame size
 - Broadcast, multicast, and unicast address filtering on frames received
 - Filter and drop packets with errors
 - Pre-padded RX frames with two bytes (aligns the Ethernet payload on SPI3 and in network processor memories)
 - Remove CRC from RX frames
 - Append CRC to transmitted frames
- · Performance Monitoring and Diagnostics:
 - Loopback modes
 - Detection of runt and overly large packets
 - Cyclic Redundancy Check (CRC) calculation and error detection
 - RMON statistics for dropped packets, packets with errors, etc.
- Compliant with IEEE Spec 802.3x standard for flow control
 - Receive and execute PAUSE Command Frames
- Support for non-standard packet sizes up to 10 KB including loss-less flow control

Note:

The IXF1104 MAC does not support 10/100 Mbps operation when configured in GMII mode.

The IXF1104 MAC is fully integrated, designed for use with Ethernet 802.3 frame types, and compliant to all of the IEEE 802.3 MAC requirements.

The IXF1104 MAC adds preamble and Start-of-Frame Delimiter (SFD) to all frames sent to it (transmit path) and removes preamble and SFD on all frames received by it (receive path). A CRC check is also applied to all transmit and receive packets. CRC is optionally appended to transmit packets. CRC is removed optionally from receive packets after validation, and is not forwarded to SPI3. Packets with a bad CRC are marked, counted in the statistics block, and may be optionally dropped. A bad packet may be signaled with RERR on the SPI3 interface if it is not dropped.

The IXF1104 MAC operates only in full-duplex mode at 1000 Mbps rates on both SerDes and GMII interface connections. The IXF1104 MAC is capable of operation at 1000 Mbps, full-duplex in RGMII mode, and at full-duplex and half-duplex operation for 10/100 Mbps links.

5.1.1 Features for Fiber and Copper Mode

Section 5.1.1.1 through Section 5.1.1.4 cover IXF1104 MAC functions that are independent of the line-side interface.

5.1.1.1 Padding of Undersized Frames on Transmit

The padding feature allows Ethernet frames smaller than 64 bytes to be transferred from the SPI3 interface to the TX MAC and padded up to 64 bytes automatically by the MAC. This feature is enabled by setting bit 7 of the *Diverse Config Write* (\$ Port_Index + 0x18).

Note: When the user selects the padding function, the MAC core adds an automatically calculated CRC to the end of the transmitted packet.

5.1.1.2 Automatic CRC Generation

Automatic CRC Generation is used in conjunction with the padding feature to generate and append a correct CRC to any transmit frame. This feature is enabled by setting bit 6 of the *Diverse Config Write* (\$ Port Index + 0x18).

5.1.1.3 Filtering of Receive Packets

This feature allows the IXF1104 MAC to filter receive packets under various conditions and drop the packets through an interaction with the Receive FIFO control.

5.1.1.3.1 Filter on Unicast Packet Match

This feature is enabled when bit 0 of the RX Packet Filter Control ($$Port_Index + 0x19$) = 1. Any frame received in this mode that does not match the Station Address (MAC address) is marked by the IXF1104 MAC to be dropped. The frame is dropped if the appropriate bit in the RX FIFO Errored Frame Drop Enable (\$0x59F) = 1. Otherwise, the frame is sent out the SPI3 interface and may optionally be signaled with an RERR (see bit 0 in Table 146, SPI3 Receive Configuration (\$0x701), on page 205).

When bit 0 of the RX Packet Filter Control (\$ Port_Index + 0x19) = 0, all unicast frames are sent out the SPI3 interface.

Note: The VLAN filter overrides the unicast filter. Therefore, a VLAN frame cannot be filtered based on the unicast address.

5.1.1.3.2 Filter on Multicast Packet Match

This feature is enabled when bit 1 of the RX Packet Filter Control (\$ Port_Index + 0x19) = 1. Any frame received in this mode that does not match the Port Multicast Address (reserved multicast address recognized by IXF1104 MAC) is marked by the MAC to be dropped. The frame is dropped if the appropriate bit in the RX FIFO Errored Frame Drop Enable (\$0x59F) = 1. Otherwise, the frame is sent out the SPI3 interface and may optionally be signaled with an RERR (see bit 0 in Table 146, SPI3 Receive Configuration (\$0x701), on page 205).

When bit 1 of the RX Packet Filter Control ($$Port_Index + 0x19$) = 0, all multicast frames are sent out the SPI3 interface.

5.1.1.3.3 **Filter Broadcast Packets**

This feature is enabled when bit 2 of the RX Packet Filter Control (\$ Port Index + 0x19) = 1. Any broadcast frame received in this mode is marked by the MAC to be dropped. The frame is dropped if the appropriate bit in the RX FIFO Errored Frame Drop Enable (\$0x59F) = 1. Otherwise, the frame is sent out the SPI3 interface and may optionally be signaled with an RERR (see bit 0 in Table 146, SPI3 Receive Configuration (\$0x701), on page 205).

When bit 2 of the RX Packet Filter Control (\$ Port Index + 0x19) = 0, all broadcast frames are sent out the SPI3 interface.

5.1.1.3.4 **Filter VLAN Packets**

This feature is enabled when bit 3 of the RX Packet Filter Control (\$ Port Index + 0x19) = 1. VLAN frames received in this mode are marked by the MAC to be dropped. The frame is dropped if the appropriate bit in the RX FIFO Errored Frame Drop Enable (\$0x59F) = 1. Otherwise, the VLAN frame is sent out the SPI3 interface and may optionally be signaled with an RERR (see bit 0 in Table 146, SPI3 Receive Configuration (\$0x701), on page 205).

When bit 3 of the RX Packet Filter Control (\$ Port Index + 0x19) = 0, all VLAN frames are sent out the SPI3 interface.

5.1.1.3.5 **Filter Pause Packets**

This feature is enabled when bit 4 of the RX Packet Filter Control (\$ Port Index + 0x19) = 0. Pause frames received in this mode are marked by the MAC to be dropped. The frame is dropped if the appropriate bit in the RX FIFO Errored Frame Drop Enable (\$0x59F) = 1. Otherwise, the pause frame is sent out the SPI3 interface and may optionally be signaled with an RERR (see bit 0 in Table 146, SPI3 Receive Configuration (\$0x701), on page 205).

When bit 4 of the RX Packet Filter Control (\$ Port Index + 0x19) = 1, all pause frames are sent out the SPI3 interface.

Note: Pause packets are not filtered if flow control is disabled in the FC Enable (\$ Port Index + 0x12).

5.1.1.3.6 **Filter CRC Error Packets**

This feature is enabled when bit 5 of the RX Packet Filter Control (\$ Port Index + 0x19) = 0. Frames received with an errored CRC are marked as bad frames and may optionally be dropped in the RX FIFO. Otherwise, the frames are sent to the SPI3 interface and may be optionally signaled with an RERR (see Table 21, CRC Errored Packets Drop Enable Behavior, on page 67).

When the CRC Error Pass Filter bit = 0 (RX Packet Filter Control (\$ Port_Index + 0x19)), it takes precedence over the other filter bits. Any packet (Pause, Unicast, Multicast or Broadcast packet) with a CRC error will be marked as a bad frame when the CRC Error Pass Filter bit = 0.

Table 21 CRC Errored Packets Drop Enable Behavior

CRC Error Pass ¹	RX FIFO ErroredFrame Drop Enable ²	RERR Enable ³	Actions
1	x	х	When CRC Errored PASS = 1, CRC errored packets are not filtered and are passed to the SPI3 interface. They are not marked as bad, cannot be dropped, and cannot be signaled with RERR.
0	0	1	Packets are marked as bad but not dropped in the RX FIFO. These packets are sent to the SPI3 interface, and are signaled with an RERR to the switch or Network Processor.
0	0	0	Packets are marked as bad but not dropped in the RX FIFO. These packets are sent to the SPI3 interface, and are not signaled with an RERR.
0	1	x	CRC errored packets are marked as bad, dropped in the RX FIFO, and never appear at the SPI3 interface. Note: Packet sizes above the RX FIFO Transfer Threshold (see Table 127 through Table 130) cannot be dropped in the RX FIFO and are passed to the SPI3 interface. These packets can optionally be signaled with RERR on the SPI3 interface if the RERR Enable bit = 1.

- 1. See Table 90, RX Packet Filter Control (\$ Port_Index + 0x19), on page 164.
- 2. See Table 122, RX FIFO Errored Frame Drop Enable (\$0x59F), on page 188.
- 3. See Table 146, SPI3 Receive Configuration (\$0x701), on page 205.

Note: x = "DON'T CARE"

5.1.1.4 CRC Error Detection

Frames received by the MAC are checked for a correct CRC. When an incorrect CRC is detected on a received frame, the RX FCSError RMON statistic counter increments for each CRC errored frame. Received frames with CRC errors may optionally be dropped in the RX FIFO (refer to Section 5.1.1.3.6, *Filter CRC Error Packets*, on page 66). Otherwise, the frames are sent to the SPI3 interface and may be dropped by the switch or system controller.

Frames transmitted by the MAC are also checked for correct CRC. When an incorrect CRC is detected on a transmitted frame, the TX CRCError RMON statistic counter increments for each incorrect frame.

5.1.2 Flow Control

Flow Control is an IEEE 802.3x-defined mechanism for one network node to request that its link partner take a temporary "Pause" in packet transmission. This allows the requesting network node to prevent FIFO overruns and dropped packets, by managing incoming traffic to fit its available memory. The temporary pause allows the device to process packets already received or in transit, thus freeing up the FIFO space allocated to those packets.

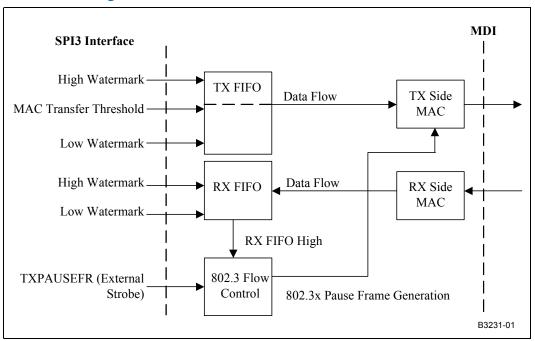
The IXF1104 MAC MAC implements the IEEE 802.3x standard RX FIFO threshold-based Flow Control in copper and fiber modes. When appropriately programmed, the MAC can both generate and respond to IEEE standard pause frames in full-duplex operation. The IXF1104 MAC also supports externally triggered flow control through the Transmit Pause Control interface.

In half-duplex operation, the MAC generates collisions instead of sending pause frames to manage the incoming traffic from the link partner

5.1.2.1 802.3x Flow Control (Full-Duplex Operation)

The IEEE 802.3x standard identifies four options related to system flow control:

- No Pause
- Symmetric Pause (both directions)
- Asymmetric Pause (Receive direction only)
- · Asymmetric Pause (Transmit direction only)

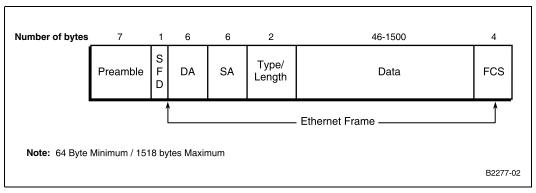

The IXF1104 MAC supports all four options on a per-port basis. Bits 2:0 of the Table 83 on page 160 provide programmable control for enabling or disabling flow control in each direction independently.

The IEEE 802.3x flow control mechanism is accomplished within the MAC sublayer, and is based on RX FIFO thresholds called watermarks. The RX FIFO level rises and falls as packets are received and processed. When the RX FIFO reaches a watermark (either exceeding a High or dropping below a Low after exceeding a High), the IXF1104 MAC control sublayer signals an internal state machine to transmit a PAUSE frame. The FIFOs automatically generate PAUSE frames (also called control frames) to initiate the following:

- · Halt the link partner when the High watermark is reached.
- Restart the link partner when the data stored in the FIFO falls below the Low watermark.

Figure 7 illustrates the IEEE 802.3 FIFO flow control functions.

Figure 7 Packet Buffering FIFO



5.1.2.1.1 Pause Frame Format

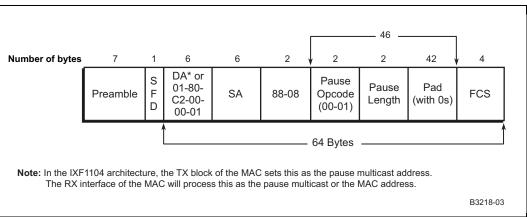

PAUSE frames are MAC control frames that are padded to the minimum size (64 bytes). Figure 8 and Figure 9 illustrate the frame format and contents.

Figure 8 Ethernet Frame Format

Figure 9 PAUSE Frame Format

An IEEE 802.3 MAC PAUSE frame is identified by detecting all of the following:

- · OpCode of 00-01
- · Length/Type field of 88-08
- DA matching the unique multicast address (01-80-C2-00-00-01)

XOFF. A PAUSE frame informs the link partner to halt transmission for a specified length of time. The PauseLength octets specify the duration of the no-transmit period. If this time is greater than zero, the link partner must stop sending any further packets until this time has elapsed. This is referred to as XOFF.

XON. The MAC continues to transmit PAUSE frames with the specified Pause Length as long as the FIFO level exceeds the threshold. If the FIFO level falls below the threshold before the Pause Length time expires, the MAC sends another PAUSE frame with the Pause Length time specified as zero. This is referred to as XON and informs the link partner to resume normal transmission of packets.

5.1.2.1.2 Pause Settings

The MAC must send PAUSE frames repeatedly to maintain the link partner in a Pause state. The following two inter-related variables control this process:

 Pause Length is the amount of time, measured in multiples of 512 bit times, that the MAC requests the link partner to halt transmission for.

 Pause Threshold is the amount of time, measured in multiples of 512 bit times, prior to the expiration of the Pause Length that the MAC transmits another Pause frame to maintain the link partner in the pause state.

The transmitted Pause Length in the IXF1104 MAC is set by the Table 74 on page 157.

The IXF1104 MAC PAUSE frame transmission interval is set by the Table 79 on page 158.

5.1.2.1.3 Response to Received PAUSE Command Frames

When Flow Control is enabled in the receive direction (bit 0 in the *FC Enable* (*\$ Port_Index* + 0x12)), the IXF1104 MAC responds to PAUSE Command frames received from the link partner as follows:

- 1. The IXF1104 MAC checks the entire frame to verify that it is a valid PAUSE control frame addressed to the Multicast Address 01-80-C2-00-00-01 (as specified in IEEE 802.3, Annex 31B) or has a Destinations Address matching the address programmed in the *Station Address* (\$ Port Index +0x00 +0x01).
- 2. If the PAUSE frame is valid, the transmit side of the IXF1104 MAC pauses for the required number of PAUSE Quanta, as specified in IEEE 802.3, Clause 31.
- 3. PAUSE does not begin until completion of the frame currently being transmitted.

The IXF1104 MAC response to valid received PAUSE frames is independent of the PAUSE frame filter settings. Refer to Section 5.1.1.3.5, *Filter Pause Packets*, on page 66 for additional details.

Note: Pause packets are not filtered if flow control is disabled in bit 0 of the *FC Enable* (\$ Port_Index + 0x12).

5.1.2.1.4 Half-Duplex Operation

Transmit flow control is implemented only in half-duplex operation. Upon entering the flow control state, the MAC generates a collision for all subsequent receive packets until exiting the flow control state. Any receive packet in progress when the MAC enters the flow control state will not be collided with but could be lost due if there is insufficient FIFO depth to complete packet reception. Bit 2 of the FC Enable (\$ Port_Index + 0x12) enables the transmit flow control function.

5.1.2.1.5 Transmit Pause Control Interface

The Transmit Pause Control interface allows an external device to trigger the generation of pause frames. The Transmit Pause Control interface is completely asynchronous. It consists of three address signals (TXPAUSEADD[2:0]) and a strobe signal (TXPAUSEFR). The required address for this interface operation is placed on the TXPAUSEADD[2:0] signals and the TXPAUSEFR is pulsed High and returned Low. Refer to Figure 10, *Transmit Pause Control Interface*, on page 71 and Table 54, *Transmit Pause Control Interface Timing Parameters*, on page 144. Table 22 shows the valid decodes for the TXPAUSEADD[2:0] signals. Figure 10 illustrates the transmit pause control interface.

Note: Flow control must be enabled in the *FC Enable* (\$ *Port_Index + 0x12*) for Transmit Pause Control interface operation.

Note: There are two additional decodes provided that allow the user to generate either an XOFF frame or XON frame from all ports simultaneously.

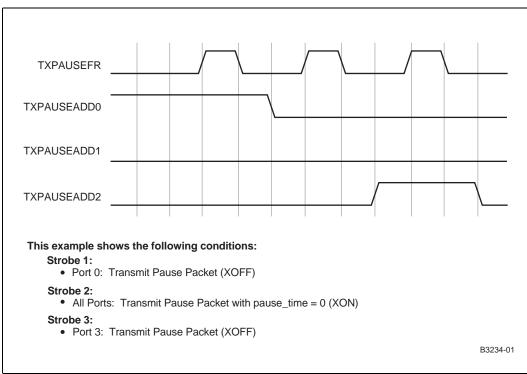

The default pause quanta for each port is held by the FC TX Timer Value (\$ Port_Index + 0x07)). The default value of this register is 0x05E after reset is applied.

Table 22 Valid Decodes for TXPAUSEADD[2:0]

TXPAUSEADD_2:0	Operation of TX Pause Control Interface
0x0	Transmits a PAUSE frame on every port with a pause_time = ZERO (XON) (Cancels all previous pause commands).
0x1	Transmits a PAUSE frame on port 0 with pause_time equal to the value programmed in the port 0 FC TX Timer Value (\$ Port_Index + 0x07) (XOFF).
0x2	Transmits a PAUSE frame on port 1 with pause_time equal to the value programmed in the port 1 FC TX Timer Value (\$ Port_Index + 0x07) (XOFF).
0x3	Transmits a PAUSE frame on port 2 with pause_time equal to the value programmed in the port 2 FC TX Timer Value (\$ Port_Index + 0x07) (XOFF).
0x4	Transmits a PAUSE frame on port 3 with pause_time equal to the value programmed in the port 3 FC TX Timer Value (\$ Port_Index + 0x07) (XOFF).
0x5 to 0x6	Reserved. Do not use these addresses. The TX Pause Control interface will not operate under these conditions.
0x7	Transmits a PAUSE frame on every port with pause_time equal to the value programmed in the FC TX Timer Value (\$ Port_Index + 0x07) for each port (XOFF).

Figure 10 Transmit Pause Control Interface

5.1.3 Mixed-Mode Operation

The IXF1104 MAC gives the user the option of configuring each port for 10/100 Mbps half-duplex copper, 10/100/1000 Mbps full-duplex copper, or 1000 Mbps full-duplex fiber operation. This gives the IXF1104 MAC the ability to support both copper and fiber operation line-side interfaces operating at the same time within a single device. (Refer to Table 15, *Line Side Interface Multiplexed Balls*, on page 56.)

The IXF1104 MAC provides complete flexibility in line-side connectivity by offering RGMII, integrated SerDes, and GMII.

5.1.3.1 Configuration

The memory maps (Table 58, MAC Control Registers (\$ Port Index + Offset), on page 149 through Table 68, Optical Module Registers (\$ 0x799 - 0x79F), on page 155) are logically split into the following two distinct regions:

- · Per-Port Registers
- · Global Registers

To achieve a desired configuration for a given port, the relevant per-port registers must be configured correctly by the user. The Table 58 through Table 68 also contain registers that affect the operation of all ports, such as the SPI3 interface configuration.

See Section 8.0, *Register Set*, on page 148 for a complete description of IXF1104 MAC configuration and status registers. The Register Maps (Table 58 through Table 68) present a summary of important configuration registers.

Note:

The initialization sequence provided in Section 6.1, Change Port Mode Initialization Sequence, on page 124 must be followed for proper configuration of the IXF1104 MAC.

5.1.3.2 Key Configuration Registers

The following key registers select the operational mode of a given port:

Table 23 Operational Mode Configuration Registers (Sheet 1 of 2)

Register Name	Register Address	Description		
Desired Duplex (\$ Port_Index + 0x02)	0x002 – Port 0 0x082 – Port 1 0x102 – Port 2 0x182 – Port 3	The Table 70 on page 156 defines whether a port is to be configured for full-duplex or half-duplex operation. Note: Half-duplex operation is only valid for 10/100 speeds where the RGMII line interface has been selected.		
MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10)	0x010 – Port 0 0x090 – Port 1 0x110 – Port 2 0x190 – Port 3	The Table 81 on page 159 determines the MAC operational frequency and mode for a given port. Note: Set the Table 151 on page 210 to 0x0 prior to any change in the register value. This ensures that a change in the MAC clock frequency is controlled correctly. If the Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794) is not used correctly, the IXF1104 MAC may not be configured to the proper mode.		
Note: The initialization sequence provided in Section 6.1, Change Port Mode Initialization Sequence, on page 124 must be followed for proper configuration of the IXF1104 MAC.				

Table 23 Operational Mode Configuration Registers (Sheet 2 of 2)

Register Name	Register Address	Description		
Port Enable (\$0x500)	0x500 Bit 0 – Port 0 Bit 1 – Port 1 Bit 2 – Port 2 Bit 3 – Port 3	Each <i>Port Enable (\$0x500)</i> bit relates to a port. Set the appropriate bit to 0x1 to enable a port. This should be the last step in the configuration process for a port.		
Interface Mode (\$0x501)	0x501 Bit 0 – Port 0 Bit 1 – Port 1 Bit 2 – Port 2 Bit 3 – Port 3	The Interface Mode (\$0x501) selects whether a port operates with a copper (RGMII or GMII) line-side interface an integrated SerDes fiber line-side interface. For copper operation for a given port, set the relevant bit to 0x1. For fiber operation for a given port, set the relevant bit to 0x0. Note: All ports are configured for fiber operation in the IXF1104 MAC default mode of operation.		
Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794)	0x794 Bit 0 – Port 0 Bit 1 – Port 1 Bit 2 – Port 2 Bit 3 – Port 3	t 1 Interface Mode (\$0x501) (copper/fiber). When any of these two configuration values are changed for a port, the corresponding hits must be kept in this register under reset by writing.		
Note: The initialization sequence provided in Section 6.1, Change Port Mode Initialization Sequence, on				

Note: The initialization sequence provided in Section 6.1, Change Port Mode Initialization Sequence, on page 124 must be followed for proper configuration of the IXF1104 MAC.

5.1.4 Fiber Mode

When the IXF1104 MAC is configured for fiber mode, the TX Data path from the MAC is an internal

10-bit interface as described in the IEEE 802.3z specification. It is connected directly to an internal SerDes block for serialization/deserialization and transmission/reception on the fiber medium to and from the link partner.

The MAC contains all of the PCS (8B/10B encoding and 10B/8B decoding) required to encode and decode the data. The MAC also supports auto-negotiation per the IEEE 802.3z specification via access to the TX Config Word (\$ Port_Index + 0x17), RX Config Word (\$ Port_Index + 0x16), and Diverse Config Write (\$ Port_Index + 0x18).

When configured for fiber mode, the full set of Optical Module interface control and status signals is presented through re-use of GMII signals on a per-port basis (see 4.4, *Multiplexed Ball Connections*, on page 56). Fiber mode supports only full-duplex Gigabit operation.

5.1.4.1 Fiber Auto-Negotiation

Auto-negotiation is performed by using the *TX Config Word* (\$ Port_Index + 0x17), RX Config Word (\$ Port_Index + 0x16), and Diverse Config Write (\$ Port_Index + 0x18). When autoneg_enable (Diverse Config Write (\$ Port_Index + 0x18)) is set, the IXF1104 MAC performs hardware-defined auto-negotiation with the *TX Config Word* (\$ Port_Index + 0x17) used as an Auto-Negotiation Advertisement (\$ Port_Index + 0x64) and the RX Config Word (\$ Port_Index + 0x16) used as an Auto-Negotiation Link Partner Base Page Ability (\$ Port_Index + 0x65).

Note:

While the MAC supports auto-negotiation functions, the IXF1104 MAC does not automatically configure the MAC or other device blocks to be consistent with the autonegotiation results. This configuration is done by the user and system software.

5.1.4.2 Determining If Link Is Established in Auto-Negotiation Mode

A valid link is established when the AN_complete bit is set and the RX_Sync bit reports that synchronization has occurred. Both register bits are located in the RX Config Word (\$ Port_Index + 0x16).

If the link goes down after auto-negotiation is completed, RX_Sync indicates that a loss of synchronization occurred. The IXF1104 MAC restarts auto-negotiation and attempts to reestablish a link. Once a link is reestablished, the AN_complete bit is set and the RX_Sync bit shows that synchronization has occurred.

To manually restart auto-negotiation, bit 5 of the *Diverse Config Write* (\$ Port_Index + 0x18) (AN_enable) must be de-asserted, then re-asserted.

5.1.4.3 Fiber Forced Mode

The MAC fiber operation can be forced to operate at 1000 Mbps full-duplex without completion of the auto-negotiation function. In this mode, the MAC RX path must achieve synchronization with the link partner. Once achieved, the MAC TX path is enabled to allow data transmission. This forced mode is limited to operation with a link partner that operates with a full-duplex link at 1000 Mbps.

5.1.4.4 Determination of Link Establishment in Forced Mode

When the IXF1104 MAC is in forced mode operation, the *RX Config Word (\$ Port_Index + 0x16)* bit 20 RX Sync indicates when synchronization occurs and a valid link establishes.

Note: The RX Sync bit indicates a loss of synchronization when the link is down.

5.1.5 Copper Mode

In copper mode, the IXF1104 MAC transmits data on the egress path of the RGMII or GMII interface, depending on the port configuration defined by the user. The copper MAC receives data on the ingress path of the RGMII or GMII interface, depending on the port configuration defined by the user. The RGMII interface supports operation at 10/100/1000 Mbps when a full-duplex link is established, and supports 10/100 Mbps when a half-duplex link is established. The GMII interface only supports a 1000 Mbps full-duplex link.

5.1.5.1 Speed

The copper MAC supports 10 Mbps, 100 Mbps, and 1000 Mbps. All required speed adjustments, clocks, etc., are supplied by the MAC. The operating speed of the MAC is programmable through the *MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10)* (MAC_IF_Mode). The IXF1104 MAC speed setting must be programmed by the system software to match the speed of the attached PHY for proper IXF1104 MAC operation.

Note: When the IXF1104 MAC is configured to use the GMII interface, the only mode of operation that is supported is 1000 Mbps full-duplex.

If 10/100 Mbps operation is required in either full-duplex or half-duplex, the IXF1104 MAC must be configured to use the RGMII interface.

5.1.5.2 Duplex

The MAC supports full-duplex or half-duplex depending on the line-side interface that is configured by the *MAC IF Mode and RGMII Speed* (\$ Port_Index + 0x10) (MAC_IF_Mode). The duplex of the MAC is set in the Table 70, Desired Duplex (\$ Port_Index + 0x02), on page 156. The IXF1104 MAC duplex setting must be programmed by the system software to match the attached PHY duplex for proper IXF1104 MAC operation.

5.1.5.3 Copper Auto-Negotiation

In the copper MAC, auto-negotiation and all other controls of the PHY devices are achieved through the MDIO interface, and are independent of the MAC controller. See Section 5.5, MDIO Control and Interface, on page 95 for further operation details.

Note:

In copper mode, auto-negotiation is accomplished by the attached PHY, not the IXF1104 MAC. Thus, the IXF1104 MAC does not automatically configure the MAC or other blocks in the device to be consistent with attached PHY auto-negotiation results. This must be accomplished by the user and system software.

5.1.6 Jumbo Packet Support

The IXF1104 MAC supports jumbo frames. The jumbo frame length is dependent on the application and the IXF1104 MAC design is optimized for a 9.6 KB jumbo frame length. Larger lengths can be programmed, but limited system performance may lead to data loss during certain flow-control conditions

The value programmed into the $Max\ Frame\ Size\ (Addr:\ Port_Index + 0x0F)$ determines the maximum length frame size the MAC can receive or transmit without activating any error counters, and without truncation.

The Max Frame Size (Addr: Port_Index + 0x0F) bits 13:0 set the frame length. The default value programmed into this register is 0x05EE (1518). The value is internally adjusted by +4 if the frame has a VLAN tag. The overall programmable maximum is 0x3FFF or 16383 bytes.

The register should be programmed to 0x2667 for the 9.6 KB length jumbo frame, optimized for the IXF1104 MAC. The RMON counters are also implemented for jumbo frame support as follows:

5.1.6.1 Rx Statistics

- RxOctetsTotalOK (Addr: Port_Index + 0x20)
- RxPkts1519toMaxOctets (Addr: Port Index + 0x2B)
- RxFCSErrors (Addr: Port Index + 0x2C)
- RxDatatError (Addr: Port_Index = 0x02E)
- RxAlignErrors (Addr: Port_Index + 0x2F)
- RxLongErrors (Addr: Port_Index + 0x30)
- RxJabberErrors (Addr: Port_Index + 0x31)
- RxVeryLongErrors (Addr: Port Index + 0x34)

5.1.6.2 TX Statistics

- OctetsTransmittedOK (Addr: Port_Index + 0x40)
- TxPkts1519toMaxOctets (Addr: Port_Index + 0x4B)

- TxExcessiveLengthDrop (Addr: Port_Index + 0x53)
- TxCRCError (Addr: Port_Index + 0x56)

The IXF1104 MAC checks the CRC for all legal-length jumbo frames (frames between 1519 and the Max Frame Size). On transmission, the MAC can be programmed to append the CRC to the frame or check the CRC and increment the appropriate counter. On reception, the MAC transmits these frames across the SPI3 interface (jumbo frames above the setting in the RX FIFO Transfer Threshold Port 0 (\$0x5B8) with a bad CRC cannot be dropped and are sent across the SPI3 interface). If the receive frame has a bad CRC, the appropriate counter increments and the RxERR flag is asserted on the SPI3 receive interface.

Jumbo frames also impact flow control. The maximum frame size needs to be taken into account when determining the FIFO watermarks. The current transmission must be completed before a Pause frame is transmitted (needed when the receiver FIFO High watermark is exceeded). If the current transmission is a jumbo frame, the delay may be significant and increase data loss due to insufficient available FIFO space.

5.1.6.3 Loss-less Flow Control

The IXF1104 MAC supports loss-less flow control when the size of a Jumbo packet is restricted to 9.6 k bytes. If this condition is met, the IXF1104 MAC has sufficient memory resources allocated to each MAC port to ensure that, if both the IXF1104 MAC and link partner are required to send Pause packets simultaneously during jumbo packet transfers across a medium of five kilometers of fiber, no packet data should be lost due to FIFO overflows.

5.1.7 Packet Buffer Dimensions

5.1.7.1 TX and RX FIFO Operation

5.1.7.1.1 TX FIFO

The IXF1104 MAC TX FIFOs are implemented with 10 KB for each channel. This provides enough space for at least one maximum size (10 KB) packet per-port storage and ensures that no under-run conditions occur, assuming that the sending device can supply data at the required data rate.

A transfer to MAC Threshold parameter, which is user-programmable, determines when the FIFO signals to the MAC that it has data to send. This is configured for specific block sizes, and the user must ensure that an under-run does not occur. Also, the threshold can be set above the maximum size of a normal Ethernet packet. This causes the FIFO to send only data to the MAC when this threshold is exceeded or when the End-of-Packet marker is received. This second condition eliminates the possibility of under-run, except when the controlling switch device fails. It can, however, cause idle times on the media.

5.1.7.1.2 RX FIFO

The IXF1104 MAC RX FIFOs are provisioned so that each port has its own 32 KB of memory space. This is enough memory to ensure that there is never an over-run on any channel while transferring normal Ethernet frame size data.

The FIFOs automatically generate Pause control frames to halt the link partner when the High watermark is reached and to restart the link partner when the data stored in the FIFO falls below the low-watermark. The RX and TX FIFOs have been sized to support lossless flow control with 9.6 KB packets. The RX FIFO has a programmable transfer threshold that sets the threshold at which packets become "cut through" and starts transitioning to the

SPI3 interface before the EOP is received. Packets sizes below this threshold are treated as "store and forward." Once a packet size exceeds the RX FIFO transfer threshold, it can no longer be dropped by the RX FIFO even if it is marked to be dropped by the MAC.

5.1.8 RMON Statistics Support

The IXF1104 MAC supplies RMON statistics through the CPU interface. These statistics are available in the form of counter values that can be accessed at specific addresses in the register maps (Table 58 through Table 68). Once read, these counters automatically reset and begin counting from zero. A separate set of RMON statistics is available for each MAC device in the IXF1104 MAC.

Implementation of the RMON Statistics block is similar to the functionality provided by existing Cortina switch and router products. This implementation allows the IXF1104 MAC to provide all of the RMON Statistics group as defined by RFC2819. The IXF1104 MAC supports the RMON RFC2819 Group 1 statistics counters. Table 24 notes the differences and additional statistics registers supported by the IXF1104 MAC that are outside the scope of the RMON RFC2819 document.

Table 24 RMON Additional Statistics (Sheet 1 of 3)

RMON Ethernet Statistics Group 1 Statistics	Туре	IXF1104 MAC- Equivalent Statistics	Туре	Definition of RMON Versus IXF1104 MAC Documentation
etherStatsindex	Integer32	NA	NA	NA
etherStatsDataSource	Object identifier	NA	NA	NA
etherStatsDropEvents	Counter32	RX Number of Frames Removed/ TX Number of Frames Removed	Counter32	See table note 1
etherStatsOctets	Counter32	RxOctetsTotalOK RxOctetsBad OctetsTransmittedOK OctetsTransmittedBad	Counter32	The IXF1104 MAC has two counters for receive and transmit that use different naming conventions for the total Octets and Octets Bad. These counters must be combined to meet the RMON definition for this statistic.

Note: The RMON specification requires that this is, "The total number of events where packets were dropped by the probe due to a lack of resources. This number is not necessarily the number of packets dropped; it is the number of times this condition is detected. The RX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x594 - 0x597) and TX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x621 - 0x624) in the IXF1104 MAC support this and increment when either an RX FIFO or TX FIFO overflows. If any IXF1104 MAC programmable packet filtering is enabled, the RX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x5A2 - 0x5A5) and TX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x625 - 0x629) increment with every frame removed in addition to the existing frames counted due to FIFO overflow.

Table 24 RMON Additional Statistics (Sheet 2 of 3)

RMON Ethernet Statistics Group 1 Statistics	Туре	IXF1104 MAC- Equivalent Statistics	Туре	Definition of RMON Versus IXF1104 MAC Documentation
etherStatsPkts	Counter32	RxUCPkts/TxUCPkts RxBCPkts/TxBCPkts RxMCPkts/TxMCPkts	Counter32	The IXF1104 MAC has three counters for the etherStatsPkts that must be combined to give the total packets as defined by the RMON specification.
etherStatsBroadcastPkts	Counter32	RxBCPkts/TxBCPkts	Counter32	Same as RMON specification
etherStatsMulticastPkts	Counter32	RxMCPkts/TxMCPkts	Counter32	See table note 2
etherStatsCRCAlignErrors	Counter32	RxAlignErrors RxFCSErrors TxCRCError	Counter32	The IXF1104 MAC has two counters for the alignment and CRC errors for the RX side only. The IXF1104 MAC has a CRC Error counter for the TX side.
etherStatsUndersizedPkts	Counter32	RxRuntErrors RxShortErrors Rx Statistics ONLY	Counter32	The IXF1104 MAC has two counters, one for Runt errors and one for ShortErrors.
etherStatsOversizePkts	Counter32	RxLongErrors TxExcessiveLength Drop	Counter32	Same as RMON specification
etherStatsFragments	Counter32	RuntErrors	Counter32	Same as RMON specification
etherStatsJabbers	Counter32	JabberErrors	Counter32	Same as RMON specification
etherStatsCollisions	Counter32	TxSingleCollision TxMultipleCollision TxLateCollision TxTotalCollision	Counter32	The TxTotalCollision count value is equivalent to the RMON specification minus the TxLateCollision
etherStatsPkts64Octets	Counter32	RxPkts64Octets/ TxPkts64Octets	Counter32	Same as RMON specification
etherStatsPkts65to127Octets	Counter32	RxPkts65to127Octets/ TxPkts65to127Octets	Counter32	Same a RMON specification
etherStatsPkts128to255Octets	Counter32	RxPkts128to255Octets/ TxPkts128to255Octets	Counter32	Same a RMON specification

Note: The RMON specification requires that this is, "The total number of events where packets were dropped by the probe due to a lack of resources. This number is not necessarily the number of packets dropped; it is the number of times this condition is detected. The RX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x594 - 0x597) and TX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x621 - 0x624) in the IXF1104 MAC support this and increment when either an RX FIFO or TX FIFO overflows. If any IXF1104 MAC programmable packet filtering is enabled, the RX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x5A2 - 0x5A5) and TX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x625 - 0x629) increment with every frame removed in addition to the existing frames counted due to FIFO overflow.

Table 24 RMON Additional Statistics (Sheet 3 of 3)

RMON Ethernet Statistics Group 1 Statistics	Туре	IXF1104 MAC- Equivalent Statistics	Туре	Definition of RMON Versus IXF1104 MAC Documentation
etherStatsPkts256to511Octets	Counter32	RxPkts256to511Octets/ TxPkts256to511Octets Counter32		Same a RMON specification
etherStatsPkts512to1023Octets	Counter32	RxPkts512to1023Octets/ TxPkts512to1023Octets	Counter32	Same a RMON specification
etherStatsPkts1023to1518 Octets	Counter32	RxPkts1023to1518Octets/ TxPkts1023to1518Octets	Counter32	Same as RMON specification
etherStatOwner	Owner String	NA	NA	NA
etherStatsStatus	Entry Status	NA	NA	NA

Note: The RMON specification requires that this is, "The total number of events where packets were dropped by the probe due to a lack of resources. This number is not necessarily the number of packets dropped; it is the number of times this condition is detected. The RX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x594 - 0x597) and TX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x621 - 0x624) in the IXF1104 MAC support this and increment when either an RX FIFO or TX FIFO overflows. If any IXF1104 MAC programmable packet filtering is enabled, the RX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x625 - 0x629) increment with every frame removed in addition to the existing frames counted due to FIFO overflow.

5.1.8.1 Conventions

The following conventions are used throughout the RMON Management Information Base (MIB) and its companion documents.

- **Good Packets**: Error-free packets that have a valid frame length. For example, on Ethernet, good packets are error-free packets that are between 64 and 1518 octets long. They follow the form defined in IEEE 802.3, Section 3.2.
- Bad Packets: Bad packets are packets that have proper framing and recognized as
 packets, but contain errors within the packet or have an invalid length. For example, on
 Ethernet, bad packets have a valid preamble and SFD, but have a bad CRC, or are
 either shorter than 64 octets or longer than 1518 octets.

5.1.8.2 Advantages

The following lists additional IXF1104 MAC registers that support features not documented in RMON:

- MAC (flow) control frames
- VLAN Tagged
- Sequence Errors
- Symbol Errors
- CRC Error

These additional counters allow for differentiation beyond standard RMON probes.

Note:

In fiber mode, a packet transfer with an invalid 10-bit symbol does not always update the statistics registers correctly.

• **Behavior:** The IXF1104 MAC 8B10B decoder substitutes a valid code word octet in its place. The packet transfer is aborted and marked as bad. The new internal length of the

packet is equal to the byte position where the invalid symbol was. No packet fragments are seen at the next packet transfer.

• **Issue:** If the invalid 10-bit code is inserted in a byte position of 64 or greater, expected RX statistics are reported. However, if the invalid code is inserted in a byte position of less than 64, expected RX statistics are not stored.

5.2 SPI3 Interface

The IXF1104 MAC SPI3 Interface is implemented to the System Packet Interface Level 3 (SPI3) Physical Layer Interface standard. The interface function allows the IXF1104 MAC blocks to interface to higher-layer network processors or switch fabric.

The IXF1104 MAC transmit interface allows data flows from a network processor or switch fabric device to the IXF1104 MAC. The receive interface allows data to flow from the IXF1104 MAC to the network processor or switch fabric device.

This interface receives and transmits data between the MAC and the Network Processor with compliant SPI3 interfaces. The SPI3 interface operation is defined in the OIF-SPI3-01.0 (available from the Optical Internet Working Forum [www.oiforum.com]). The OIF specification defines operation for the transfer of data at data rates of up to 3.2 Gbps when operating at a frequency of 104 MHz. The IXF1104 MAC defines operation for the transfer of data at data rates of up to 4.256 Gbps when operating at a maximum frequency of 133 MHz in MPHY mode and 125 MHz in SPHY Mode.

There is no guarantee of the number of bytes available since the size of packets is variable. An IXF1104 MAC port-transmit packet available status is provided on signals DTPA, STPA or PTPA, indicating the TX FIFO is nearly full.

In the receive direction, RVAL indicates if valid data is available on the receive data bus and is defined so that data transfers can be aligned with packet boundaries.

The SPI3 interface supports the following two modes of operation:

- MPHY or 32 bit mode (one 32-bit data bus)
- SPHY or 4 x 8 mode (four individual 8-bit data buses)

5.2.1 MPHY Operation

The MPHY operation mode is selected when bit 21 of *SPI3 Receive Configuration (\$0x701)* is set to 1.

5.2.1.1 Data Path

The IXF1104 MAC SPI3 interface has a single 32-bit data path in the MPHY configuration mode (see Figure 13). The bus interface is point-to-point (one output driving only one input load), so a 32-bit data bus would support only one IXF1104 MAC.

To support variable-length packets, the RMOD[1:0]/TMOD[1:0] signals are defined to specify valid bytes in the 32-bit data bus structure. Each double-word must contain four valid bytes of packet data until the last double-word of the packet transfer, which is marked with the end of packet REOP/TEOP signal. This last double-word of the transfer contains up to four valid bytes specified by the RMOD[1:0]/TMOD[1:0] signals.

The IXF1104 MAC port selection is performed using in-band addressing. In the transmit direction, the network processor device selects an IXF1104 MAC port by sending the address on the TDAT[1:0] bus marked with the TSX signal active and TENB signal inactive. All subsequent TDAT[1:0] bus operations marked with the TSX signal inactive and the TENB active are packet data for the specified port.

In the receive direction, the IXF1104 MAC specifies the selected port by sending the address on the RDAT[1:0] bus marked with the RSX signal active and RVAL signal inactive. All subsequent RDAT[1:0] bus operations marked with RSX inactive and RVAL active are packet data from the specified port.

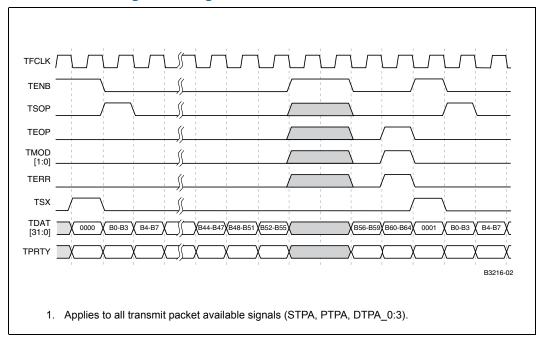
Note:

See Table 16, *SPI3 MPHY/SPHY Interface*, on page 58 for a complete list of the MPHY mode signals. The control signals with the port designator for Port 0 are the only ones used in MPHY mode and they apply to all 4 ports. Table 3, *SPI3 Interface Signal Descriptions*, on page 38 provides a comprehensive list of SPI3 signal descriptions.

5.2.1.2 SPI3 RX Round Robin Data Transmission

The IXF1104 MAC uses a round-robin protocol to service each of the 4 ports dependent upon the enable status of the port and if there is data available to be taken from the RX FIFO. The round robin order goes from port 0, port 1, port 2, port 3, and back to port 0. A port is skipped and the next port is serviced if it has no available transmit data. The data transfer bursts are user-configurable burst lengths of 64, 128, or 256 bytes. The IXF1104 MAC also has a configurable pause interval between data transfer bursts on the receive side of the interface. The RX SPI3 burst lengths and the pause interval can be set in the SPI3 Receive Configuration (\$0x701)).

5.2.2 MPHY Logical Timing


The SPI3 interface AC timing for MPHY can be found in Section 7.2, *SPI3 AC Timing Specifications*, on page 130. Logical timing in the following diagrams illustrates all signals associated with MPHY mode.

5.2.2.1 Transmit Timing

In MPHY mode a packet transmission starts with the TSX signal indicating port address information is on the data bus. The next clock cycle TENB and TSOP indicate present data on the bus is the first word in the packet and all subsequent clocks will contain valid data as long as TENB is active or until TEOP is asserted. Data transmission can be temporally halted when TENB goes high then resumed when TENB is low. The valid bytes in the final word, during an active TEOP, are indicated by state of TMOD [1:0].

CORTINA

Figure 11 MPHY Transmit Logical Timing

5.2.2.2 Receive Timing

A packet is received when RSX indicates port address information on the data bus followed by RSOP to indicate the data bus contains the first word of a packet. All subsequent data is valid only while RVAL is High and until REOP is asserted. Receive data can be temporarily halted when RENB is de-asserted and starts again on the second rising edge of RFCLK following the assertion of RENB. RMOD indicates the number of valid bytes in the last transfer when REOP is asserted.

Figure 12 MPHY Receive Logical Timing

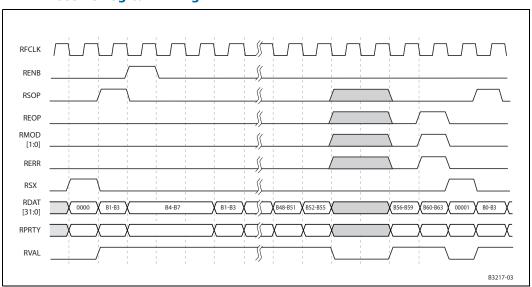
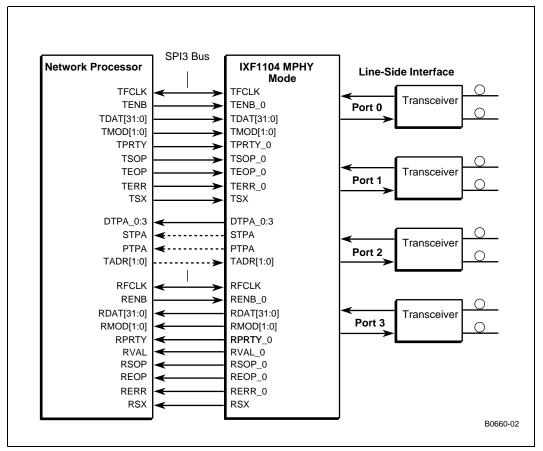



Figure 13 MPHY 32-Bit Interface

5.2.2.3 Clock Rates

In MPHY mode, the TFCLK and RFCLK can be independent of each other. TFCLK and RFCLK should be common to the IXF1104 MAC and the Network Processor. The IXF1104 MAC requires a single clock source for the transmit path and a single clock source for the receive path.

To allow all four IXF1104 MAC ports to operate at 1 Gbps, the IXF1104 MAC is designed to allow this interface to be overclocked. This allows operation for data transfer at data rates of up to 4.256 Gbps when operating at an overclocked frequency of 133 MHz.

Note: MPHY mode operates at a maximum clock frequency of 133 MHz (TFCLK and RFCLK).

5.2.2.4 Parity

The IXF1104 MAC can be odd or even (the IXF1104 MAC is odd by default) when calculating parity on the data bus. This can be changed to accommodate even parity if desired, and can be set for transmit and receive independently. The RX Parity is set in bit 12 of the SPI3 Transmit and Global Configuration (\$0x700).

5.2.2.5 SPHY Mode

The SPHY operation mode is selected when bit 21 of the Table 145, *SPI3 Transmit and Global Configuration* (\$0x700), on page 203 is set to 1. The SPHY mode is the default operation for the IXF1104 MAC SPI3 interface.

5.2.2.5.1 Data Path

The IXF1104 MAC SPI3 interface has four 8-bit data paths that can support four independent 8-bit point-to-point connections in SPHY mode (see Figure 16). Since each MAC port has its own dedicated 8-bit SPI3 data bus, each port has it own status signal (unlike MPHY). See the For a detailed list of all the signals refer to the SPI3 pin multiplexing table....

Furthermore since each port has it own dedicated bus the in band port addressing is not needed. The 8 bit data bus eliminates the need to have separate control signals determine the number of valid bytes on an EOP.Therefore TSX, RSX, TMOD[1:0] RMOD[1:0] are not used in SPHY mode.

Note:

See Table 16, *SPI3 MPHY/SPHY Interface*, on page 58 for a complete list of the SPHY mode signals. Unlike MPHY mode, each port has a dedicated control signal associated with each of the per-port 8-bit data buses. Table 3, *SPI3 Interface Signal Descriptions*, on page 38 provides signal descriptions for all SPI3 signals.

5.2.2.5.2 Receive Data Transmission

Packets are transmitted on each port as they become available from the RX FIFO. The burst length is determined by the setting of per port burst size and the B2B pause settings in the *SPI3 Receive Configuration* (\$0x701). If the B2B pause setting is zero pause cycles inserted, then the entire packet will be burst without any pauses unless the Network Processor de-asserts RENB. If the B2B_Pause setting calls for the insertion of two pause cycles on a port, these are inserted after each data burst for that port. The data bursts are user configurable for each port in the *SPI3 Receive Configuration* (\$0x701).

5.2.2.6 SPHY Logical Timing

SPI3 interface AC timing for SPHY can be found in Section 7.2, *SPI3 AC Timing Specifications*, on page 130. Logical timing in the following diagrams illustrates all signals associated with SPHY mode. SPHY mode is similar to MPHY mode except the following signals are not used:

- TMOD[1:0]
- RMOD[1:0]
- TSX
- RSX
- Address Data appearing on the data bus

5.2.2.7 Transmit Timing (SPHY)

Packet transmission starts when TENB and TSOP indicate present data on the bus is the first word in the packet. All subsequent clocks will contain valid data as long as TENB is active or until TEOP is asserted. Data transmission can be temporally halted when TENB goes high then resumed when TENB is low.

TFCLK TENB TSOP TEOP TERR TDAT B0 B1 B60 B61 B62 B63 B0 [7:0] **TPRTY** B3249-02

Figure 14 **SPHY Transmit Logical Timing**

5.2.2.8 **Receive Timing (SPHY)**

A packet is received when RSOP is asserted to indicate the data bus contains the first word of the packet. All subsequent data is valid only while RVAL is high and until REOP is asserted. Receive data can be temporarily halted when RENB is de-asserted and starts again on the second rising edge of RFCLK following the assertion of RENB. When REOP is asserted RMOD indicates the number of valid bytes in the last transfer.

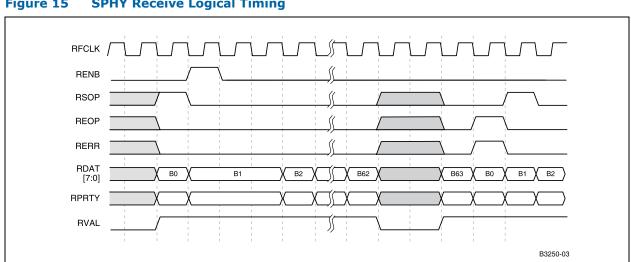


Figure 15 **SPHY Receive Logical Timing**

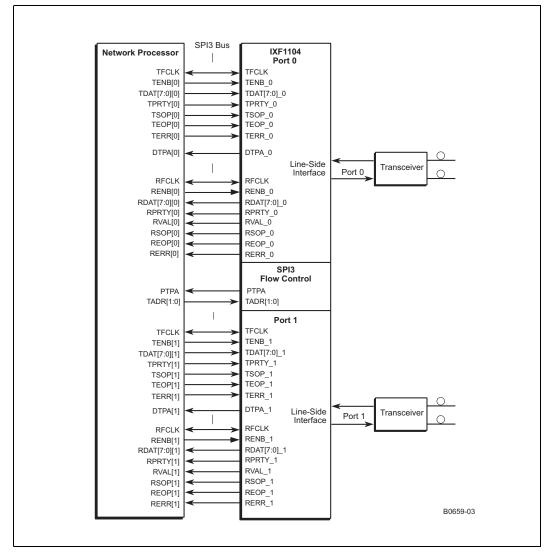


Figure 16 SPHY Connection for Two IXF1104 MAC Ports (8-Bit Interface)

5.2.2.8.1 Clock Rates

The TFCLK and RFCLK can be independent of each other in SPHY mode operation. TFCLK and RFCLK should be common to all the Network Processor devices. The IXF1104 MAC requires an individual single clock source for the device transmit path and a single clock source for the device receive path.

The IXF1104 MAC allows this interface to be overclocked so that all four IXF1104 MAC ports can operate at 1 Gbps. This allows data transfer at data rates of up to 4.0 Gbps when operating at an overclocked frequency of 125 MHz.

Note: SPHY operates at a maximum frequency of 125 MHz.

5.2.2.8.2 Parity

The IXF1104 MAC can be odd or even (the IXF1104 MAC defaults to odd) when calculating parity on the data bus. This can be changed to accommodate even parity if desired, and can be set for transmit and receive ports independently. The RX and TX parity sense bits have a direct relationship to the port parity in SPHY mode.

The per port RX parity is set in the SPI3 Receive Configuration (\$0x701) and the per port TX Parity is set in the SPI3 Transmit and Global Configuration (\$0x700).

5.2.2.9 SPI3 Flow Control

The SPI3 packet interface supports transmit and receive data transfers at clock rates independent of the line bit rate. As a result, the IXF1104 MAC supports packet rate decoupling using internal FIFOs. These FIFOs are 10 KB per port in the transmit direction (egress from the IXF1104 MAC to the line interfaces) and 32 KB per port in the receive direction (ingress to the IXF1104 MAC from the line interfaces).

Control signals are provided to the network processor and the IXF1104 MAC to allow either one to exercise flow control. Since the bus interface is point-to-point, the receive interface of the

IXF1104 MAC pushes data to the link-layer device. For the transmit interface, the packet available status granularity is byte-based.

5.2.2.9.1 RX SPI3 Flow Control

In the receive direction, when the IXF1104 MAC has stored an end-of-packet (a complete small packet or the end of a larger packet) or some predefined number of bytes in its receive FIFO, it sends the in-band address followed by FIFO data to the link-layer device (in MPHY mode). The data on the interface bus is marked with the valid signal (RVAL) asserted. The network processor device can pause the data flow by de-asserting the Receive Read Enable (RENB) signal.

RENB_0:3

RENB_0:3 controls the flow of data from the IXF1104 MAC RX FIFOs. In SPHY mode, there is a dedicated RENB for each port. In MPHY mode, RENB_0 is used as the global signal covering all ports. When RENB is sampled Low, the network processor can accept data. A read is performed from the RX FIFO and the RDAT, RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX, and RVAL signals are updated on the following rising edge of RFCLK.

RENB can be asserted High by the Network Processor at any time if it is unable to accept any more data. When the RENB is sampled High by the IXF1104 MAC, a read of the RX FIFO is not performed, and the RDAT, RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX and RVAL signals remain unchanged on the following rising edge of RFCLK.

5.2.2.9.2 TX SPI3 Flow Control

In the transmit direction, when the IXF1104 MAC has space for some predefined number of bytes in its transmit FIFO, it informs the Network Processor device by asserting one of the Transmit Packet Available (TPA) signals. The Network Processor device writes the in-band address followed by packet data to the IXF1104 MAC using an enable signal (TENB). The network processor device monitors the TPA signals for a High-to-Low transition, which indicates that the transmit FIFO is almost full (the number of bytes left in the FIFO is user-selectable by setting the *TX FIFO High Watermark Ports 0 - 3 (\$0x600 - 0x603)*, and suspends data transfer to avoid an overflow. The Network Processor device can pause the data flow by de-asserting the enable signal (TENB).

The IXF1104 MAC provides the following three types of TPA signals:

- Dedicated per port Direct Transmit Packet Available (DTPA)
- Selected-PHY Transmit Packet Available (STPA), which is based on the current in-band port address in MPHY mode.
- Polled-PHY Transmit packet Available (PTPA), which provides FIFO information on the port selected by the TADR[1:0] signals.

The following three TPA signals (DTPA_0:3, STPA, and PTPA) provide flow control based on the programmable TX FIFO High and Low watermarks. Refer to Table 131, *TX FIFO High Watermark Ports 0 - 3* (\$0x600 - 0x603), on page 193 and Table 132, *TX FIFO Low Watermark Register Ports 0 - 3* (\$0x60A - 0x60D), on page 195 for more information.

DTPA 0:3:

A direct status indication for the TX FIFOs of ports [0:3]. When DTPA is High, it indicates the amount of data in the TX FIFO is below the TX FIFO High watermark. When the High watermark is crossed, DTPA transitions Low to indicate the TX FIFO is almost full. It stays low until the amount data in the TX FIFO goes back below the TX FIFO Low watermark. At this point, DTPA transitions High to indicate the programmed number of bytes are now available for data transfers.

DTPA_0:3 is updated on the rising edge of the TFCLK.

STPA:

STPA provides TX FIFO status for the currently selected port in MPHY mode. When High, STPA indicates that the amount of data in the TX FIFO for the port selected, specified by the latest in-band address, is below the TX FIFO High watermark. When the High watermark is crossed, STPA transitions Low to indicate the TX FIFO is almost full. It stays Low until the amount of data in the TX FIFO goes back below the TX FIFO Low watermark. At this point, STPA transitions High to indicate the programmed number of bytes are now available for data transfers.

The port reported by STPA is updated on the rising edge of TFCLK after TSX is sampled as asserted. STPA is updated on the rising edge of TFCLK.

Note:

STPA is only used when the IXF1104 MAC is configured for MPHY mode of operation.

PTPA:

PTPA provides status of the TX FIFO based on the port selected by the TADR[1:0] address bus.

When High, PTPA indicates that the amount of data in the TX FIFO for the port selected is below the TX FIFO High watermark. When the High watermark is crossed, PTPA transitions Low to indicate the TX FIFO is almost full. It stays Low until the amount of data in the TX FIFO goes back below the TX FIFO Low watermark. PTPA then transitions High to indicate the programmed number of bytes are now available for data transfers.

The port reported by PTPA is updated on the rising edge of TFCLK after the TADR{1:0] port address is sampled.

PTPA is updated on the rising edge of TFCLK.

5.2.3 Pre-Pending Function

The IXF1104 MAC implements a pre-pending feature to allow 1518-byte Ethernet packets to be pre-padded with two additional bytes of data so that the packet becomes low-word aligned. The 2-byte pre-pend value is all zeros and is inserted before the destination address of the packet being pre-pended. This value is fixed and cannot be changed.

This function is enabled by writing the appropriate data to the RX FIFO Padding and CRC Strip Enable (\$0x5B3) for each port.

A standard 1518-byte Ethernet packet occupies 379 long words (four bytes) with two additional bytes left over (1518/4 = 379.5). To eliminate the memory-management problems for a network processor or switch fabric, the two remaining bytes are dealt with by the addition of two bytes to the start of a packet. This results in a standard 1518-byte Ethernet packet received by the IXF1104 MAC being forwarded to the higher-layer device as a 380-long-word packet. The upper-layer device is responsible for stripping the additional two bytes.

This feature was added to the IXF1104 MAC to assist in the design of higher-layer memory management. The addition of the two extra bytes is not the default operation of the IXF1104 MAC and must be enabled by the user. The default operation of the IXF1104 MAC SPI3 receive interface forwards data exactly as it is received by the IXF1104 MAC line interface.

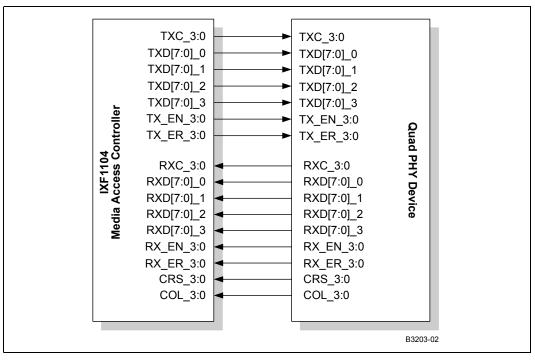
5.3 Gigabit Media Independent Interface (GMII)

The IXF1104 MAC supports a subset of the GMII interface standard as defined in IEEE 802.3 2000 Edition for 1 Gbps operation only. This subset is limited to operation at 1000 Mbps full-duplex.

The GMII Interface operates as a source synchronous interface only and does not accept a TXC clock provided by a PHY device when operating at 10/100 Mbps speeds.

Note: The RGMII interface must be used for applications that require 10/100/1000 Mbps operation.

The IXF1104 MAC does NOT support 10/100 Mbps copper PHY devices that are implemented using the MII Interface.


Note: MII operation is not supported by the IXF1104 MAC.

The user can select GMII, RGMII, or Optical Module/SerDes functionality on a per-port basis. This mode of operation is controlled through a configuration register.

While IEEE 802.3 specifies 3.3 V operation of GMII devices, most PHYs use 2.5 V signaling. The IXF1104 MAC provides a 2.5 V drive and is 3.3 V-tolerant on inputs.

Figure 17 MAC GMII Interconnect

5.3.1 GMII Signal Multiplexing

The GMII balls are reassigned when using the RGMII mode or fiber mode. Table 15, *Line Side Interface Multiplexed Balls*, on page 56 specifies the multiplexing of GMII balls in these modes. See Section 5.1.3, *Mixed-Mode Operation*, on page 71 for proper configuration of the IXF1104 MAC in GMII mode.

5.3.2 GMII Interface Signal Definition

Table 25, *GMII Interface Signal Definitions*, on page 91 provides the GMII interface signal definitions. For information on 1000BASE-T GMII transmit and receive timing diagrams and tables, please refer to Table 48, *GMII 1000BASE-T Transmit Signal Parameters*, on page 136, Figure 38, *1000BASE-T Transmit Interface Timing*, on page 136, Figure 39, *1000BASE-T Receive Interface Timing*, on page 137, and Table 49, *GMII 1000BASE-T Receive Signal Parameters*, on page 137

Table 25 GMII Interface Signal Definitions

IXF1104 MAC Signal	GMII Standard Signal	Source	Description
TXC_0 TXC_1 TXC_2 TXC_3	GTX_CLK	IXF1104 MAC	Transmit Reference Clock: 125 MHz for Gigabit operation. MII operation for 10/100 Mbps operation is not supported.
TXD[7:0]_0 TXD[7:0]_1 TXD[7:0]_2 TXD[7:0]_3	TXD[7:0]	IXF1104 MAC	Transmit Data Bus: Width of this synchronous output bus varies with the speed/mode of operation. In 1000 Mbps mode, all 8 bits are used.
TX_EN_0 TX_EN_1 TX_EN_2 TX_EN_3	TX_EN	IXF1104 MAC	Transmit Enable: Synchronous input that indicates Valid data is being driven on the TXD[7:0] data bus.
TX_ER_0 TX_ER_1 TX_ER_2 TX_ER_3	TX_ER	IXF1104 MAC	Transmit Error: Synchronous input to PHY causes the transmission of error symbols in 1000 Mbps links.
RXC_0 RXC_1 RXC_2 RXC_3	RX_CLK	PHY	Receive Clock: Continuous reference clock is 125 MHz +/- 100 ppm.
RXD[7:0]_0 RXD[7:0]_1 RXD[7:0]_2 RXD[7:0]_3	RXD<3:0>	PHY	Receive Data Bus: Width of the bus varies with the speed and mode of operation. In 1000 Mbps mode, all 8 bits are driven by the PHY device. Note: MII operation at 10/100 Mbps is not supported.
RX_DV_0 RX_DV_1 RX_DV_2 RX_DV_3	RX_DV	PHY	Receive Data Valid: This signal is asserted when valid data is present on the corresponding RXD bus.
RX_ER_0 RX_ER_1 RX_ER_2 RX_ER_3	RX_ER	PHY	Receive Error: In 1000 Mbps mode, asserted when error symbols or carrier extension symbols are received. Always synchronous to RX_CLK.
CRS_0 CRS_1 CRS_2 CRS_3	CRS	PHY	Carrier Sense: Asserted when valid activity is detected at the lineside interface.
COL_0 COL_1 COL_2 COL_3	COL	PHY	Collision: Asserted when a collision is detected and remains asserted for the duration of the collision event. In full-duplex mode, the PHY should force this signal Low.

5.4 Reduced Gigabit Media Independent Interface (RGMII)

The IXF1104 MAC supports the RGMII interface standard as defined in the RGMII Version 1.2 specification. The RGMII interface is an alternative to the IEEE 802.3u MII interface.

The RGMII interface is intended as an alternative to the IEEE 802.3u MII and the IEEE 802.3z GMII. The principle objective of the RGMII is to reduce the number of balls (from a maximum of 28 balls to 12 balls) required to interconnect the MAC and the PHY. This reduction is both cost-effective and technology-independent. To accomplish this objective, the data paths and all associated control signals are reduced, control signals are multiplexed together, and both edges of the clock are used.

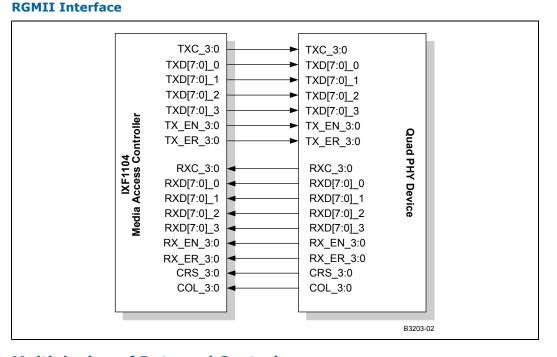

- 1000 Mbps operation clocks operate at 125 MHz
- 100 Mbps operation clocks operate at 25 MHz
- 10 Mbps operation clocks operate at 2.5 MHz.

Table 15, *Line Si*

Note:

Figure 18

The IXF1104 MAC RGMII interface is multiplexed with signals from the GMII interface. See Table 15, *Line Side Interface Multiplexed Balls*, on page 56 for detailed information.

5.4.1 Multiplexing of Data and Control

Multiplexing of data and control information is achieved by utilizing both edges of the reference clocks and sending the lower four bits on the rising edge and the upper four bits on the falling edge. Control signals are multiplexed into a single clock cycle using the same technique. For further information on timing parameters, see Figure 37, RGMII Interface Timing, on page 135 and Table 47, RGMII Interface Timing Parameters, on page 135.

5.4.2 Timing Specifics

The IXF1104 MAC RGMII complies with RGMII Rev1.2a requirements. Table 26 provides the timing specifics.

5.4.3 TX_ER and RX_ER Coding

To reduce interface power, the transmit error condition (TX_ER) and the receive error condition (RX_ER) are encoded on the RGMII interface to minimize transitions during normal network operation (refer to Table 27 on page 93 for the encoding method). Table 26 provides signal definitions for RGMII.

Table 26 RGMII Signal Definitions

IXF1104 MAC Signal	RGMII Standard Signal	Source	Description
TXC_0:3	TXC	MAC	Depending on speed, the transmit reference clock is 125 MHz, 25 MHz, or 2.5 MHz +/– 50ppm.
TD[3:0]_n	TD<3:0>	MAC	Contains register bits 3:0 on the rising edge of TXC and register bits 7:4 on the falling edge of TXC.
TX_EN	TX_CTL	MAC	TXEN is on the leading edge of TXC. TX_EN xor TX_ER is on the falling edge of TXC.
RXC_0:3	RXC	PHY	Continuous reference clock is 125 MHz, 25 MHz, or 2.5 MHz +/- 50 ppm.
RD[3:0]_n	RD<3:0>	PHY	Contains register bits 3:0 on the leading edge of RXC and register bits 7:4 on the trailing edge of RXC.
RX_DV	RX_CTL	PHY	RX_DV is on the leading edge of RXC. RX_DV or RXERR is the falling edge of RXC.

The value of RGMII_TX_ER and RGMII_TX_EN are valid at the rising edge of the clock while TX_ER is presented on the falling edge of the clock. RX_ER coding behaves in the same way (see Table 27, Figure 19, and Figure 20).

Table 27 TX_ER and RX_ER Coding Description

Description			
RX_DV = true Logic High on rising edge of RXC	RX_ER = false Logic High on the falling edge of RXC		
RX_DV = true Logic High on rising edge of RXC	RX_ER = true Logic Low on the falling edge of RXC		
RX_DV = false Logic Low on rising edge of RXC	RX_ER = false Logic Low on the falling edge of RXC		
TX_EN = true Logic High on rising edge of TXC	TX_ER =false Logic High on the falling edge of TXC		
TX_EN = true Logic High on rising edge of TXC	TX_ER = true Logic Low on the falling edge of TXC		
TX_EN = false Logic Low on rising edge of TXC TX_ER = false Logic low on the falling edge of TX			
	RX_DV = true Logic High on rising edge of RXC RX_DV = true Logic High on rising edge of RXC RX_DV = false Logic Low on rising edge of RXC TX_EN = true Logic High on rising edge of TXC TX_EN = true Logic High on rising edge of TXC TX_EN = true Logic High on rising edge of TXC		

Figure 19 TX_CTL Behavior

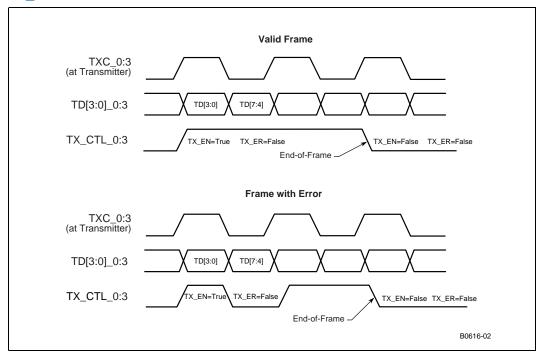
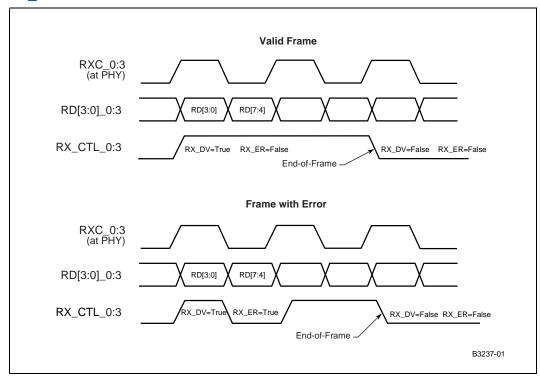



Figure 20 RX_CTL Behavior

5.4.3.1 In-Band Status

Carrier Sense (CRS) is generated by the PHY when a packet is received from the network interface. CRS is indicated when:

- RXDV = true.
- RXDV = false, RXERR = true, and a value of FF exists on the RXD[7:0] bits simultaneously.
- Carrier Extend, Carrier Extend Error, or False Carrier occurs (please reference the Hewlett-Packard* Version 1.2a RGMII Specification for details.).

Carrier Extend and Carrier Extend Error are applicable to Gigabit speeds only. Collision is determined at the MAC by the assertion of TXEN being true while either CRS or RXDV are true. The PHY will not assert CRS as a result of TXEN being true.

5.4.4 10/100 Mbps Functionality

The RGMII interface implements the 10/100 Mbps Ethernet Media Independent Interface (MII) by reducing the clock rate to 25 MHz for 100 Mbps operation and 2.5 MHz for 10 Mbps. The TXC is generated by the MAC and the RXC is generated by the PHY. During packet reception, the RXC is stretched on either the positive or negative pulse to accommodate transition from the free-running clock to a data-synchronous clock domain. When the speed of the PHY changes, a similar stretching of the positive or negative pulses is allowed. No glitching of the clocks is allowed during speed transitions.

This interface operates at 10 Mbps and 100 Mbps speeds in the same manner as 1000 Mbps speed, although the data may be duplicated on the falling edge of the appropriate clock. The MAC holds TX_CTL Low until it is operating at the same speed as the PHY.

Note: The IXF1104 MAC does not support 10/100 Mbps operation when configured in GMII mode

5.5 MDIO Control and Interface

The IXF1104 MAC supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input/Output (MDIO) Interface. This interface allows the IXF1104 MAC to monitor and control each of the PHY devices that are connected to the four ports of IXF1104 MAC when those ports are in copper mode.

The MDIO Master Interface block is implemented once in the IXF1104 MAC. The MDIO Interface block contains the logic through which the user accesses the registers in PHY devices connected to the MDIO/MDC interface, which is controlled by each port.

The MDIO Master Interface block supports the management frame format, specified by IEEE 802.3, clause 22.2.4.5. This block also supports single MDI access through the CPU interface and an autoscan mode. Autoscan allows the IXF1104 MAC MDIO master to read all 32 registers of the per-port copper PHYs and store the contents in the IXF1104 MAC. This provides external-CPU-ready access to the PHY register contents through a single CPU read without the latency of waiting on the low-speed serial MDIO data bus for each register access.

Scan of a single register with low-frequency operation takes approximately 25.6 μ s. Scan of a 32-register block takes approximately 820 μ s, or 3.3 ms for all four ports. Autoscan data is not valid until approximately 19.2 μ s after enabling scan. These numbers scale by 7/50 for high-frequency operation.

5.5.1 MDIO Address

The 5-bit PHY address for the MDIO transactions can be set in the MDIO Single Command (\$0x680). Bits 5:2 of the PHY address are fixed to a value of 0. Bits 1 and 0 are programmable in bits 9 and 8 of MDIO Single Command (\$0x680).

5.5.2 MDIO Register Descriptions

For complete information on the MDI registers, refer to the Table 141, MDIO Single Command (\$0x680), on page 201, Table 142, MDIO Single Read and Write Data (\$0x681), on page 202, Table 143, Autoscan PHY Address Enable (\$0x682), on page 202, and Table 144, MDIO Control (\$0x683), on page 202.

5.5.3 Clear When Done

The MDI Command register bit, in the MDIO Single Command (\$0x680), clears upon command completion and is set by the user to start the requested single MDIO Read or Write operation. This bit is cleared automatically upon operation completion.

5.5.4 MDC Generation

The MDC clock is used for the MDIO/MDC interface. The frequency of the MDC clock is selectable by setting bit 0, MDC Speed, in an IXF1104 MAC configuration register (see Table 144, MDIO Control (\$0x683), on page 202).

5.5.4.1 MDC High-Frequency Operation

The high-frequency MDC is 18 MHz, derived from the 125-MHz system clock by dividing the frequency by 7.

The duty cycle is as follows:

- MDC High duration: 3 x (1/125 MHz) = 3 x 8 ns = 24 ns
- MDC Low duration: 4 x (1/125 MHz) = 4 x 8 ns = 32 ns
- · MDC runs continuously after reset

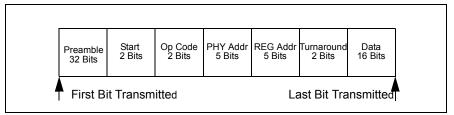
Refer to Figure 41, *MDC High-Speed Operation Timing*, on page 139 for the high-frequency MDC timing diagram.

5.5.4.2 MDC Low-Frequency Operation

The low-frequency MDC is 2.5 MHz, which is derived from the 125-MHz system clock by dividing the frequency by 50.

The duty cycle is as follows:

- MDC High duration: 25 x (1/125 MHz) = 25 x 8 ns = 200 ns
- MDC Low duration: 25 x (1/125 MHz) = 25 x 8 ns = 200 ns
- · MDC runs continuously after reset


Refer to Figure 42, *MDC Low-Speed Operation Timing*, on page 139 for the low frequency MDC timing diagram.

5.5.5 Management Frames

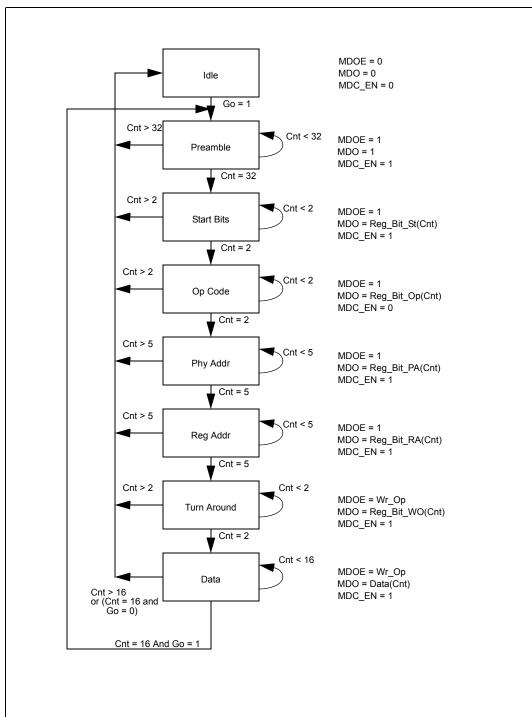
The Management Interface serializes the external register access information into the format specified by IEEE 802.3, Section 22.2.4.5 (see Figure 21).

Figure 21 Management Frame Structure (Single-Frame Format)

5.5.6 Single MDI Command Operation

The Management Data Interface is accessed through the *MDIO Single Command* (\$0x680) and the *MDIO Single Read and Write Data* (\$0x681). A single management frame is sent by setting Register 0, bit 20 to logic 1, and is automatically cleared when the frame is completed.

The Write data is first set up in Register 1, bits 15:0 for Write operation. Register 0 is initialized with the appropriate control information (start, op code, etc.) and Register 0, bit 20 is set to logic 1. Register 0, bit 20 is reset to logic 0 when the frame is complete.


The steps are identical for Read operation except that in Register 1, bits 15:0, the data is ignored. The data received from the MDIO is read by the CPU interface from Register 1, bits 31:16.

5.5.7 MDI State Machine

The MDI State Machine sequences the information sent to it by the MDIO control registers and keeps track of the current sequence bit count, enabling or disabling the MDIO driver output (see Figure 22.

Figure 22 MDI State

5.5.8 Autoscan Operation

The autoscan function allows the 32 registers in each external PHY (up to four) to be stored internally in the IXF1104 MAC. Autoscan is enabled by setting bit 1 of the MDI Control register. When enabled, autoscan runs continuously, reading each PHY register. When a PHY register access is instigated through the CPU interface, the current autoscan register Read is completed before the CPU register access starts. Upon completion of the CPU-induced access, the autoscan functionality restarts from the last autoscan register access.

The Autoscan PHY Address Enable (\$0x682) determines which PHY addresses are being occupied for each IXF1104 MAC port. The least significant bit (LSB) that is set in the register is Port 0, the next significant bit that is set is assumed to be port 1, and so on. If more than four bits are set, the bits beyond the fourth bit are ignored. If less than four bits are set, the round-robin process returns to the port identified by the LSB being set.

5.6 SerDes Interface

The IXF1104 MAC integrates four integrated Serializer/Deserializer (SerDes) devices that allow direct connection to optical modules and remove the requirement for external SerDes devices. This increases integration, which reduces the size of the PCB area required to implement this function, reduces total power, reduces silicon and manufacturing costs, and improves reliability. Each SerDes interface is identical and fully compliant with the relevant IEEE 802.3 Specifications, including auto-negotiation. Each port is also compliant with and supports the requirements of the Small Form Factor Pluggable (SFP) Multi-Source Agreement (MSA), see Section 5.7, Optical Module Interface, on page 103.

The following sections describe the operations supported by each interface, the configurable options, and the register bits that control these options. A full list of the register addresses and full bit definitions are found in the register maps (Table 58 through Table 68).

5.6.1 Features

The SerDes cores are designed to operate in point-to-point data transmission applications. While the core can be used across various media types, such as PCB or backplanes, it is configured specifically for use in 1000BASE-X Ethernet fiber applications in the IXF1104 MAC. The following features are supported.

- 10-bit data path, which connects to the output/input of the 8B/10B encoder/decoder PCS that resides in the MAC controller
- · Data frequency of 1.25 GHz
- · Low power: <200 mW per SerDes port
- Asynchronous clock data recovery

5.6.2 Functional Description

The SerDes transmit interface sends serialized data at 1.25 GHz. The interface is differential with two signals for transmit operation. The transmit interface is designed to operate in a 100 Ω differential environment and all the terminations are included on the device. The outputs are high speed SerDes. AC coupling is recommended for this interface to ensure that the correct input bias current is supplied at the receiver. AC coupling is typically included in SFP modules and is not required on the board for such applications.

The SerDes receive interface receives serialized data at 1.25 GHz. The interface is differential with two signals for the receive operation. The equalizer receives a differential signal that is equalized for the assumed media channel. The SerDes transmit and receive interfaces are designed to operate within a 100 Ω differential environment and all terminations are included on the device.

5.6.2.1 Transmitter Operational Overview

The transmit section of the IXF1104 MAC has to serialize the Ten Bit Interface (TBI) data from the IXF1104 MAC MAC section and outputs this data at 1.25 GHz differential signal levels. The 1.25 GHz differential SerDes signals are compliant with the Small Form Factor Pluggable (SFP) Multi-Source Agreement (MSA).

The transmitter section takes the contents of the data register within the MAC and synchronously transfers the data out, ten bits at a time – Least Significant Bit (LSB) first, followed by the next Most Significant Bit (MSB). When these ten bits have been serialized and transmitted, the next word of 10-bit data from the MAC is ready to be serialized for transmission.

The data is transmitted by the high-speed current mode differential SerDes output stage using an internal 1.25 GHz clock generated from the 125 MHz clock input.

5.6.2.2 Transmitter Programmable Driver-Power Levels

The IXF1104 MAC SerDes core has programmable transmitter power levels to enhance usability in any given application. The SerDes Registers are programmable to allow adjustment of the transmit core driver output power. When driving a 100 Ω differential terminated network, these output power settings effectively establish the differential voltage swings at the driver output.

The *TX Driver Power Level Ports 0 - 3 (\$0x784)* allows the selection of four discrete power settings. The selected power setting of these inputs is applied to each of the transmit core drivers on a per-port basis. Table 28, *SerDes Driver TX Power Levels* lists the normalized power settings of the transmit drivers as a function of the Driver Power Control inputs. The normalized current setting is 10 mA, which corresponds to the normalized power setting of 1.0. This is the default setting of the IXF1104 MAC SerDes interface. Other values listed in the Normalized Driver Power Setting column are multiples of 10 mA. For example, with inputs at 1110, the driver power is the following:

Equation 1 $.5 \times 10 \text{ mA} = 5 \text{ mA}.$

Table 28 SerDes Driver TX Power Levels

DRVPWRx[3]	DRVPWRx[2]	DRVPWRx[1]	DRVPWRx[0]	Normalized Driver Power Setting	Driver Power
0	0	1	1	1.33	13.3 mA
1	0	1	1	2.0	20 mA
1	1	0	1	1.0	10 mA
1	1	1	0	0.5	5 mA
Note: All other values are reserved.					

5.6.2.3 Receiver Operational Overview

The receiver structure performs Clock and Data Recovery (CDR) on the incoming serial data stream. The quality of this operation is a dominant factor for the Bit Error Rate (BER) system performance. Feed forward and feedback controls are combined in one receiver architecture for enhanced performance. The data is over-sampled and a digital circuit detects the edge position in the data stream. A signal is not generated if an edge is not found. A feedback loop takes care of low-frequency jitter phenomenon of unlimited amplitude, while a feed forward section suppresses high-frequency jitter having limited amplitude. The static edge position is held at a constant position in the over-sampled by a constant adjustment of the sampling phases with the early and late signals.

5.6.2.4 Selective Power-Down

The IXF1104 MAC offers the ability to selectively power-down any of the SerDes TX or RX ports that are not being used. This is done via Table 149, TX and RX Power-Down (\$0x787), on page 209.

5.6.2.5 Receiver Jitter Tolerance

The SerDes receiver architecture is designed to track frequency mismatch, recover phase, and is tolerant of low-frequency data jitter. Figure 23 specifies the SerDes core receiver sinusoidal jitter tracking capabilities.

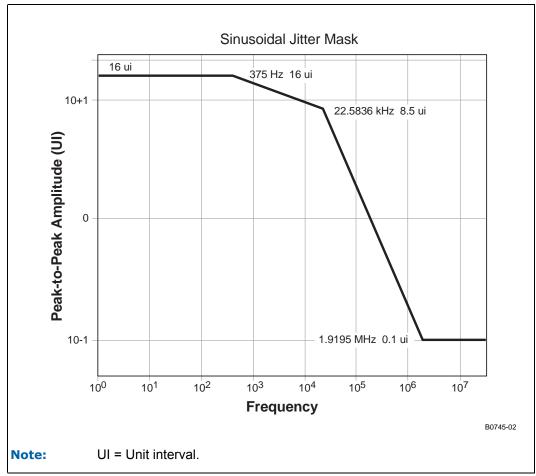


Figure 23 SerDes Receiver Jitter Tolerance

5.6.2.6 Transmit Jitter

The SerDes core total transmit jitter, including contributions from the intermediate frequency PLL, is comprised of the following two components:

- · A deterministic component attributed to the SerDes core's architectural characteristics
- A random component attributed to random thermal noise effects

Since the thermal noise component is random and statistical in nature, the SerDes core total transmit jitter must be specified as a function of BER.

5.6.2.7 Receive Jitter

The SerDes core total receiver jitter, including contributions from the intermediate frequency PLL, is comprised of the following two components:

- · A deterministic component attributed to the SerDes core architectural characteristics
- A random component attributed to random thermal noise effects.

5.7 Optical Module Interface

This section describes the connection of the IXF1104 MAC ports to an Optical Module Interface and details the minimal connections that are supported for correct operation. The registers used for write control and read status information are documented.

The Optical Module Interface allows the IXF1104 MAC a seamless connection to the Small Form Factor Optical Modules (SFP) that form the system's physical media connection, eliminating the need for any FPGAs or CPUs to process data. All required optical module information is available to the system CPU through the IXF1104 MAC CPU interface, leading to a more integrated, reliable, and cost-effective system.

The IXF1104 MAC supports all the functions required for the Small Form Factor pluggable Multi-Source Agreement (MSA).

There are specific mechanical and electrical requirements for the size, form factor, and connections supported on all Optical Module Interfaces. There are also specific requirements for each Optical Module Interface that supports a particular media requirement or interface configuration. These requirements are detailed in the relevant specifications or manufacturers' datasheets.IXF1104 MAC

5.7.1 IXF1104 MAC-Supported Optical Module Interface Signals

To describe the Optical Module Interface operation, three supported signal subgroups are required, allowing a more explicit definition of each function and implementation. The three subgroups are as follows:

- · High-Speed Serial Interface
- Low-Speed Status Signaling Interface
- I²C Module Configuration Interface

Table 29 provides descriptions for IXF1104 MAC-to-SFP optical module connection signals.

Table 29 IXF1104 MAC-to-SFP Optical Module Interface Connections

IXF1104 MAC Signal Names	SFP Signal Names	Description Notes	
TX_P_0:3	TD+	Transmit Data, Differential LVDS	Output from the IXF1104 MAC
TX_N_0:3	TD-	Transmit Data, Differential LVDS	Output from the IXF1104 MAC
RX_P_0:3	RD+	Receive Data, Differential LVDS	Input to the IXF1104 MAC
RX_N_0:3	RD-	Receive Data, Differential LVDS	Input to the IXF1104 MAC
I ² C_CLK	MOD-DEF1	I ² C_CLK output from the IXF1104 MAC (SCL)	Output from the IXF1104 MAC
I ² C_DATA_0:3	MOD-DEF2	I ² C_DATA I/O (SDA)	Input/Output
MOD_DEF_0:3	MOD-DEF0	MOD_DEF_0 is TTL Low level during normal operation.	Input to the IXF1104 MAC
TX_DISABLE_0:3	TX DISABLE	Transmitter disable, logic High, open collector compatible	Output from the IXF1104 MAC
TX_FAULT_0:3	TX FAULT	Transmitter fault, logic High, open collector compatible	Input to the IXF1104 MAC
RX_LOS_0:3	LOS	Receiver loss-of-signal, logic High, open collector compatible	Input to the IXF1104 MAC

5.7.2 Functional Descriptions

5.7.2.1 High-Speed Serial Interface

These signals are responsible for transfer of the actual data at 1.25 Gbps. Table 40, *DC Specifications*, on page 128 shows the data is 8B/10B encoded and transmitted differentially.

The following signals are required to implement the high-speed serial interface:

- TX P 0:3
- TX_N_0:3
- RX P 0:3
- RX N 0:3

5.7.2.2 Low-Speed Status Signaling Interface

The following Low-Speed signals indicate the state of the line through the Optical Module Interface:

- MOD DEF 0:3
- TX_FAULT_0:3
- RX_LOS_0:3
- TX DISABLE 0:3
- MOD_DEF_INT
- TX FAULT INT
- RX_LOS_INT

5.7.2.2.1 MOD_DEF_0:3

MOD_DEF_0:3 are direct inputs to the IXF1104 MAC and are pulled to a logic Low level during normal operation, indicating that a module is present for each channel respectively. If a module is not present, a logic High is received, which is achieved by an external pull-up resistor at the IXF1104 MAC device pad.

The status of each bit (one for each port) is found in bits [3:0] of the Table 152 on page 211). Any change in the state of these bits causes a logic Low level on the MOD_DEF_INT output if this operation is enabled.

5.7.2.2.2 TX_FAULT_0:3

TX_FAULT_0:3 are inputs to the IXF1104 MAC. These signals are pulled to a logic Low level by the optical module during normal operation. A logic Low level on these signals indicates no fault condition exists. If a fault is present, a logic High is received through the use of an external pull-up resistor at the IXF1104 MAC pad.

The status of each bit (one for each port) can be found in bits [13:10] of the Table 152 on page 211. Any change in the state of these bits causes a logic Low level on the TX_FAULT_INT output if this operation is enabled.

5.7.2.2.3 RX_LOS_0:3

RX_LOS_0:3 are inputs to the IXF1104 MAC. These signals are pulled to a logic Low level by the optical module during normal operation, which indicates that no loss-of-signal exists. If a loss-of-signal occurs, a logic High is received on these inputs through the use of an external pull-up resistor at the IXF1104 MAC device pad.

The status of each bit (one for each port) is found in *Optical Module Status Ports 0-3* (\$0x799) bits [23:20]. Any change in the state of these bits causes a logic Low level on the RX_LOS_INT output if this operation is enabled.

5.7.2.2.4 TX_DISABLE_0:3

TX_DISABLE_0:3 are outputs from the IXF1104 MAC. These signals are driven to a logic Low level by the IXF1104 MAC during normal operation. This indicates that the optical module transmitter is enabled. If the optical module transmitter is disabled, this signal is switched to a logic High level. On the IXF1104 MAC, these outputs are open drain types and pulled up by the 4.7 k to 10 k pull-up resistor at the Optical Module Interface. Each of these signals is controlled through bits 3:0 respectively of the *Optical Module Control Ports 0 - 3* (\$0x79A).

5.7.2.2.5 MOD_DEF_INT

MOD_DEF_INT is a single output, open-drain type signal and is active Low. A change in state of any MOD_DEF_0:3 inputs causes this signal to switch Low and remain in this state until a read of the *Optical Module Status Ports 0-3* (\$0x799). The signal then returns to an inactive state.

5.7.2.2.6 TX_FAULT_INT

TX_FAULT_INT is a single output, open-drain type signal and is active Low. A change in state of any TX_FAULT_0:3 inputs causes this signal to switch Low and remain in this state until a read of the *Optical Module Status Ports 0-3* (\$0x799). The signal then returns to an inactive state.

5.7.2.2.7 RX_LOS_INT

RX_LOS_INT is a single output, open-drain type signal and is active low. A change in state of any of the RX_LOS_3:0 inputs causes this signal to switch low and remain in this state until a Read of the *Optical Module Status Ports 0-3* (\$0x799) has taken place. The signal returns to an inactive state.

Note:

MOD_DEF_INT, TX_FAULT_INT, and RX_LOS_INT are open-drain type outputs. With the three signals on the device, the system can decide which *Optical Module Status Ports 0-3* (\$0x799) bits to look at to identify the interrupt condition source port. However, this is achieved at the expense of the three device signals.

5.7.3 I²C Module Configuration Interface

The I²C interface is supported on SFP optical modules. Details of the operation are found in the SFP Multi-Source Agreement, which details the contents of the registers and addresses accessible on a given Optical Module Interface supporting this interface.

The SFP MSA identifies up to 512 8-bit registers that are accessible in each optical module. The Optical Module Interface is read-only and supports either sequential or random access to the 8-bit parameters. The maximum clock rate of the interface is 100 kHz. All address-select signals on the internal E²PROM are tied Low to give a device address equal to zero (00h).

Several PHY vendors may offer copper/CAT5-based SFP optical compliant modules. To program the internal configuration registers of these modules, the IXF1104 MAC I²C interface needs to provide the capability to write data to the SFP modules.

The IXF1104 MAC I²C interface is designed to allow individual writes of byte-wide data to the SFP.

The specific interface in the IXF1104 MAC supports only a subset of the full I²C interface, and only the features required to support the Optical Module Interfaces are implemented. This leads to the following support features.

- Single I²C_CLK pin connected to all optical modules and implemented to save unnecessary signals use.
- Four per-port I²C_DATA signals (I²C Data[3:0]) are required because of the optical module requirement that all modules must be addressed as 00h.
- The interface has both read and write functionality.
- Due to the single internal optical module controller, only one optical module may be accessed at any one time. Each access contains a single register Read. Since these register accesses will most likely be done during power-up or discovery of a new module, these restrictions should not affect normal operation.
- The I²C interface supports byte write accesses to the full address range.

Note:

The I²C interface only supports random single-byte reads and does not guarantee coherency when reading two-byte registers.

5.7.3.1 I²C Control and Data Registers

In the IXF1104 MAC, the entire I²C interface is controlled through the following two registers:

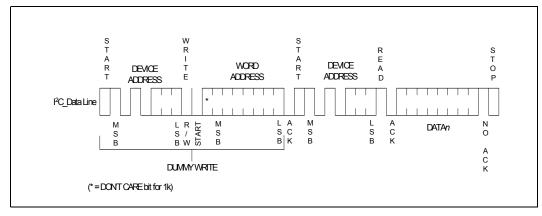
- Table 154, I²C Control Ports 0 3 (\$0x79B), on page 212
- Table 155, I²C Data Ports 0 3 (\$0x79F), on page 212

These registers can be programmed by system software using the CPU interface.

5.7.3.2 I²C Read Operation

To perform a read operation using the I²C interface, use the following sequence:

- 1. Initialize the Control register by setting the following values:
 - a. Enable the I²C Controller by setting bit [25] to 0x1.
 - b. Initiate the I²C transfer by setting bit [24] of the control register to 0x1.
 - Select the port by using bits [17:16].
 - d. Select the Read mode of operation by setting bit [15] to 0x1.
 - e. Select the Device ID by setting bits [14:11].
 - f. Select the register address by setting bits [10:0].
- Set the Device ID field to 0xA and the register address (bits 10:8) to 0x0 to access the fiber module serial E2PROM. Setting the Device ID field to 0xA and the Register Address [10:8] to 0x0 permits read-only access.
- 3. Set the Device ID field to 0xA and the Register Address [10:8] between the values of 0x1 and 0x7 to access the PHY registers.
- 4. Poll the Read Valid field, bit 20. The read data is available when this bit is set to 0x1.


Figure 24 shows an 8-bit read access.

Note:

The user software ensures the order of the contiguous accesses required to read the High and Low bytes of 16-bit-wide PHY registers.

Figure 24 I²C Random Read Transaction

Note:

Only one optical module I²C access sequence can be run at any given time. If a second write is carried out to the I²C Control Ports 0 - 3 (\$0x79B) and I²C Data Ports 0 - 3 (\$0x79F) before a result is returned for the previous write, the data for the first write is lost. An internal state machine completes the Optical Module Interface register access for the first write. It attempts to place the data in the DataRead field and checks to see if the WriteCommand bit is 00h. If it is not 00h, it discards the data and signals the I²C access state machine to begin a new cycle using the data from the second write.

5.7.3.3 I²**C** Write Operation

The following sequence provides an example of writing data to Register Address 0xFF for Port 3:

- 1. Program the l^2C Control Ports 0 3 (\$0x79B) with the following information:
 - Enable the I²C block by setting Register bit 25 to 0x1.
 - b. Set the port to be accessed by setting Register bits 17:16 to 0x3.
 - Select a Write access by setting Register bit 15 to 0x0.
 - d. Set the Device ID Register bits 14:11 to Ah (Atmel compatible).
 - e. Set the 11-bit register address (Register bits 10:0) to 0FFh.
 - Enable the I²C controller by setting Register bit 2 to 0x1.
 - g. Initiate the I²C transfer by setting Register bit 24 to 0x1.

All other bits in this register should be set to 0x0.

This data is written into the I^2C Control Ports 0 - 3 (\$0x79B) in a single cycle via the CPU interface.

- 2. When this register is written and the I²C Start bit is at a Logic 1, the I²C access state machine examines the Port Address Select and enables the I²C_DATA_0:3 output for the selected port.
- 3. The state machines uses the data in the Device ID and Register Address fields to build the data frame to be sent to the optical module
- 4. The I²C_DATA_WRITE_FSM internal state machine takes over the task of transferring the actual data between the IXF1104 MAC and the selected optical module (refer to the details in Section 5.7.3.4, I²C Protocol Specifics, on page 108).
- 5. The I²C_DATA_WRITE_FSM internal state machine uses the data from the Write_Data field bits [23:16] of the Table 155 on page 212 and sets the Write_Complete Register bit

22 of the I^2C Control Ports 0 - 3 (\$0x79B) to 0x1 to signify that the Write Access is complete.

6. The data is written through the CPU interface. The CPU must poll the Write_Complete bit until it is set to 0x1. It is safe to request a new access *only* when this bit is set.

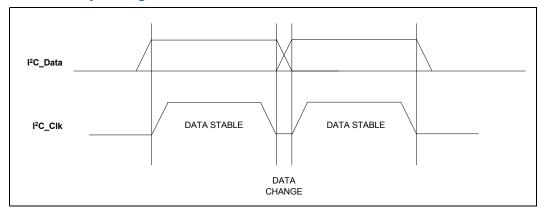
Note:

Only one optical module I^2C access sequence can be run at any given time. The data for the first Write is lost if a second Write is carried out to the I^2C Control Ports 0 - 3 (\$0x79B) before a result is returned for the previous Write. Make sure Write complete = 0x1 before starting the next Write sequence to ensure that no data is lost.

5.7.3.4 I²C Protocol Specifics

Section 5.7.3.4 describes the IXF1104 MAC I²C Protocol behavior, which is controlled by an internal state machine. Specific protocol states are defined below, with an additional description of the hardware signals used on the interface.

The Serial Clock Line (I^2C_CLK) is an output from the IXF1104 MAC. The serial data is synchronous with this clock and is driven off the rising edge by the IXF1104 MAC and off the falling edge by the optical module. The IXF1104 MAC has only one I^2C_CLK line that drives all of the optical modules. I^2C_CLK runs continuously when enabled (I^2C_CLK) in the optical modules.


The Serial Data (I²C_DATA_3:0) signals (one per port) are bi-directional for serial data transfer. These signals are open drain.

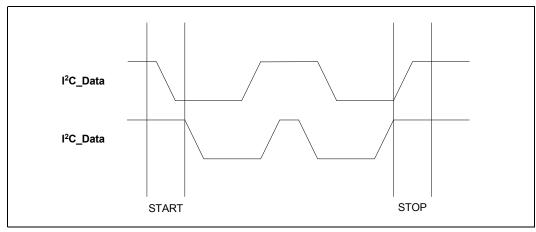
5.7.3.5 Port Protocol Operation

5.7.3.6 Clock and Data Transitions

The I^2C_DATA is normally pulled High with an extra device. Data on the I^2C_DATA pin changes only during the I^2C_CLK Low time periods (see Figure 25). Data changes during I^2C_CLK High periods indicate a start or stop condition.

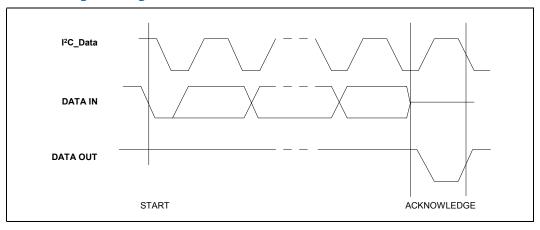
Figure 25 Data Validity Timing

5.7.3.6.1 Start Condition


A High-to-Low transition of I²C_DATA, with I²C_CLK High, is a start condition that must precede any other command (see Figure 26).

5.7.3.6.2 Stop Condition

A Low-to-High transition of the I²C_DATA with I²C_CLK High is a stop condition. After a Read sequence, the stop command places the E²PROM and the optical module in a standby power mode (see Figure 26).


Figure 26 Start and Stop Definition Timing

5.7.3.6.3 Acknowledge

All addresses and data words are serially transmitted to and from the optical module in 8-bit words. The optical module E²PROM sends a zero to acknowledge that it has received each word, which happens during the ninth clock cycle (see Figure 27).

Figure 27 Acknowledge Timing

5.7.3.6.4 Memory Reset

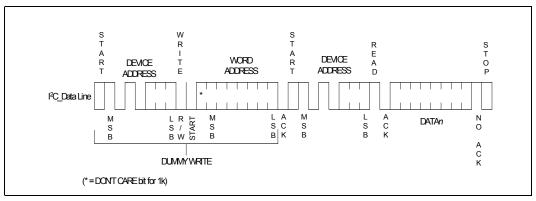
After an interruption in protocol, power loss, or system reset, any 2-wire optical module can be reset by following three steps:

- 1. Clock up to 9 cycles
- 2. Wait for I²C_DATA High in each cycle while I²C_CLK is High
- 3. Initiate a start condition.

5.7.3.6.5 Device Addressing

All E²PROMs in SFP optical module devices require an 8-bit device address word following a start condition to enable the chip to read or write. The device address word consists of a mandatory one, zero sequence for the four most-significant bits. This is common to all devices. The next three bits are the A2, A1, and A0 device address bits that are tied to zero

in an optical module. The eighth bit of the device address is the Read/Write operation select bit. A Read operation is initiated if this bit is High and a Write operation is initiated if this bit is Low.


Upon comparison of the device address, the optical module outputs a zero. If a comparison is not made, the optical module E²PROM returns to a standby state.

5.7.3.6.6 Random Read Operation

A random Read requires a "dummy" Byte/Write sequence to load the data word address. The "dummy" write is achieved by first sending the device address word with the Read/Write bit cleared to Low, which signals a Write operation. The optical module acknowledges receipt of the device address word. The IXF1104 MAC sends the data word address, which is again acknowledged by the optical module. The IXF1104 MAC generates another start condition. This completes the "dummy" write and sets the optical module E²PROM pointers to the desired location.

The IXF1104 MAC initiates a current address read by sending a device address with the Read/Write bit set High. The optical module acknowledges the device address and serially clocks out the data word. The IXF1104 MAC does not respond with a zero but generates a stop condition (see Figure 28).

Figure 28 Random Read

5.8 LED Interface

The IXF1104 MAC uses a Serial interface, consisting of three signals, to provide LED data to some form of external driver. This provides the data for 12 separate direct drive LEDs and allows three LEDs per MAC port.

There are two modes of operation, each with its own separate LED decode mapping. Modes of operation and LEDs are detailed in the following sections.

5.8.1 Modes of Operation

There are two modes of operation: Mode 0 and Mode 1. Mode selection is accomplished by using the LED_SEL_MODE bit. This bit is globally selected and controls the operation of all ports (see Table 108, *LED Control* (\$0x509), on page 182).

Mode 0: (LED_SEL_MODE = 0 [Default]): This mode selects operations compatible with the SGS Thompson M5450 LED Display Driver device. This device converts the serial data stream, output by the IXF1104 MAC, into 30 direct-drive LED outputs. Although the LED interface is capable of driving all 30 LEDs, only twelve will be driven in the four-port IXF1104 MAC, three LEDs per port.

Mode 1: (LED_SEL_MODE = 1): This mode is used with standard TTL (74LS599) or HCMOS (74HC599) octal shift registers with latches, providing the most general and cost-effective implementation of the serial data stream conversion.

In addition to these physical modes of operation, there are two types of specific LED data decodes available for fiber and copper modes. This option is a global selection and controls the operation of all ports (see Table 108, *LED Control* (\$0x509), on page 182).

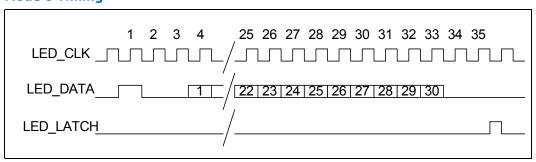
5.8.2 LED Interface Signal Description

The IXF1104 MAC LED interface consists of three output signal signals that are 2.5 V CMOS level pads. Table 30 provides LED signal names, pin numbers, and descriptions.

Table 30 LED Interface Signal Descriptions

Pin Name	Pin #	Pin Description
LED_CLK K24 serial data stre speed of 720 H		This signal is an output that provides a continuous clock synchronous to the serial data stream output on the LED_DATA pin. This clock has a maximum speed of 720 Hz. The behavior of this signal remains constant in all modes of operation.
LED_DATA	M22	This signal provides the data, in various formats, as a serial bit stream. The data must be valid on the rising edge of the LED_CLK signal. In Mode 0, the data presented on this pin is TRUE (Logic 1 = High). In Mode 1, the data presented on this pin is INVERTED (Logic 1 = Low).
LED_LATCH L22		This is an output pin, and the signal is used only in Mode 1 as the Latch enable for the shift register chain. This signal is not used in Mode 0, and should be left unconnected.

5.8.3 Mode 0: Detailed Operation


Note: Please refer to the SGS Thompson* M5450 datasheet for device-operation information.

The operation of the LED Interface in Mode 0 is based on a 36-bit counter loop. The data for each LED is placed in turn on the serial data line and clocked out by the LED_CLK. Figure 29 shows the basic timing relationship and relative positioning in the data stream of each bit.

Figure 29 shows the 36 clocks that are output on the LED_CLK pin. The data is changed on the falling edge of the clock and is valid for almost the entire clock cycle. This ensures that the data is valid during the rising edge of the LED_CLK, which clocks the data into the M5450 device.

The actual data shown in Figure 29 consists of a chain of 36 bits, 12 of which are valid LED DATA. The 36-bit data chain is built up as follows:

Figure 29 Mode 0 Timing

Table 31 Mode 0 Clock Cycle to Data Bit Relationship

LED_CLK Cycle	LED_DATA Name	LED_DATA Description
1	START BIT	This bit synchronizes the M5450 device to expect 35 bits of data to follow.
2:3	PAD BITS	These bits are used only as fillers in the data stream to extend the length from the actual 12-bit LED DATA to the required 18-bit frame length. These bits should always be a logic 0.
4:15	LED DATA 1-12	These bits are the actual data transmitted to the M5450 device. The decode for each individual bit in each mode is defined in Table 33 on page 113. The data is TRUE. Logic 1 (LED ON) = High
36:38	PAD BITS	These bits are used as fillers in the data stream to extend the length from the actual 30-bit LED DATA to the required 36-bit frame length. These bits should always be a logic 0.

When implemented on the board with the M5450 device, the LED DATA bit 1 appears on Output bit 3 of the M5450 and the LED DATA bit 2 appears on Output bit 4, etc. This means that Output bits 1, 2, and 15 through 35 will never have valid data and should not be used.

5.8.4 Mode 1: Detailed Operation

Note: Please refer to generic specifications for 74LS/HC599 for information on device operation.

The operation of the LED Interface in Mode 1 is based on a 36-bit counter loop. The data for each LED is placed in turn on the serial data line and clocked out by the LED_CLK. Figure 30 on page 113 shows the basic timing relationship and relative positioning in the data stream of each bit.

Figure 30 on page 113 shows the 36 clocks which are output on the LED_CLK pin. The data is changed on the falling edge of the clock and is valid for the almost the entire clock cycle. This ensures that the data is valid during the rising edge of the LED_CLK, which clocks the data into the shift register chain devices.

The LED_LATCH signal is required in Mode 1, and latches the data shifted into the shift register chain into the output latches of the 74HC599 device. Figure 30 shows that the LED_LATCH signal is active High during the Low period on the 35th LED_CLK cycle. This avoids any possibility of trying to latch data as it is shifting through the register.

When this operation mode is implemented on a board with a shift register chain containing three 74HC599 devices, the LED DATA bit 1 is output on Shift register bit 1, and so on up the chain. Only Shift register bits 31 and 32 do not contain valid data.

The actual data shown in Figure 30 consists of a 36-bit chain, of which 12 bits are valid LED DATA. The 36-bit data chain is built up as shown in Figure 30.

Note: The LED DATA signal is now inverted from the state in Mode 0.

Figure 30 Mode 1 Timing

Table 32 Mode 1 Clock Cycle to Data Bit Relationship

LED_CLK Cycle	LED_DATA Name	LED_DATA Description
1	START BIT	This bit has no meaning in Mode 1 operation and is shifted out of the 16-stage shift register chain before the LED_LATCH signal is asserted.
2:3	PAD BITS	These bits have no meaning in Mode 1 operation and are shifted out of the 16-stage shift register chain before the LED_LATCH signal is asserted.
4:15	LED DATA 1-12	These bits are the actual data to be transmitted to the 16-stage shift register chain. The decode for each bit in each mode is defined in Table 33 on page 113. The data is INVERTD. Logic 1 (LED ON) = Low.
36:38	PAD BITS	These bits have no meaning in Mode 1 operation and are latched into positions 31 and 32 in the shift register chain. These bits are not considered as valid data and should be ignored. They should always be a Logic 0 = High.

5.8.5 Power-On, Reset, Initialization

The LED interface is disabled at power-on or reset. The system software controller must enable the LED interface. The internal state machines and output signals are held in reset until the full IXF1104 4-Port Gigabit Ethernet Media Access Controller device configuration is completed. This is done by setting the LED_ENABLE bit to a logic 1 (see Table 108, LED Control (\$0x509), on page 182). The power-on default for this bit is logic 0.

5.8.6 LED DATA Decodes

The data transmitted on the LED_DATA line is determined by programming the global operation mode as either fiber or copper. Table 33 shows the data decode of the data for both fiber and copper MACs.

Note: The data decode of the LED bits is independent of the Physical mode selection.

Table 33 LED_DATA# Decodes (Sheet 1 of 2)

LED_DATA#	MAC Port #	Fiber Designation	Copper Designation
1		Rx LED—Amber	Link LED—Amber
2	0	Rx LED—Green	Link LED—Green
3		TX LED—Green	Activity LED—Green

Table 33 LED_DATA# Decodes (Sheet 2 of 2)

LED_DATA#	MAC Port #	Fiber Designation	Copper Designation
4		Rx LED—Amber	Link LED—Amber
5	1	Rx LED—Green	Link LED—Green
6		TX LED—Green	Activity LED—Green
7		Rx LED—Amber	Link LED—Amber
8	2	Rx LED—Green	Link LED—Green
9		TX LED—Green	Activity LED—Green
10		Rx LED—Amber	Link LED—Amber
11	3	Rx LED—Green	Link LED—Green
12		TX LED—Green	Activity LED—Green

5.8.6.1 LED Signaling Behavior

Operation in each mode for the decoded LED data in Table 33 is detailed in Table 34 and Table 35.

5.8.6.1.1 Fiber LED Behavior

Table 34 LED Behavior (Fiber Mode)

Туре	Status	Description				
	Off	Synchronization occurs but no packets are received and <i>Link LED Enable</i> (\$0x502) is not set.				
	Amber On	RX Synchronization has not occurred or no optical signal exists.				
RXLED	Amber Blinking	The port has remote fault and <i>Link LED Enable</i> (\$0x502) is not set (based on remote fault bit setting received in Rx_Config word).				
	Green On	RX Synchronization occurs and Link LED Enable (\$0x502) bit is set.				
	Green Blinking	RX Synchronization occurs and the port is receiving data.				
TXLED	Off	The port is not transmitting data or <i>Link LED Enable</i> (\$0x502) is not set.				
IXLED	Green Blinking	The port is transmitting data and Link LED Enable (\$0x502) bit is set				
		the LED Control (\$0x509). If a port is not enabled, all the				

LEDs for that port will be off. If the LEDs are not enabled, all of the LEDs will be off.

Cortina Systems[®] IXF1104 4-Port Gigabit Ethernet Media Access Controller

5.8.6.1.2 Copper LED Behavior

Table 35 LED Behavior (Copper Mode)

Туре	Status	Description				
	Off	Port does not have a remote fault and Table 108, <i>LED Control</i> (\$0x509), on page 182 bit is not set.				
	Amber On	Port has an RGMII RXERR condition detected and Table 108, <i>LED Control</i> (\$0x509), on page 182 bit is s				
Link LED	Amber Blinking	Port has a remote fault and Table 110, <i>LED Fault Disable</i> (\$0x50B), on page 183 is not set.				
	Green On	Table 108, LED Control (\$0x509), on page 182 bit is set and port does not have an RGMII RXERR error or remote fault condition present.				
	Off	Port is not transmitting and receiving data.				
Activity LED - Green	Blinking	Table 108, <i>LED Control</i> (\$0x509), on page 182 set: Pois transmitting and/or receiving. Table 108, <i>LED Control</i> (\$0x509), on page 182 not set				
		Port is receiving data.				

Vote: Table 33, LED_DATA# Decodes assumes the port is enabled in the Table 102, Port Enable (\$0x500), on page 180 and the LEDs are enabled in the Table 108, LED Control (\$0x509), on page 182. If a port is not enabled, all the LEDs for that port are off. If the LEDs are not enabled, all of the LEDs are off.

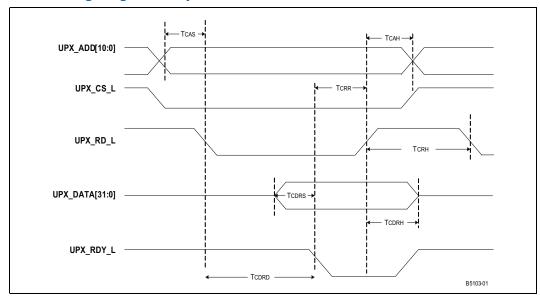
5.9 CPU Interface

The CPU interface block provides access to registers and statistics in the IXF1104 MAC. The interface is asynchronous externally and operates within the 125 MHz clock domain internally. The interface provides access to the following:

- · Receive statistics registers
- Transmit statistics registers
- · Receive FIFO registers
- Transmit FIFO registers
- Global configuration and control registers
- · MAC 0 to MAC 3 registers

The CPU interface width can be configured with the two strap signals (UPX_WIDTH[1:0]) to operate as an 8-bit, 16-bit, or 32-bit bus. All internal accesses to registers are 32-bit (4, 2, or 1 data cycles respectively are required to fully access a register). When operating in 8-bit or 16-bit mode, read data for bytes [3:1] is strobed into read holding registers when byte [0] is read. Subsequent reads of bytes {1, 2, 3} in byte mode or of bytes {2,3} in 16-bit mode are supplied from the holding register independent of the upper address bits. On write accesses in 8-bit mode, the data of bytes {0, 1, 2} is similarly captured in internal write holding registers and the complete 32-bit write is committed when byte[3] is written to the IXF1104 MAC. When writing in 16-bit mode, bytes [1:0] are captured, and the double-word is committed when bytes [3:2] are written. The complete address for write is ignored (except for the write which causes the commit operation).

5.9.1 Functional Description


5.9.1.1 Read Access

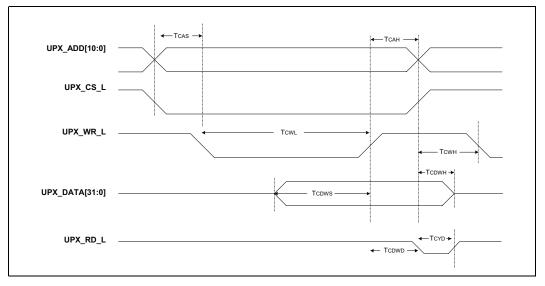
Read access involves the following:

- Detect assertion of asynchronous Read control signal and latch address
- · Generate internal Read strobe
- · Drive valid data onto processor bus
- · Assert asynchronous Ready signal for required length of time

Figure 31 shows the timing of the asynchronous interface for Read access.

Figure 31 Read Timing Diagram - Asynchronous Interface

5.9.1.2 Write Access


Write process involves the following:

- · Detect assertion of asynchronous Write control signal and latch address
- Detect de-assertion of asynchronous Write control signal and latch data
- · Generate internal Write strobe
- · Assert asynchronous Ready signal for required length of time

Figure 32 shows the timing of the asynchronous interface for Write accesses.

Figure 32 Write Timing Diagram - Asynchronous Interface

5.9.1.3 CPU Timing Parameters

For information on the CPU interface Read and Write cycle AC timing parameters, refer to Figure 47, CPU Interface Read Cycle AC Timing, on page 142, Figure 48, CPU Interface Write Cycle AC Timing, on page 143, and Table 53, CPU Interface AC Signal Parameters, on page 143.

5.9.2 Endian

The Endian of the CPU interface may be changed to allow connection of various CPUs to the IXF1104 4-Port Gigabit Ethernet Media Access Controller. The Endian selection is determined by setting the Endian bit in the CPU Interface (\$0x508).

The following describes Endianness control:

- There is a byte swapper between the internal 32-bit bus and the external 32-bit bus.
- In 8-bit or 16-bit mode operation, the byte packer/byte unpacker holding registers sink and source data just like the 32-bit external bus in 32-bit mode.
- The CPU Interface (\$0x508) selects Big-Endian or Little-Endian mode.
- The byte swapper causes the behavior seen in Table 36 for accessing a register with data bits data[31:0].

Table 36 Byte Swapper Behavior

		Little Endian		Big Endian			
UPX_BADD [1:0]	32-bit	16-bit	8-bit ¹	32-bit	16-bit	8-bit ¹	
[1.0]	UPX_DATA_ [31:0]	UPX_DATA [15:0]	UPX_DATA [7:0]	UPX_DATA [31:0]	UPX_DATA [15:0]	UPX_DATA [7:0]	
00	[31:0]	[15:0]	[7:0]	[7:0] [15:8] [23:16 [31:24]	[7:0] [15:8]	[7:0]	
01	-	_	[15:8]	_	-	[15:8]	
10	_	[31:16]	[23:16]	_	[23:16] [31:24]	[23:16]	
11	_	_	[31:24]	_	-	[31:24]	

^{1.} In 8-bit mode, data is output in Little Endian format regardless of the IXF1104 MAC Endian setting.

5.10 TAP Interface (JTAG)

The IXF1104 MAC includes an IEEE 1149.1 compliant Test Access Port (TAP) interface used during boundary scan testing. The interface consists of the following five signals:

- TDI Serial Data Input
- TMS Test Mode Select
- TCLK TAP Clock
- TRST L Active Low asynchronous reset for the TAP
- TDO Serial Data Output

TDI and TMS require external pull-up resistors to float the signals High per the IEEE 1149.1 specification. Pull-ups are recommended on TCLK and TDO. For normal operation, TRST_L can be pulled Low, permanently disabling the JTAG interface. If the JTAG interface is used, the TAP controller must be reset as described in Section 5.10.1, TAP State Machine, on page 118 and returned to a logic High.

5.10.1 TAP State Machine

The TAP signals drive a TAP controller, which implements the 16-state state machine specified by the IEEE 1149.1 specification. Following power-up, the TAP controller must be reset by one of following two mechanisms:

- · Asynchronous reset
- Synchronous reset

Asynchronous reset is achieved by pulsing or holding TRST_L Low. Synchronous reset is achieved by clocking TCLK with five clock pulses while TMS is held or floats High. This ensures that the boundary scan cells do not block the pin to core connections in the IXF1104 MAC.

5.10.2 Instruction Register and Supported Instructions

The instruction register is a 4-bit register that enacts the boundary scan instructions. After the state machine resets, the default instruction is IDCODE. The decode logic in the TAP controller selects the appropriate data register and configures the boundary scan cells for the current instruction. Table 37 shows the supported boundary-scan instructions.

Table 37 Instruction Register Description

Instruction	Code	Description	Data Register
BYPASS	1111	1-bit Bypass	Bypass
EXTEST	0000	External Test	Boundary Scan
SAMPLE	0001	Sample Boundary	Boundary Scan
IDCODE	0110	ID Code Inspection	ID
HIGHZ	0101	Float Boundary	Bypass
CLAMP	0111	Clamp Boundary	Bypass

5.10.3 ID Register

The ID register is a 32-bit register. The IDCODE instruction connects this register between TDI and TDO. See Table 111, *JTAG ID* (\$0x50C), on page 184 for detailed information.

5.10.4 Boundary Scan Register

The Boundary Scan register is a shift register made up of all the boundary scan cells associated with the device signals. The number, type, and order of the boundary scan cells are specified in the IXF1104 MAC BSDL file. The EXTEST and SAMPLE instructions connect this register between TDI and TDO.

5.10.5 Bypass Register

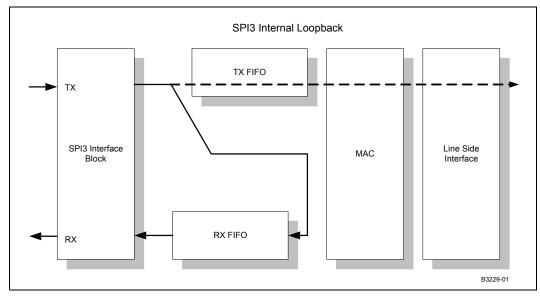
The Bypass register is a 1-bit register that bypasses the IXF1104 MAC to reduce the JTAG chain length when accessing other devices on the chain besides the IXF1104 MAC. The BYPASS, HIGHZ, and CLAMP instructions connect this register between TDI and TDO.

5.11 Loopback Modes

The IXF1104 MAC provides two loopback modes for device diagnostic testing when it has been integrated into a user system. A line-side loopback allows the line-side receive interface to be looped back to the transmit line-side interface. A SPI3 loopback mode allows the SPI3 transmit interface to be looped back to the SPI3 receive interface.

The IXF1104 MAC line-side and SPI3 loopback modes are effective diagnostic tools for validation of system level connectivity and interface compatibility.

In loopback-mode operation, the data path is internally redirected to allow for the data flow return path. Redirection requires the data path to circumvent resources that are required during normal traffic flow. For example, while operating in SPI3 loopback mode, the data path does not pass through the MAC or TX FIFO and those resource features are not used. The result is a possible degradation of throughput performance and statistical data accuracy. Cortina recommends that loopback modes be used for diagnostic purposes only.



5.11.1 SPI3 Interface Loopback

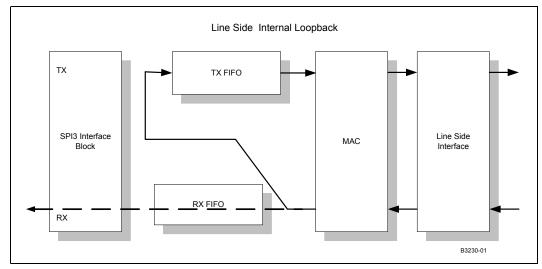
To provide a diagnostic loopback feature on the SPI3 interface, it is possible to configure the IXF1104 MAC to loop back any data written to the IXF1104 MAC through the SPI3 transmit interface back to the SPI3 receive interface. This is accomplished using the data path shown in Figure 33.

Note: Loopback packets also appear on the line side TX interface.

Figure 33 SPI3 Interface Loopback Path

Note:

There is a restriction when using this loopback mode. At least one clock cycle is required between a TEOP assertion and a TSOP assertion. This is required when the pre-pend feature of the receive FIFO is enabled to allow the addition of the extra two bytes to the data sent on the transmit interface. Where the pre-pend feature has not been enabled, data can be sent back-to-back on the transmit SPI3 interface with TSOP following TEOP on the next cycle.


To configure the IXF1104 MAC to use the SPI3 loopback mode, the *RX FIFO SPI3 Loopback Enable for Ports 0 - 3 (\$0x5B2)* must be configured. Each IXF1104 MAC port has a unique bit in this register designated to control loopback. It is possible to have individual ports in a loopback mode while other ports continue to operate in a normal mode.

5.11.2 Line Side Interface Loopback

To provide a diagnostic loopback feature on the line-side interfaces, the IXF1104 MAC can be configured to loop back any data received by the IXF1104 MAC through one of the line interfaces back to the corresponding transmit line interface. This is done by using the data path shown in Figure 34. The line-side interface can be either SerDes, RGMII or GMII. Please note that it is not possible to loop one line-side interface back to a different one (for example, Rx SerDes looped back to transmit RGMII).

Figure 34 Line Side Interface Loopback Path

When the IXF1104 MAC is configured in this loopback mode, all of the MAC functions and features are available, including flow control and pause-packet generation.

To configure the IXF1104 MAC to use the line-side loopback mode, the *Loop RX Data to TX FIFO (Line-Side Loopback) Ports 0 - 3 (\$0x61F)* must be configured. Each IXF1104 MAC port has a unique bit in this register designated to control the loopback. It is possible to have individual ports in a loopback mode while other ports continue to operate in a normal mode.

Note: Line side interface loopback packets also appear at the SPI3 interface.

5.12 Clocks

The IXF1104 MAC system interface has several reference clocks, including the following:

- · SPI3 data path input clocks
- · RGMII input and output clocks
- MDIO output clock
- · JTAG input clock
- I²C clock
- · LED output clock.

This section details the unique clock source requirements.

5.12.1 System Interface Reference Clocks

The following system interface clock is required by the IXF1104 MAC:

CLK125

5.12.1.1 CLK125

The system interface clock, which supplies the clock to the majority of the internal circuitry, is the 125 MHz clock. The source of this clock must meet the following specifications:

· 3.3 V CMOS drive

- +/- 50 ppm
- Maximum duty cycle distortion 40/60

5.12.2 SPI3 Receive and Transmit Clocks

The IXF1104 MAC transmit clock requirements include the following:

- 3.3 V LVTTL drive
- +/- 50 ppm
- · Maximum frequency of 133 MHz in MPHY mode
- Maximum frequency of 125 MHz in SPHY mode
- Maximum duty cycle distortion 45/55

The IXF1104 MAC meets the following specifications for the receive clock:

- 3.3 V LVTTL drive
- +/- 50 ppm
- · Maximum frequency of 133 MHz in MPHY mode
- Maximum frequency of 125 MHz in SPHY mode
- Maximum duty cycle distortion 45/55

5.12.3 RGMII Clocks

The RGMII interface is governed by the Hewlett-Packard* 1.2a specification. The IXF1104 MAC compliant to this specification with the following:

- · 2.5 V CMOS drive
- · Maximum duty cycle distortion 40/60
- +/- 100 ppm
- 125 MHz for 1000 Mbps, 25 MHz for 100 Mbps and 2.5 MHz for 10 Mbps

5.12.4 MDC Clock

The IXF1104 MAC supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input/Output (MDIO) Interface. The IXF1104 MAC meets the following specifications for this clock:

- · 2.5 V CMOS drive
- 2.5/18 MHz operation (selectable by the MDC speed bit in the MDIO Control (\$0x683))
- 50/50 duty cycle for 2.5 MHz operation
- 43/57 duty cycle for 18 MHz operation

5.12.5 JTAG Clock

The IXF1104 MAC supports JTAG. The source of this clock must meet the following specifications:

- · 3.3 V CMOS drive
- · Maximum clock frequency 11 MHz
- Maximum duty cycle distortion 40/60

5.12.6 I²C Clock

The IXF1104 MAC supports a single-output I²C clock to support all ten Optical Module interfaces. The IXF1104 MAC meets the following specifications for this clock:

- · 2.5 V CMOS drive
- · Maximum clock frequency of 100 KHz

5.12.7 LED Clock

The IXF1104 MAC supports a serial LED data stream and meets the following specifications for this clock:

- 2.5 V CMOS drive
- · Maximum frequency of 720 Hz
- Maximum duty cycle distortion 50/50

6.0 Applications

6.1 Change Port Mode Initialization Sequence

Use the change port mode initialization sequence after power-up and anytime a port is configured into or switching between fiber or copper mode, switching to/from RGMII and GMII modes, or switching speeds and duplex in RGMII mode.

The following sequence applies to all four ports and can be done simultaneously for all ports or as a subset of the ports.

- 1. Place the MAC in reset for the port(s) which require a change by asserting (set to 1) the MAC Soft Reset (\$0x505).
- 2. Place the TX FIFO in reset for the port(s) which require a change by asserting (set to 1) the TX FIFO Port Reset (\$0x620).
- 3. Disable the port(s) which require change by de-asserting (set to 0) the appropriate bits in the *Port Enable* (\$0x500).
- 4. Wait 1 μs.
- 5. De-assert (set to 0) Table 151, *Clock and Interface Mode Change Enable Ports 0 3* (\$0x794), on page 210 for the ports being changed.
- 6. Set the speed, mode, and duplex as follows for the ports being changed:
 - a. Copper mode:

Select copper mode for *Interface Mode* (\$0x501) ports.

Set the per-port *MAC IF Mode and RGMII Speed* (\$ Port_Index + 0x10) to the appropriate speed and RGMII/GMII interface setting.

Set the per-port *Desired Duplex* (\$ Port_Index + 0x02).

Note: Half-duplex is supported only when RGMII 10 Mbps or 100 Mbps is selected in the *MAC IF Mode and RGMII Speed* ($$Port\ Index + 0x10$).

- Fiber mode:
 Select fiber mode by setting the appropriate bit to 0 in the *Interface Mode (\$0x501)* ports.
- 7. Assert (set to 1) Clock and Interface Mode Change Enable Ports 0 3 (\$0x794) for the ports being changed.
- 8. Wait 1 μs.
- 9. De-assert (set to 0) MAC Soft Reset (\$0x505) for the ports being changed.
- 10. De-assert (set to 0) TX FIFO Port Reset (\$0x620) for the ports being changed.
- 11. Wait 1 to 2 μs.
- 12. Set the *Diverse Config Write* (\$ *Port_Index* + 0x18) to the appropriate value as follows:
 - a. Copper mode:

Write the reserved bits to the default value.

Enable packet padding and CRC appending on transmitted packets in bits 6 and 7, as needed.

Set bit 5 to 0x0.

b. Fiber Mode:

Write the reserved bits to the default value.

Enable Packet padding and CRC Appending on transmitted packets in bits 6 and 7, as needed.

Set bit 5 to 1 to enable auto-negotiation.

Set bit 5 to 0 to enable forced mode operation.

- 13. Assert (set to 1) *Port Enable* (\$0x500).
- 14. Wait 1 to 2 μs.
- 15. Perform additional device configurations, as needed.

6.2 Disable and Enable Port Sequences

Cortina recommends the following sequences to disable and enable individual ports, and for dropped links. When a link is dropped, Cortina recommends the port be completely reset and flushed to remove packet fragments that may interfere with the auto-negotiation process on link recovery.

6.2.1 Disable Port Sequence

Use the following sequence to disable an individual port:

- 1. Disable the port using MAC port enable/disable bits [Port Enable (\$0x500) Bits (3-0)].
- 2. Apply TX FIFO soft reset [TX FIFO Port Reset (\$0x620) Bits(3-0)].
- 3. Introduce some delay to allow completion of packet transmission (not necessary if link is dropped).
- 4. Flush TX [Flush TX (\$ Port_Index + 0x11) Bit 0].
- 5. Apply MAC soft reset [MAC Soft Reset (\$0x505) Bits(3-0)].
- 6. Apply RX FIFO soft reset [RX FIFO Port Reset (\$0x59E) Bits(3:0)].

6.2.2 Enable Port Sequence

Use the following sequence to enable an individual port:

- 1. Enable the port(s) using MAC port enable/disable bits [Port Enable (\$0x500) Bits (3-0)].
- 2. Disable TX FIFO soft reset [TX FIFO Port Reset (\$0x620) Bits(3-0)].
- 3. Reset flush TX [Flush TX (\$ Port_Index + 0x11) Bit 0].
- 4. Disable MAC soft reset [MAC Soft Reset (\$0x505), on page 181 Bits(3-0)].
- 5. Disable RX FIFO soft reset [RX FIFO Port Reset (\$0x59E) Bits(3:0)].

7.0 Electrical Specifications

Table 38 through Table 57, *LED Interface AC Timing Parameters*, on page 147 and Figure 35, *SPI3 Receive Interface Timing*, on page 131 through Figure 52, *LED AC Interface Timing*, on page 147 represent the target specifications of the following IXF1104 MAC interfaces:

- SPI3
- JTAG
- MDIO
- Pause Control
- CPU
- LED
- System
- GMII and RGMII
- SerDes
- Optical Module

These specifications are not guaranteed and are subject to change without notice. Minimum and maximum values listed in Table 40, *DC Specifications*, on page 128 through Table 57, *LED Interface AC Timing Parameters*, on page 147 apply over the recommended operating conditions specified in Table 39.

Table 38 Absolute Maximum Ratings

Parameter		Symbol	Min	Max	Units	Comments
Supply voltage		VDD	-0.3	2.2	volts	Core digital power
		VDD2, VDD3	-0.3	4.25	volts	I/O digital power
		VDD4, VDD5	-0.3	4.25	volts	I/O digital power
			-0.3	2.2	volts	Analog power
			-0.3	4.25	volts	Analog power
Operating	Ambient	TOPA	-40	+85	°C	Copper mode
temperature Ambient		TOPA	0.0	+70	°C	Fiber mode
Storage temp	erature	TST	-40	+150	°C	_

Caution:

Exceeding these values may cause permanent damage to the device. Functional operation under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 39 Recommended Operating Conditions

Para	Parameter		Min	Тур	Max	Units
		VDD	1.65	_	1.95	Volts
	VDD2, VDD3	3.0	-	3.6	Volts	
		VDD4, VDD5	2.3	-	2.7	Volts
Recommended supp	oly voltage	AVDD1P8_1 AVDD1P8_2	1.65	-	1.95	Volts
		AVDD2P5_1 AVDD2P5_2	2.3	-	2.7	Volts
	SerDes Operation	VDD AVDD1P8_1 AVDD1P8_2	-	0.780	-	Amps
Operating Current	Transmitting and receiving in 1000 Mbps mode	VDD4 VDD5 AVDD2P5_1 AVDD2P5_2	-	0.050	-	Amps
		VDD2, VDD3	_	0.246	_	Amps
	RGMII Operation Transmitting and receiving in 1000 Mbps mode	VDD AVDD1P8_1 AVDD1P8_2	-	0.757	-	Amps
Operating Current		VDD4 VDD5 AVDD2P5_1 AVDD2P5_2	-	0.224	-	Amps
		VDD2, VDD3	-	0.208	0.235	Amps
	Ambient	TOPA	0	-	70	°C
Recommended operating	Case with heat sink	TOPC-HS	0	-	122	°C
temperature	Case without heat sink	TOPC-NHS	0	-	121	°C
	SerDes Operation					
Power consumption	Transmitting and receiving in 1000 Mbps mode	_	-	2.23	2.72	Watts
	RGMII Operation Transmitting and receiving in 1000 Mbps mode	_	-	2.84	3.4	Watts

7.1 DC Specifications

The IXF1104 MAC supports the following I/O buffer types:

- 2.5 V CMOS
- 3.3 V LVTTL
- · SerDes

See Section 5.1.7, *Packet Buffer Dimensions*, on page 76 for additional information regarding I/O buffer types. The related driver characteristics are described in this section.

Note:

All 3.3V LVTTL input buffers are 5V tolerant, and all 2.5V CMOS input buffers are 3.3V LVTTL level tolerant.

Table 40 DC Specifications

Parameter	Symbol	Min	Тур	Max	Units	Comments		
2.5 V CMOS I/O Cells								
Input High voltage	VIH	1.7	_	-	V	2.5 V I/Os		
Input low voltage	VIL	_	_	0.7	V	2.5 V I/Os		
Output High voltage	VOH	2.0	_	_	V	2.5 V I/Os		
Output low voltage	VOL	_	_	0.4	V	2.5 V I/Os		
		3.3	V I/O Cell	s				
Input High voltage	VIH	2.0	-	-	V	3.3 V LVTTL I/Os		
Input low voltage	VIL	_	-	0.8	V	3.3 V LVTTL I/Os		
Output High voltage	VOH	2.4	-	-	V	3.3 V LVTTL I/Os		
Output low voltage	VOL	_	-	0.4	V	3.3 V LVTTL I/Os		

Table 41 SerDes Transmit Characteristics (Sheet 1 of 2)

Parameter	Symbol	Normalized Power Drive Settings ¹	Min	Тур	Max	Units	Comments	
		0.50	180	230	325			
Transmit differential	TxDfPP	1.00	350	440	700	mVpp diff	AVDD1P8_2 terminated to 1.8V;	
signal level	IXDIFF	1.33	425	580	900	ilivpp alli	Rload = 50Ω	
		2.00	600	770	1050			
	X(: \/ \/	0.50	1300	160 0	1940			
Transmit common mode voltage range		1.00	1000	140 0	1870	mV	AVDD1P8_2 terminated to 1.8V; RLoad = 50 ohms; FIR coeffs = 0	
Thous voltage range		1.33	800	130 0	1825			
		2.00	700	1100	1760			
Differential signal rise/fall time	Diff rise/ fall	1.00	60	96	132	ps	Rload = 50 Ω; 20% to 80% max	
Refer to Section 5.	6.2.2, <i>Transi</i>	mitter Programma	able Driv	er-Pow	er Leve	ls, on page	100.	

Table 41 SerDes Transmit Characteristics (Sheet 2 of 2)

Parameter	Symbol	Normalized Power Drive Settings ¹	Min	Тур	Max	Units	Comments
Differential output impedance	TxDiffZ	-	60	105	150	Ω diff	Nominal value = 100 Ω differential
Receiver differential voltage requirement at center of receive eye	RxDiffV	-	200	-	ı	mVp-p diff	_
Receiver common mode voltage range	RxCMV	-	900	127 5	1650	mV	_
Receiver termination impedance	RxZ	-	40	51	62.5	Ω	_
Signal detect level	RxSigDet	-	50	125	200	mVp- pdiff	_
1. Refer to Section 5.0	6.2.2. <i>Transı</i>	mitter Programma	able Driv	er-Pow	er Leve	s. on page	100.

Table 42 SerDes Receive Characteristics

Parameter	Symbol	Normalized Power Drive Settings	Min	Тур	Max	Units	Comments
Receiver differential voltage requirement at center of receive eye	RxDiffV	-	200	-	-	mVp-p diff	-
Receiver common mode voltage range	RxCMV	-	900	1275	1650	mV	_
Receiver termination impedance	RxZ	-	40	51	62.5	Ω	-
Signal detect level	RxSigDet	-	50	125	200	mVp-pdiff	_

7.1.1 Undershoot / Overshoot Specifications

The overshoot figures given in this section represent the maximum voltage that can be applied without affecting the reliability of the device (see Table 43).

Caution: If these limits are exceeded, damage to the device will occur.

Table 43 Undershoot / Overshoot Limits

Pin Type	Undershoot	Overshoot
2.5 V CMOS	-0.60 V	3.9 V
3.3 V LVTTL	-0.60 V	3.9 V

7.1.2 RGMII Electrical Characteristics

The RGMII signals (including MDIO/MDC) are based on 2.5V CMOS interface voltages, as defined by JEDEC EIA/JESD8-5 (see Table 44).

Table 44 RGMII Power

Symbol	Parameter	Conditions	Min	Max	Units
Voн	Output High Voltage	Iон = -1.0 мА; V _{DD} = Min	2.0	VDD +.3	V
Vol	Output Low Voltage	IOL = 1.0 MA; V _{DD} = MIN	GND3	0.40	V
VIH	Input High Voltage	VIH > VIH_MIN; V _{DD} = MIN	-	VDD +.3	V
VIL	Input Low Voltage	VIL < VIL_MAX; V _{DD} = MIN	-	.70	V
lін	Input High Current	V_{DD} = Max; V_{IN} = 2.5 V	-	15	μΑ
lıL	Input Low Current	V_{DD} = Max; V_{IN} = 0.4 V	-15	-	μΑ

7.2 SPI3 AC Timing Specifications

7.2.1 Receive Interface Timing

Figure 35 and Table 45 illustrate and provide SPI3 receive interface timing information.

Figure 35 SPI3 Receive Interface Timing

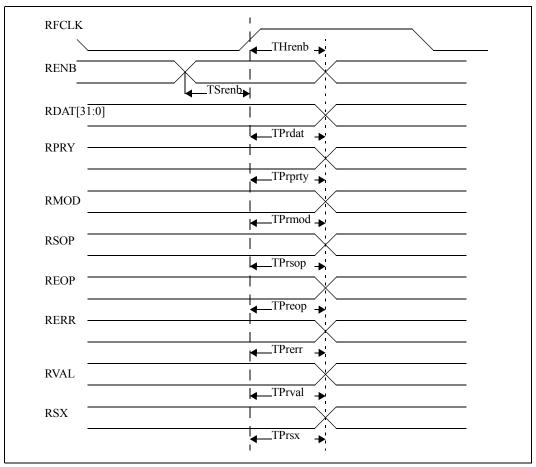


Table 45 SPI3 Receive Interface Signal Parameters (Sheet 1 of 2)

Symbol	Parameter	Min	Max	Units
-	RFCLK frequency	90	133	MHz
_	RFCLK duty cycle	45	55	%
Tsrenb	RENB setup time to RFCLK	1.8	_	ns
Threnb	RENB hold time to RFCLK	0.5	_	ns
TPrdat	RFCLK High to RDAT valid	1.5	3.7	ns
TPrprty	RFCLK High to RPRTY valid	1.5	3.7	ns
TPrsop	RFCLK High to RSOP valid	1.5	3.7	ns

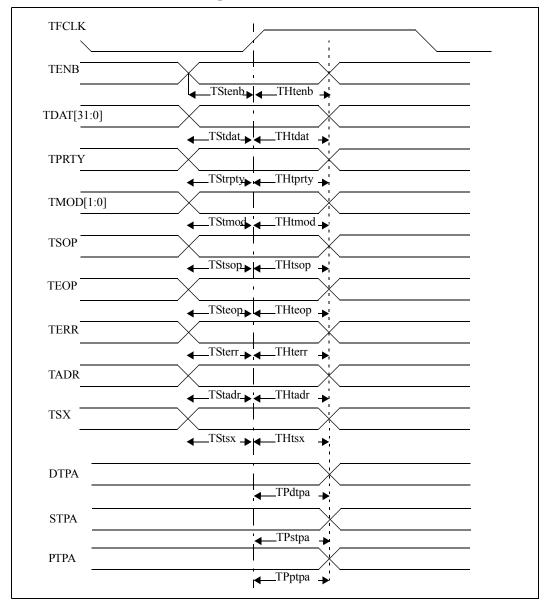
Notes: Receive I/O Timing

- 1. When a setup time is specified between an input and a clock, the setup time is the time in nanoseconds from the 1.4-volt point of the input to the 1.4-volt point of the clock.
- 2. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4-volt point of the clock to the 1.4-volt point of the input.
- 3. Output propagation time is the time in nanoseconds from the 1.4-volt point of the reference signal to the 1.4-volt point of the output.
- Maximum propagation delays are measured with a 30 pF load when operating OIF-SPI3 standard 104 MHz. Over-clocked rates of 125 MHz or higher are measured using a load of 20 pF.

Table 45 SPI3 Receive Interface Signal Parameters (Sheet 2 of 2)

Symbol	Parameter	Min	Max	Units
TPreop	RFCLK High to REOP valid	1.5	3.7	ns
TPrmod	RFCLK High to RMOD valid	1.5	3.7	ns
TPrerr	RFCLK High to RERR valid	1.5	3.7	ns
TPrval	RFCLK High to RVAL valid	1.5	3.7	ns
TPrsx	RFCLK High to RSX valid	1.5	3.7	ns

Notes: Receive I/O Timing


- 1. When a setup time is specified between an input and a clock, the setup time is the time in nanoseconds from the 1.4-volt point of the input to the 1.4-volt point of the clock.
- 2. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4-volt point of the clock to the 1.4-volt point of the input.
- 3. Output propagation time is the time in nanoseconds from the 1.4-volt point of the reference signal to the 1.4-volt point of the output.
- Maximum propagation delays are measured with a 30 pF load when operating OIF-SPI3 standard 104 MHz. Over-clocked rates of 125 MHz or higher are measured using a load of 20 pF.

7.2.2 Transmit Interface Timing

Figure 36 and Table 46 illustrate and provide SPI3 transmit interface timing information.

Figure 36 SPI3 Transmit Interface Timing

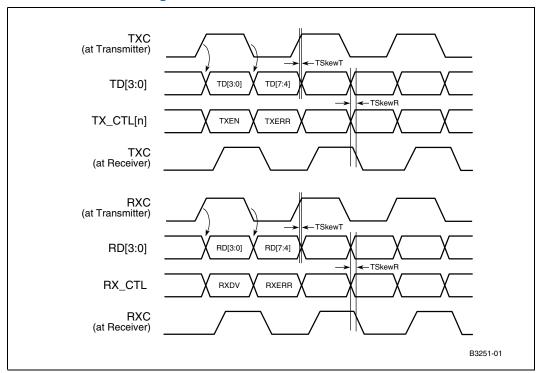
Table 46 **SPI3 Transmit Interface Signal Parameters**

Symbol	Parameter	Min	Max	Units
-	TFCLK frequency	-	133	MHz
-	TFCLK duty cycle	45	55	%
TStenb	TENB setup time to TFCLK	1.8	_	ns
THtenb	TENB hold time to TFCLK	0.5	_	ns
TStdat	TDAT[31:0] setup time to TFCLK	1.8	_	ns
THtdat	TDAT[31:0} hold time to TFCLK	0.5	_	ns
TStprty	TRPTY setup time to TFCLK	1.8	_	ns
THtprty	TPRTY hold time to TFCLK	0.5	-	ns
TStsop	TSOP setup time to TFCLK	1.8	-	ns
THtsop	TSOP hold time to TFCLK	0.5	-	ns
TSteop	TEOP setup time to TFCLK	1.8	-	ns
THteop	TEOP hold time to TFCLK	0.5	-	ns
TStmod	TMOD setup time to TFCLK	1.8	-	ns
THtmod	TMOD hold time to TFCLK	0.5	-	ns
TSterr	TERR setup time to TFCLK	1.8	-	ns
THterr	TERR hold time to TFCLK	0.5	-	ns
TStsx	TSX setup time to TFCLK	1.8	-	ns
THtsx	TSX hold time to TFCLK	0.5	-	ns
TStadr	TADR setup time to TFCLK	1.8	_	ns
THtadr	TADR hold time to TFCLK	0.5	_	ns
TPdtpa	TFCLK High to DTPA valid	1.5	3.7	ns
TPstpa	TFCLK High to STPA valid	1.5	3.7	ns
TPptpa	TFCLK High to PTPA valid	1.5	3.7	ns

Notes: Transmit I/O Timing:

- 1. When a setup time is specified between an input and a clock, the setup time is the time in nanoseconds from the 1.4 V point of the input to the 1.4-volt point of the clock.

 2. When a hold time is specified between an input and clock, the hold time is the time in nanoseconds from
- the 1.4 V point of the clock to the 1.4-volt point of the input.


 Output propagation delay time is the time in nanoseconds from the 1.4 V point of the reference signal to the 1.4 V point of the output.

7.3 RGMII AC Timing Specification

Figure 37 and Table 47 provide RGMII interface timing parameters.

Figure 37 RGMII Interface Timing

Table 47 RGMII Interface Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
TskewT	Data-to-Clock Output Skew (at Transmitter)	-500	0	500	ps
TskewR	Data-to-Clock Input Skew (at Receiver) ¹	1	_	2.8	ns
Тсус	Clock Cycle Duration ²	7.2	8	8.8	ns
Duty_T	Duty Cycle for Gigabit ²	45	50	55	%
Duty_G	Duty Cycle for 10/100T ³	40	50	60	%
Tr/Tf	Rise/Fall Time (20–80%)	-	_	.75	ns

^{1.} This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

^{2.} For 10 Mbps and 100 Mbps Tcyc scales to 400 ns +/- 40 ns and 40 ns +/- 4 ns respectively.

Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain, as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

7.4 GMII AC Timing Specification

7.4.1 1000 Base-T Operation

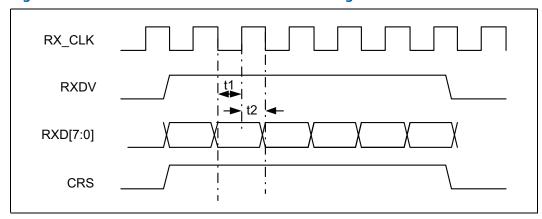
Figure 38 and Figure 39 and Table 48 and Table 49 provide GMII AC timing specifications.

7.4.1.1 1000 BASE-T Transmit Interface

Figure 38 1000BASE-T Transmit Interface Timing

Table 48 GMII 1000BASE-T Transmit Signal Parameters

Symbol	Parameter	Min	Typ ¹	Max	Unit ²
t1	TXD[7:0], TXEN, TXER Set-up to TXC High	2.5	_	_	ns
t2	TXD[7:0], TXEN, TXER Hold from TXC High	0.5	_	_	ns
t3	TXEN sampled to CRS asserted	_	_	16	BT
t4	TXEN sampled to CRS de-asserted	_	1	16	BT


Typical values are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Bit Time (BT) is the duration of one bit as transferred to/from the PHY and is the reciprocal of bit rate. BT for 1000BASE-T = 10⁻⁹ or 1 ns.

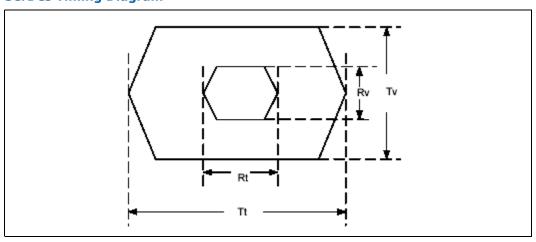
7.4.1.2 **1000BASE-T Receive Interface**

Figure 39 **1000BASE-T Receive Interface Timing**

Table 49 **GMII 1000BASE-T Receive Signal Parameters**

Symbol	Parameter	Min	Typ ¹	Max	Unit ²
t1	RXD[7:0], RX_DV, RXER Setup to Rx_CLK High	2.0	_	_	ns
t2	RXD[7:0], RX_DV, RXER Hold after Rx_CLK High	0.0	_	_	ns

Typical values are at 25°C and are for design aid only; not guaranteed and not subject to production


testing.

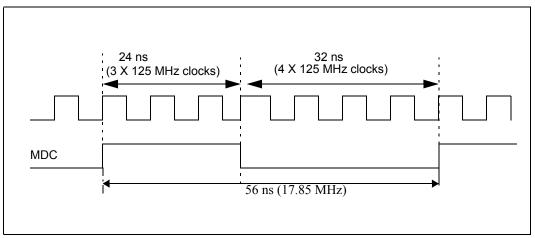
2. Bit Time (BT) is the duration of one bit as transferred to/from the PHY and is the reciprocal of bit rate. BT for $1000BASE-T = 10^{-9}$ or 1 ns.

7.5 SerDes AC Timing Specification

Figure 40 SerDes Timing Diagram

Table 50 SerDes Timing Parameters

Symbol	Parameter	Min	Max	Units
Tt	Transmit eye width	800	-	pS
Rt	Receiver eye width	280	-	pS
Tv	Transmit amplitude	1000	-	mV
Rv	Receiver amplitude	200	_	mV



7.6 MDIO AC Timing Specification

The MDIO Interface on the IXF1104 MAC can operate in two modes – low-speed and high-speed. In low-speed mode, the MDC clock signal operates at a frequency of 2.5 MHz. In high-speed mode, the MDC clock signal operates at a frequency of 18 MHz. (See Figure 41 through Figure 44 and Table 51.)

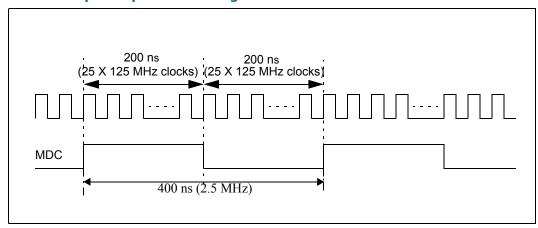

7.6.1 MDC High-Speed Operation Timing

Figure 41 MDC High-Speed Operation Timing

7.6.2 MDC Low-Speed Operation Timing

Figure 42 MDC Low-Speed Operation Timing

7.6.3 MDIO AC Timing

Figure 43 MDIO Write Timing Diagram

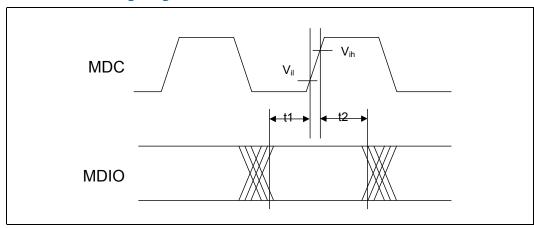
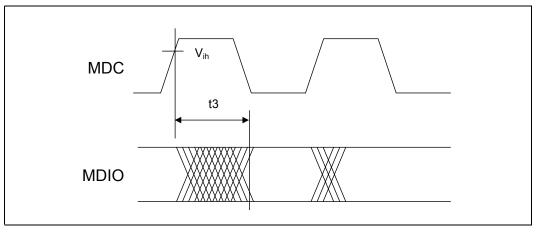



Figure 44 MDIO Read Timing Diagram

Table 51 MDIO Timing Parameters

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
MDIO Setup before MDC.	t1	10	_	_	ns	MDC = 17.8 MHz
MIDIO Setup before MIDO.		10	_	-	ns	MDC = 2.5 MHz
MDIO Hold after MDC.	t2	10	_	_	ns	MDC = 17.8 MHz
WIDIO FIOID AILEI WIDO.		10	_	-	ns	MDC = 2.5 MHz
MDC to MDIO Output delay	t3	0	_	42	ns	MDC = 17.8 MHz
WIDO to WIDIO Output delay		0	_	300	ns	MDC = 2.5 MHz

Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

7.7 Optical Module and I²C AC Timing Specification

7.7.1 I²C Interface Timing

Figure 45 and Figure 46 illustrate bus timing and write cycle, and Table 52 shows the I²C Interface AC timing characteristics.

Figure 45 Bus Timing Diagram

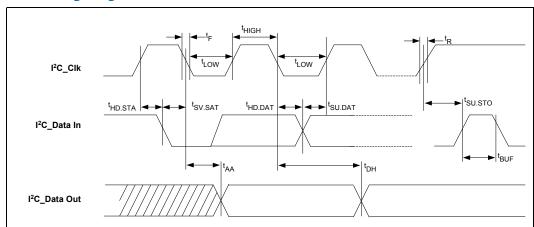
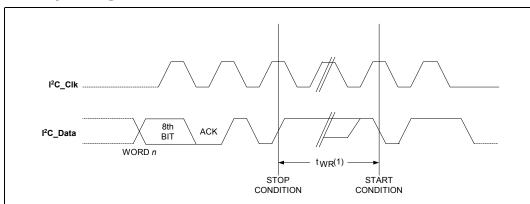
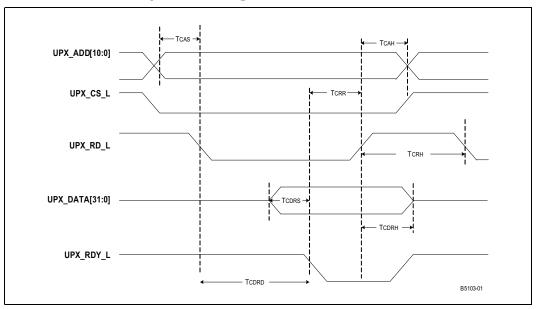



Figure 46 Write Cycle Diagram

Table 52 I²C AC Timing Characteristics (Sheet 1 of 2)

Symbol	Parameter	Min	Max	Units
f _{SCL}	Clock frequency	-	100	kHz
t _{LOW}	Clock pulse width low	4.7		μs
t _{HIGH}	Clock pulse width high	4.0		μs
t _l	Noise suppression		100	μs
t _{AA}	Clock low to data valid out	0.1	4.5	μs
t _{BUF}	Time the bus must be free before a new transmission starts	4.7	-	μs
t _{HD.STA}	Start hold time	4.0	-	μs
t _{SU.STA}	Start setup time	4.7	_	μs

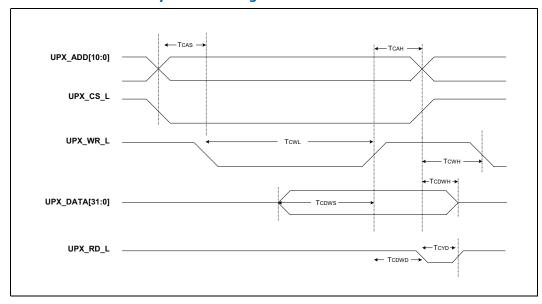
Table 52 I²C AC Timing Characteristics (Sheet 2 of 2)


Symbol	Parameter	Min	Max	Units
t _{HD.DAT}	Data in hold time	0	_	μs
t _{SU.DAT}	Data in setup time	200	-	ns
t _R	Inputs rise time	-	1.0	μs
t _F	Inputs fall time	-	300	ns
t _{SU.STO}	Stop setup time	4.7	-	μs
t _{DH}	Data out hold time	100	-	ns
t _{WR}	Write cycle time	_	10	ms

7.8 CPU AC Timing Specification

7.8.1 CPU Interface Read Cycle AC Timing

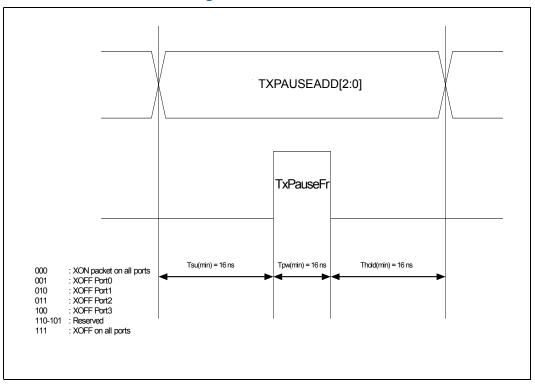
Figure 47, Figure 48, and Table 53 illustrate the CPU interface read and write cycle AC timing.


Figure 47 CPU Interface Read Cycle AC Timing

7.8.2 CPU Interface Write Cycle AC Timing

Figure 48 CPU Interface Write Cycle AC Timing

Table 53 CPU Interface AC Signal Parameters

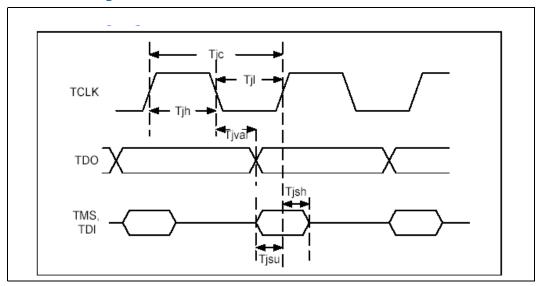

Symbol	Parameter	Min	Max
Tcas	Address, chip select setup time	5 ns	-
Tcah	Address, chip select hold time	10 ns	-
Tcrr	Ready assertion to read de-assertion	10 ns	-
Tcrh	Read High width	24 ns	-
Tcdrs	Read data setup time to ready assertion	10 ns	-
Tcdrh	Read data hold time after read de-assertion	8 ns	-
Tcdrd	Read data driving delay	24 ns	355 ns
Tcwl	Write assertion width	40 ns	-
Tcwh	Ready assertion to write assertion	16 ns	-
Tcdws	Write data setup to write de-assertion	10 ns	_
Tcdwh	Write data hold time after ready assertion	5 ns	_
Tcdwd	Write data sampling delay	8 ns	40 ns
Tcyd	Ready width in write cycle	24 ns	40 ns

7.9 Transmit Pause Control AC Timing Specification

Figure 49 and Table 54 show the pause control AC timing specifications. The Pause Control interface operates as an asynchronous interface relative to the main system clock (CLK125). There is, however, a relationship between the TXPAUSEADD bus and the strobe signal (TXPAUSEFR).

Figure 49 Pause Control Interface Timing

Table 54 Transmit Pause Control Interface Timing Parameters

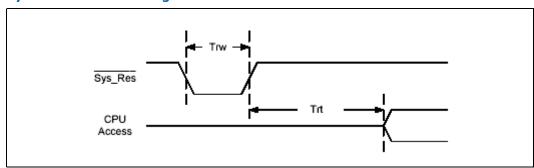

Symbol	Parameter	Min	Max	Units
Tsu	TXPAUSEADD stable prior to TXPAUSEFR High	16	-	ns
Tpw	TXPAUSEFR pulse width	16	-	ns
Thold	TXPAUSEADD stable after TXPAUSEFR High	16	-	ns

7.10 JTAG AC Timing Specification

Figure 50 and Table 55 provide the JTAG AC timing specifications.

Figure 50 JTAG AC Timing

Table 55 JTAG AC Timing Parameters

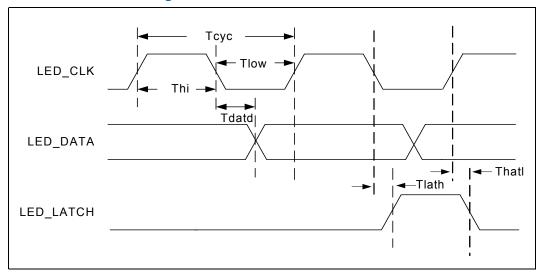

Symbol	Parameter	Min	Max	Units
Tjc	TCLK cycle time	90	_	ns
Tjh	TCLK High time	0.4 x Tjc	0.6 x Tjc	ns
Tjl	TCLK low time	0.4 x Tjc	0.6 x Tjc	ns
Tjval	TCLK falling edge to TDO valid	_	25	ns
Tjsu	TMS/TDI setup to TCLK	20	_	ns
Tjsh	TMS/TDI hold from TCLK	5	_	ns

7.11 System AC Timing Specification

Figure 51 and Table 56 illustrate the system reset AC timing specifications.

Figure 51 System Reset AC Timing

Table 56 System Reset AC Timing Parameters


Symbol	Parameter	Min	Max	Units
Trw	Reset pulse width	1.0	1	μs
Trt	Reset recovery time	200	_	μs

7.12 LED AC Timing Specification

Figure 52 and Table 57 provide the LED AC timing specifications.

Figure 52 LED AC Interface Timing

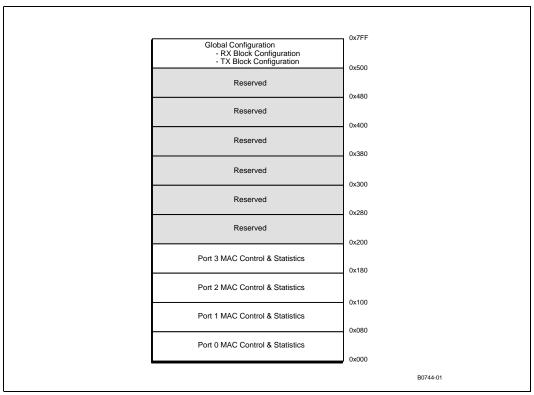
Table 57 LED Interface AC Timing Parameters

Symbol	Parameter	Min	Max	Units
Тсус	LED_CLK cycle time	1.36	1.40	ms
Thi	LED_CLK High time	680	700	μs
Tlow	LED_CLK low time	680	700	μs
Tdatd	LED_CLK falling edge to LED_DATA valid	_	5	ns
Tlath	LED_CLK falling edge to LED_LATCH rising edge	_	5	ns
Tlatl	LED_CLK rising edge to LED_LATCH falling edge	_	5	ns

8.0 Register Set

The registers shown in this section provide access for configuration, alarm monitoring, and control of the chip. Table 58, *MAC Control Registers* (\$ Port Index + Offset), on page 149 through Table 68, Optical Module Registers (\$ 0x799 - 0x79F), on page 155 provide register map details. The registers are listed by ascending address in the table.

8.1 Document Structure

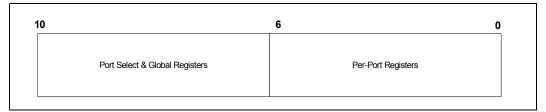

The following sections are structured to provide a general overview of the register map. Later sections provide detailed descriptions of each register segment or bit.

All registers are accessed and addressed as 32-bit doublewords. When accessed using 8or 16-bit accesses, the CPU interface packs or unpacks the partial accesses into a 32-bit register value.

8.2 Graphical Representation

Figure 53 represents an overview of the IXF1104 MAC global control status registers that are used to configure or report on all ports. All register locations shown in Figure 53 represent a 32-bit double word.

Figure 53 Memory Overview Diagram


8.3 Per Port Registers

Section 8.4 covers all of the registers that are replicated in each port of the IXF1104 MAC. These registers perform an identical function in each port.

The address vector for the IXF1104 MAC is 11 bits wide. This allows for 7 bits of port-specific access and a 4-bit vector to address each port and all global registers. The address format is shown in Figure 54.

Figure 54 Register Overview Diagram

8.4 Register Map

Table 58 through Table 68, *Optical Module Registers* (\$ 0x799 - 0x79F), on page 155 present the IXF1104 MAC memory map details. Global control and status registers are used to configure or report on all ports, and some registers are replicated on a per-port basis.

Note: All IXF1104 MAC registers are 32 bits.

Table 58 MAC Control Registers (\$ Port Index + Offset) (Sheet 1 of 2)

Register	Bit Size	Mode ¹	Ref Page	Offset
Station Address (\$ Port_Index +0x00 - +0x01) Low	32	R/W	page 155	0x00
Station Address (\$ Port_Index +0x00 - +0x01) High	32	R/W	page 155	0x01
Desired Duplex (\$ Port_Index + 0x02)	32	R/W	page 156	0x02
FD FC Type (\$ Port_Index + 0x03)	32	R/W	page 156	0x03
Reserved	32	R	_	0x04
Collision Distance (\$ Port_Index + 0x05)	32	R/W	page 156	0x05
Collision Threshold (\$ Port_Index + 0x06)	32	R/W	page 156	0x06
FC TX Timer Value (\$ Port_Index + 0x07)	32	R/W	page 157	0x07
FD FC Address (\$ Port_Index + 0x08 - + 0x09) FDFCAddressLow	32	R/W	page 157	0x08
FD FC Address (\$ Port_Index + 0x08 - + 0x09) FDFCAddressHigh	32	R/W	page 157	0x09
IPG Receive Time 1 (\$ Port_Index + 0x0A)	32	R/W	page 158	0x0A
IPG Receive Time 2 (\$ Port_Index + 0x0B)	32	R/W	page 158	0x0B
IPG Transmit Time (\$ Port_Index + 0x0C)	32	R/W	page 158	0x0C
Reserved	-	RO	_	0x0D
Pause Threshold (\$ Port_Index + 0x0E)	32	R/W	page 158	0x0E
Max Frame Size (Addr: Port_Index + 0x0F)	32	R/W	page 159	0x0F
MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10)	32	R/W	page 159	0x10
Flush TX (\$ Port_Index + 0x11)	32	R/W	page 159	0x11
FC Enable (\$ Port_Index + 0x12)	32	R/W	page 160	0x12
FC Back Pressure Length (\$ Port_Index + 0x13)	32	R/W	page 160	0x13
Short Runts Threshold (\$ Port_Index + 0x14)	32	R/W	page 161	0x14

Table 58 MAC Control Registers (\$ Port Index + Offset) (Sheet 2 of 2)

Register	Bit Size	Mode ¹	Ref Page	Offset
Discard Unknown Control Frame (\$ Port_Index + 0x15)	32	R/W	page 161	0x15
RX Config Word (\$ Port_Index + 0x16)	32	RO	page 161	0x16
TX Config Word (\$ Port_Index + 0x17)	32	R/W	page 162	0x17
Diverse Config Write (\$ Port_Index + 0x18)	32	R/W	page 163	0x18
RX Packet Filter Control (\$ Port_Index + 0x19)	32	R/W	page 164	0x19
Port Multicast Address (\$ Port_Index +0x1A - +0x1B) PortMulticastAddressLow	32	R/W	page 165	0x1A
Port Multicast Address (\$ Port_Index +0x1A - +0x1B) PortMulticastAddressHigh	32	R/W	page 165	0x1B

Table 59 MAC RX Statistics Registers (\$ Port Index + Offset)

Register	Bit Size	Mode ¹	Ref Page	Offset
RxOctetsTotalOK	32	R	page 166	0x20
RxOctetsBAD	32	R	page 166	0x21
RxUCPckts	32	R	page 166	0x22
RxMCPkts	32	R	page 166	0x23
RxBCPkts	32	R	page 166	0x24
RxPkts64Octets	32	R	page 166	0x25
RxPkts65to127Octets	32	R	page 166	0x26
RxPkts128to255Octets	32	R	page 166	0x27
RxPkts256to511Octets	32	R	page 166	0x28
RxPkts512to1023Octets	32	R	page 166	0x29
RxPkts1024to1518Octets	32	R	page 166	0x2A
RxPkts1519toMaxOctets	32	R	page 166	0x2B
RxFCSErrors	32	R	page 166	0x2C
RxTagged	32	R	page 166	0x2D
RxDataError	32	R	page 166	0x2E
RxAlign Errors	32	R	page 166	0x2F
RxLongErrors	32	R	page 166	0x30
RxJabberErrors	32	R	page 166	0x31
PauseMacControlReceivedCounter	32	R	page 166	0x32
RxUnknownMacControlFrameCounter	32	R	page 166	0x33
RxVeryLongErrors	32	R	page 166	0x34
RxRuntErrors	32	R	page 166	0x35
RxShortErrors	32	R	page 166	0x36
RxCarrierExtendError	32	R	page 166	0x37
RxSequenceErrors	32	R	page 166	0x38
RxSymbolErrors	32	R	page 166	0x39

Table 60 MAC TX Statistics Registers (\$ Port Index + Offset)

Register	Bit Size	Mode ¹	Ref Page	Offset
OctetsTransmittedOK	32	R	page 170	0x40
OctetsTransmittedBad	32	R	page 170	0x41
TxUCPkts	32	R	page 170	0x42
TxMCPkts	32	R	page 170	0x43
TxBCPkts	32	R	page 170	0x44
TxPkts64Octets	32	R	page 170	0x45
TxPkts65to127Octets	32	R	page 170	0x46
TxPkts128to255Octets	32	R	page 170	0x47
TxPkts256to511Octets	32	R	page 170	0x48
TxPkts512to1023Octets	32	R	page 170	0x49
TxPkts1024to1518Octets	32	R	page 170	0x4A
TxPkts1519toMaxOctets	32	R	page 170	0x4B
TxDeferred	32	R	page 170	0x4C
TxTotalCollisions	32	R	page 170	0x4D
TxSingleCollisions	32	R	page 170	0x4E
TxMultipleCollisions	32	R	page 170	0x4F
TxLateCollisions	32	R	page 170	0x50
TxExcessiveCollisionErrors	32	R	page 170	0x51
TxExcessiveDeferralErrors	32	R	page 170	0x52
TxExcessiveLengthDrop	32	R	page 170	0x53
TxUnderrun	32	R	page 170	0x54
TxTagged	32	R	page 170	0x55
TxCRCError	32	R	page 170	0x56
TxPauseFrames	32	R	page 170	0x57
TxFlowControlCollisionsSend	32	R	page 170	0x58

Table 61 PHY Autoscan Registers (\$ Port Index + Offset) (Sheet 1 of 2)

Register	Bit Size	Mode ¹	Ref Page	Offset
PHY Control (\$ Port Index + 0x60)	32	RO	page 173	0x60
PHY Status (\$ Port Index + 0x61)	32	RO	page 174	0x61
PHY Identification 1 (\$ Port Index + 0x62)	32	RO	page 175	0x62
PHY Identification 2 (\$ Port Index + 0x63)	32	RO	page 175	0x63
Auto-Negotiation Advertisement (\$ Port Index + 0x64)	32	RO	page 176	0x64
Auto-Negotiation Link Partner Base Page Ability (\$ Port Index + 0x65)	32	RO	page 177	0x65

Table 61 PHY Autoscan Registers (\$ Port Index + Offset) (Sheet 2 of 2)

Register	Bit Size	Mode ¹	Ref Page	Offset
Auto-Negotiation Expansion (\$ Port Index + 0x66)	32	RO	page 178	0x66
Auto-Negotiation Next Page Transmit (\$ Port Index + 0x67)	32	RO	page 179	0x67
Reserved	32	RO	_	0x68 - 0x6F

Table 62 Global Status and Configuration Registers (\$ 0x500 - 0X50C)

Register	Bit Size	Mode ¹	Ref Page	Address
Port Enable (\$0x500)	32	R/W	page 180	0x500
Interface Mode (\$0x501)	32	R/W	page 180	0x501
Link LED Enable (\$0x502)	32	R/W	page 181	0x502
Reserved	32	RO	_	0x503 - 0x504
MAC Soft Reset (\$0x505)	32	R/W	page 181	0x505
MDIO Soft Reset (\$0x506)	32	R/W	page 182	0x506
Reserved	32	RO	_	0x507
CPU Interface (\$0x508)	32	R/W	page 182	0x508
LED Control (\$0x509)	32	R/W	page 182	0x509
LED Flash Rate (\$0x50A)	32	R/W	page 183	0x50A
LED Fault Disable (\$0x50B)	32	R/W	page 183	0x50B
JTAG ID (\$0x50C)	32	R	page 184	0x50C

Table 63 RX FIFO Registers (\$ 0x580 - 0x5BF) (Sheet 1 of 2)

Register	Bit Size	Mode ¹	Ref Page	Address
RX FIFO High Watermark Port 0 (\$0x580)	32	R/W	page 184	0x580
RX FIFO High Watermark Port 1 (\$0x581)	32	R/W	page 185	0x581
RX FIFO High Watermark Port 2 (\$0x582)	32	R/W	page 185	0x582
RX FIFO High Watermark Port 3 (\$0x583)	32	R/W	page 185	0x583
Reserved	32	RO	-	0x584 - 0x589
RX FIFO Low Watermark Port 0 (\$0x58A)	32	R/W	page 186	0x58A
RX FIFO Low Watermark Port 1 (\$0x58B)	32	R/W	page 186	0x58B
RX FIFO Low Watermark Port 2 (\$0x58C)	32	R/W	page 186	0x58C
RX FIFO Low Watermark Port 3 (\$0x58D)	32	R/W	page 187	0x58D
Reserved	32	RO	-	0x58E - 0x593
RX FIFO Overflow Frame Drop Counter Port 0	32	R	page 187	0x594
RX FIFO Overflow Frame Drop Counter Port 1	32	R	page 187	0x595
RX FIFO Overflow Frame Drop Counter Port 2	32	R	page 187	0x596
RX FIFO Overflow Frame Drop Counter Port 3	32	R	page 187	0x597
Reserved	32	RO	-	0x598 - 0x59D
RX FIFO Port Reset (\$0x59E)	32	R/W	page 187	0x59E

Table 63 RX FIFO Registers (\$ 0x580 - 0x5BF) (Sheet 2 of 2)

Register	Bit Size	Mode ¹	Ref Page	Address
RX FIFO Errored Frame Drop Enable (\$0x59F)	32	R/W	page 188	0x59F
RX FIFO Overflow Event (\$0x5A0)	32	R	page 189	0x5A0
Reserved	32	R	-	0x5A1 - 0x5A5
RX FIFO Errored Frame Drop Counter Port 0	32	R	page 189	0x5A2
RX FIFO Errored Frame Drop Counter Port 1	32	R	page 189	0x5A3
RX FIFO Errored Frame Drop Counter Port 2	32	R	page 189	0x5A4
RX FIFO Errored Frame Drop Counter Port 3	32	R	page 189	0x5A5
Reserved	32	RO	-	0x5A6 - 0x5B1
RX FIFO SPI3 Loopback Enable for Ports 0 - 3 (\$0x5B2)	32	R/W	page 190	0x5B2
RX FIFO Padding and CRC Strip Enable (\$0x5B3)	32	R/W	page 191	0x5B3
Reserved	32	R	-	0x5B4 - 0x5B7
RX FIFO Transfer Threshold Port 0 (\$0x5B8)	32	R/W	page 191	0x5B8
RX FIFO Transfer Threshold Port 1 (\$0x5B9)	32	R/W	page 191	0x5B9
RX FIFO Transfer Threshold Port 2 (\$0x5BA)	32	R/W	page 192	0x5BA
RX FIFO Transfer Threshold Port 3 (\$0x5BB)	32	R/W	page 192	0x5BB
Reserved	32	R	-	0x5BC - 0x5BF

Table 64 TX FIFO Registers (\$ 0x600 - 0x63E) (Sheet 1 of 2)

Register	Bit Size	Mode ¹	Ref Page	Address
TX FIFO High Watermark Port 0	32	R/W	page 193	0x600
TX FIFO High Watermark Port 1	32	R/W	page 193	0x601
TX FIFO High Watermark Port 2	32	R/W	page 193	0x602
TX FIFO High Watermark Port 3	32	R/W	page 193	0x603
Reserved	32	RO	-	0x604 - 0x609
TX FIFO Low Watermark Port 0	32	R/W	page 195	0x60A
TX FIFO Low Watermark Port 1	32	R/W	page 195	0x60B
TX FIFO Low Watermark Port 2	32	R/W	page 195	0x60C
TX FIFO Low Watermark Port 3	32	R/W	page 195	0x60D
Reserved	32	RO	-	0x60E - 0x613
TX FIFO MAC Threshold Port 0	32	R/W	page 196	0x614
TX FIFO MAC Threshold Port 1	32	R/W	page 196	0x615
TX FIFO MAC Threshold Port 2	32	R/W	page 196	0x616
TX FIFO MAC Threshold Port 3	32	R/W	page 196	0x617
Reserved	_	RO	_	0x618 - 0x61D
TX FIFO Overflow/Underflow Event/Out of Sequence	32	R	page 197	0x61E
Loop RX Data to TX FIFO	32	R/W	page 198	0x61F
TX FIFO Port Reset	32	R/W	page 198	0x620
TX FIFO Overflow Frame Drop Counter Port 0	32	R	page 199	0x621

Table 64 TX FIFO Registers (\$ 0x600 - 0x63E) (Sheet 2 of 2)

Register	Bit Size	Mode ¹	Ref Page	Address
TX FIFO Overflow Frame Drop Counter Port 1	32	R	page 199	0x622
TX FIFO Overflow Frame Drop Counter Port 2	32	R	page 199	0x623
TX FIFO Overflow Frame Drop Counter Port 3	32	R	page 199	0x624
TX FIFO Errored Frame Drop Counter Port 0	32	R	page 200	0x625
TX FIFO Errored Frame Drop Counter Port 1	32	R	page 200	0x626
TX FIFO Errored Frame Drop Counter Port 2	32	R	page 200	0x627
TX FIFO Errored Frame Drop Counter Port 3	32	R	page 200	0x628
Reserved	32	R	_	0x629 - 0x62C
TX FIFO Occupancy Counter for Port 0	32	R	page 200	0x62D
TX FIFO Occupancy Counter for Port 1	32	R	page 200	0x62E
TX FIFO Occupancy Counter for Port 2	32	R	page 200	0x62F
TX FIFO Occupancy Counter for Port 3	32	R	page 200	0x630
Reserved	32	R	-	0x631 - 0x63E

Table 65 MDIO Registers (\$ 0x680 - 0x683)

Register	Bit Size	Mode ¹	Ref Page	Address
MDIO Single Command (\$0x680)	32	R/W	page 201	0x680
MDIO Single Read and Write Data (\$0x681)	32	R/W	page 202	0x681
Autoscan PHY Address Enable (\$0x682)	32	R/W	page 202	0x682
MDIO Control (\$0x683)	32	R/W	page 202	0x683

Table 66 SPI3 Registers (\$ 0x700 - 0x716)

Register	Bit Size	Mode ¹	Ref Page	Address
SPI3 Transmit and Global Configuration (\$0x700)	32	R/W	page 203	0x700
SPI3 Receive Configuration (\$0x701)	32	R/W	page 205	0x701
Reserved	32	R	-	0x702 - 0x709
Address Parity Error Packet Drop Counter (\$0x70A)	32	R	page 208	0x70A
Reserved	32	R	_	0x70B - 0x716

Table 67 SerDes Registers (\$ 0x780 - 0x798) (Sheet 1 of 2)

Register	Bit Size	Mode ¹	Ref Page	Address
Reserved	32	RO	_	0x780 - 0x783
TX Driver Power Level Ports 0 - 3 (\$0x784)	32	R/W	page 208	0x784
Reserved	32	RO	_	0x785 - 0x786
TX and RX Power-Down (\$0x787)	32	R/W	page 209	0x787
Reserved	32	RO	-	0x788 - 0x792

Table 67 SerDes Registers (\$ 0x780 - 0x798) (Sheet 2 of 2)

Register	Bit Size	Mode ¹	Ref Page	Address
RX Signal Detect Level Ports 0 - 3 (\$0x793)	32	R/W	page 209	0x793
Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794)	32	R/W	page 210	0x794
Reserved	32	RO	1	0x795 - 0x798

Table 68 Optical Module Registers (\$ 0x799 - 0x79F)

Register	Bit Size	Mode ¹	Ref Page	Address
Optical Module Status Ports 0-3 (\$0x799)	32	R	page 211	0x799
Optical Module Control Ports 0 - 3 (\$0x79A)	32	R/W	page 211	0x79A
I ² C Control Ports 0 - 3 (\$0x79B)	32	R/W	page 212	0x79B
Reserved	32	RO	_	0x79C - 0x79E
I ² C Data Ports 0 - 3 (\$0x79F)	32	R/W	page 212	0x79F

8.4.1 MAC Control Registers

Table 69 through Table 91, Port Multicast Address (\$ Port_Index +0x1A - +0x1B), on page 165 provide details on the control and status registers associated with each MAC port. The register address is 'Port_index + 0x**', where the port index is set at any value from 0x0 through 0x5. All registers are 32-bit. The unused bits of the registers are read-only and are set permanently to zero.

Table 69 Station Address (\$ Port_Index +0x00 - +0x01)

Name	Description	Address	Type ¹	Default	
Station Address Low	Source MAC address bit 31-0. This address is inserted in the source address field when transmitting pause frames, and is also used to compare against unicast pause frames at the receiving side.	Port_Index + 0x00	R/W	0x0000000	
Station Address High	Source MAC address bit 47-32. This address is inserted in the source address field when transmitting pause frames, and is also used to compare against unicast pause frames at the receiving side. Bits 15:0 of this register are assigned to bits 47:32 of the station address.	Port_Index + 0x01	R/W	0x00000000	
1. RO = Read Only,	1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No				

clear; R/W/C = Read/Write, Clear on Write

Cortina Systems® IXF1104 4-Port Gigabit Ethernet Media Access Controller

Table 70 Desired Duplex (\$ Port_Index + 0x02)

Bit	Name	Description	Type ¹	Default
100 Mb	Register Description: Chooses between half-duplex and full-duplex operation in RGMII 100 Mbps or 10 Mbps mode only. This register must be set to the default value of 1 and must not be changed when operating in RGMII 1000 Mbps, GMII, or fiber mode.			
31:1	Reserved	Reserved	R	0x00000000
0	Duplex Select	0 = Half-duplex 1 = Full-duplex NOTE: Half-duplex operation applies only to 10/100 Mbps speed on copper media in RGMII mode only. Gigabit speed on either media requires full-duplex.	R/W	1
RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write				

Table 71 FD FC Type (\$ Port_Index + 0x03)

Name	Description	Address	Type ¹	Default	
FD FC Type	This value fills the Type field of the Transmitted Pause frames. Only bits 15:0 of this register are used.	Port_Index + 0x03	R/W	0x00008808	
1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write 1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write					

Table 72 Collision Distance (\$ Port_Index + 0x05)

Name	Description	Address	Type ¹	Default
Collision Distance	This is a 10-bit value that sets the limit for late collision. Collisions happening at byte times beyond the configured value are considered to be late collisions. (Only valid in half-duplex).	Port_Index + 0x05	R/W	0x00000043
1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write 1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write				

Table 73 Collision Threshold (\$ Port_Index + 0x06)

Name	Description	Address	Type ¹	Default	
Collision Threshold	This is a 4-bit value that sets the limit for excessive collisions. When the number of transmission attempts performed for a packet exceeds this value, it is considered to be an excessive collision and the frame is dropped. (Only valid in half-duplex).	Port_Index + 0x06	R/W	0x0000000F	
1 RO = Read O	1. RO = Read Only. No clear on Read: R = Read. Clear on Read: W = Write only: R/W = Read/Write. No				

clear; R/W/C = Read/Write, Clear on Write

Table 74 FC TX Timer Value (\$ Port_Index + 0x07)

Name	Description	Address	Type ¹	Default
FC TX Timer Value	The 16-bit pause length inserted in the flow control pause frame sent to the receiving station. The value is in 512-bit times.	Port_Index + 0x07	R/W	0x0000005E

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 75 FD FC Address (\$ Port_Index + 0x08 - + 0x09)

Name	Description	Address	Type ¹	Default
FD FC Address Low	The lowest 32 bits of the 48-bit globally assigned multicast pause frame destination address.	Port_Index + 0x08	R/W	0xC2000001
FD FC Address High	The highest 16 bits (47:32) of the globally assigned multicast pause frame destination address. The higher 16-bit address is derived from bits 15:0 of this register.	Port_Index + 0x09	R/W	0x00000180

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 76 IPG Receive Time 1 (\$ Port_Index + 0x0A)

Name	Description	Address	Type ¹	Default
IPG Receive Time 1	This timer is used during half-duplex operation when there is a packet waiting for transmission from the MAC. This timer starts after CRS is de-asserted. If CRS is asserted during this time, no transmission is initiated and the counter restarts once CRS is deasserted again.	Port_Index + 0x0A	R/W	0x00000008
	The value specified in this register is calculated as follows: (register_value * 8) = RXIPG1 in terms of bit times. Therefore, a default value of 8 gives the following: (8 * 8 = 64 bit times for the default).			

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 77 IPG Receive Time 2 (\$ Port_Index + 0x0B)

Name	Description	Address	Type ¹	Default
IPG Receive Time 2	This is only used in half-duplex operation. It starts counting at the same time as RXIPG1. Once RXIPG1 expires, a frame is transmitted when RXIPG2 expires regardless of the CRS value. If CRS is asserted before RXIPG1 expires, no transmission occurs and both RXIPG1 an RXIPG2 are reset once CRS is de-asserted again.	Port_Index + 0x0B	R/W	0x00000007
	The value specified in this register is calculated as follows: (register_value +5) * 8 = RXIPG2 in terms of bit times. Therefore, a default of 7 gives the following: (7+5) * 8 = 96 bit times for default.			

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 78 IPG Transmit Time (\$ Port_Index + 0x0C)

This is a 10-bit value configuring IPG time for back-to-back transmissions. The value specified in this register is calculated as follows: (register_value +4) * 8 = TXIPG in terms of bit times. Therefore, a default value of 8 gives the following: (8+4) * 8 = 96 bit times for the default. This is a 10-bit value configuring IPG time for back-to-back transmissions. Port_Index + 0x0C	Name	Description	Address	Type ¹	Default
IPG Transmit Time calculated as follows: (register_value +4) * 8 = TXIPG in terms of bit times. Therefore, a default value of 8 gives the following: Port_Index					
	IPG Transmit Time	calculated as follows: (register_value +4) * 8 = TXIPG in terms of bit times. Therefore, a default value of 8 gives the following:	_	R/W	0x00000008

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 79 Pause Threshold (\$ Port_Index + 0x0E)

Name	Description	Address	Type ¹	Default
Pause Threshold	When a pause frame has been sent, an internal timer checks when the next pause frame must be scheduled for transmission to keep the link partner in pause mode (this is required only if the flow control has to be extended for one more session). The pause threshold value is a 16-bit value that sets the time in terms of 512-bit quantum after the previous pause frame when the next pause frame has to be sent. This ensures that the link partner is kept in pause mode continuously.	Port_Index + 0x0E	R/W	0x0000002F

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 80 Max Frame Size (Addr: Port_Index + 0x0F)

Name	Description	Address	Type ¹	Default
	This is a 14-bit value configuring the maximum frame size the MAC can receive or transmit without activating any error counters, and without truncation.			
Max Frame Size	This value is excluding the 4-byte CRC in the transmit direction when CRC append is enabled in the MAC. Hence, this value has to be set four bytes less when CRC append is enabled in the MAC.	Port_Inde x + 0x0F	R/W	0x000005EE
	The maximum frame size is internally adjusted by +4 if the frame is VLAN tagged.			

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 81 MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10)

Bit	Name	Description	Type ¹	Default
Registor per por	d mode			
Changes to the data setting of this register must be made in conjunction with the <i>Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794)</i> to ensure a safe transition to a new operational mode. Changes to this register must follow a proper sequence. Refer to Section 6.1, <i>Change Port Mode Initialization Sequence</i> , on page 124 for the proper sequence for changing the port mode and speed.				
31:3	Reserved	Reserved	R	0x00000000
2:0	Port Mode	These bits are used to define the clock mode and the RGMII/GMII mode of operation. 000 =Reserved 001 = Reserved 010 = GMII 1000 Mbps operation 011 = Reserved 100 = RGMII 10 Mbps operation 101 = RGMII 100 Mbps operation 11x = RGMII 1000 Mbps operation	R/W	011
1. RO	= Read Only. No clear on	Read; R = Read, Clear on Read; W = Write only; R/	W = Read	/Write, No

clear; R/W/C = Read/Write, Clear on Write

Table 82 Flush TX (\$ Port_Index + 0x11)

Bit	Name	Description	Type ¹	Default	
Register Description: Used to flush all TX data. It is used if all traffic sent to a port should be stopped.					
31:1	Reserved	Reserved	R	0x00000000	
0 Flush TX This bit flushes all TX data and is used if all the traffic sent to a port should be stopped.					
1 RC) = Read Only No clear or	Read: R = Read Clear on Read: W = Write only: R/	W = Read	l/Write No	

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 83 FC Enable (\$ Port_Index + 0x12)

	Description	Type ¹	Default
er Description: Indicates	which flow control mode is used for the RX and TX N	IAC.	0x00000007
Reserved	Reserved	R	0x00000000
TX HDFC	When TX HDFC is enabled (half-duplex mode only), the MAC generates deliberate collisions on incoming packets when the RX FIFO occupancy crosses the High Watermark (flow control). 0 = Disable TX half-duplex flow control 1 = Enable TX half-duplex flow control	R/W	1
TX FDFC	0 = Disable TX full-duplex flow control [the MAC will not generate internally any flow control frames based on the RX FIFO watermarks or the Transmit Pause Control interface 1 = Enable TX full-duplex flow control [enables the MAC to send flow control frames to the link partner based on the RX FIFO programmable watermarks or the Transmit Pause Control interface]	R/W	1
RX FDFC	0 = Disable RX full-duplex flow control [the MAC will not respond to flow control frames sent to it by the link partner] 1 = Enable RX full-duplex flow control [MAC will respond to flow control frames sent by the link partner and will stop packet transmission for the time specified in the flow control frame]	R/W	1
	Reserved TX HDFC TX FDFC RX FDFC	Reserved Reserved When TX HDFC is enabled (half-duplex mode only), the MAC generates deliberate collisions on incoming packets when the RX FIFO occupancy crosses the High Watermark (flow control). 0 = Disable TX half-duplex flow control 1 = Enable TX half-duplex flow control 0 = Disable TX full-duplex flow control [the MAC will not generate internally any flow control frames based on the RX FIFO watermarks or the Transmit Pause Control interface 1 = Enable TX full-duplex flow control [enables the MAC to send flow control frames to the link partner based on the RX FIFO programmable watermarks or the Transmit Pause Control interface] 0 = Disable RX full-duplex flow control [the MAC will not respond to flow control frames sent to it by the link partner] 1 = Enable RX full-duplex flow control [MAC will respond to flow control frames sent by the link partner and will stop packet transmission for the time specified in the flow control frame]	TX HDFC When TX HDFC is enabled (half-duplex mode only), the MAC generates deliberate collisions on incoming packets when the RX FIFO occupancy crosses the High Watermark (flow control). 0 = Disable TX half-duplex flow control 1 = Enable TX half-duplex flow control 0 = Disable TX full-duplex flow control [the MAC will not generate internally any flow control frames based on the RX FIFO watermarks or the Transmit Pause Control interface 1 = Enable TX full-duplex flow control [enables the MAC to send flow control frames to the link partner based on the RX FIFO programmable watermarks or the Transmit Pause Control interface] 0 = Disable RX full-duplex flow control [the MAC will not respond to flow control frames sent to it by the link partner] 1 = Enable RX full-duplex flow control [MAC will respond to flow control frames sent by the link partner and will stop packet transmission for

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 84 FC Back Pressure Length (\$ Port_Index + 0x13)

Name	Description	Address	Type ¹	Default
	This register sets number the byte cycles for which the collision has to be applied.			
FC Back Pressure Length	The 6-bit configuration holds the value in bytes, which applies to the minimum length/duration of back pressure in half-duplex mode. Flow control in the receive path is executed by deliberately colliding the incoming packets in half-duplex mode. Register bits 5:0 are used alone.	Port Add + 0x13	R/W	0x0000000C

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 85 Short Runts Threshold (\$ Port_Index + 0x14)

Name	Description	Address	Type ¹	Default
	The 5-bit configuration holds the value in bytes, which applies to the threshold in determining between runts and short. The bits 4:0 of this register are alone used.			
	A received packet is reported as a short packet when the length (excluding Preamble and SFD) is less than this value.			
Short Runts Threshold	A received packet is reported as a runt packet when the length (excluding Preamble and SFD) is equal to or greater than this value and less than 64-bytes.	Port_Index + 0x14	R/W	0x00000008
	Note: This register is only relevant when the IXF1104 MAC port is configured for copper operation (the line side interface is configured for either RGMII or GMII).			

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 86 Discard Unknown Control Frame (\$ Port_Index + 0x15)

Bit	Name	Description	Type ¹	Default
Register Description: Discards or forwards unknown control frames. Known control frames are pause frames.				0x00000000
31:1	Reserved	Reserved	R	0x00000000
0	Discard Unknown Control Frame	0 = Forward unknown control frames 1 = Discard unknown control frames	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 87 RX Config Word (\$ Port_Index + 0x16) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default
Register Description: This register is used in fiber MAC only for auto-negotiation and to report the receive status. The lower 16 bits of this register are the "config_reg" received from the link partner, as described in IEEE 802.3 2000 Edition, Section 37.2.1.				
31:22	Reserved	Reserved	RO	0x000
21	An_complete	Auto-negotiation complete. This bit remains cleared from the time auto-negotiation is reset until auto-negotiation reaches the "LINK_OK" state. It remains set until auto-negotiation is disabled or restarted. This bit is only valid if auto-negotiation is enabled.	RO	0
20	Rx Sync	0 = Loss of synchronization 1 = Bit synchronization. The bit remains Low until the register is read.	RO	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 87 RX Config Word (\$ Port_Index + 0x16) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
19	RX Config	0 = Receiving idle/data stream 1 = Receiving /C/ ordered sets	RO	0
18	Config Changed	0 = RxConfigWord has changed since last read 1 = RxConfigWord has not changed since last read. This bit remains High until the register is read.	R	0
17	Invalid Word	0 = Have not received an invalid symbol 1 = Have received an invalid symbol This bit remains High until the register is read.	RO	0
16	Carrier Sense	0 = Device is not receiving idle characters; carrier sense is true. 1 = Device is receiving idle characters; carrier sense is false.	RO	0
15	Next Page	Next Page request	RO	0
14	Reserved	Reserved	RO	0
13:12 ²	Remote Fault [1:0]	Remote fault definitions: 00 = No error, link okay 01 = Offline 10 = Link failure 11 = Auto-negotiation_Error	R/W	00
11:9	Reserved	Reserved	RO	000
8	Asym Pause	Asym Pause. The ability to send pause frames.	RO	0
7	Sym Pause	Sym Pause. The ability to send and receive pause frames.	RO	0
6	Half Duplex	Half-duplex	RO	0
5	Full Duplex	Full-duplex	RO	0
4:0	Reserved	Reserved	RO	0x0
1. RO	= Read Only, No clear on	Read; R = Read, Clear on Read; W = Write only; R/V	N = Read	Write, No

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 88 TX Config Word (\$ Port_Index + 0x17) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default
Register Description: This register is used in fiber MAC for auto-negotiation only. The contents of this register are sent as the config_word. The contents of this register are the "config_reg" sent to the link partner, as described in IEEE 802.3 2000 Edition, subclause 37.2.1.				0x000001A0
31:16	Reserved	Reserved	RO	0x0000
15	Next Page	Next Page request	R/W	0
14	Reserved	Write as 0, ignore on read	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Note: A value of 0x0 must be written to all reserved bits of the *TX Config Word (\$ Port_Index + 0x17)* Register.

Table 88 TX Config Word (\$ Port_Index + 0x17) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
13:12 ²	Remote Fault [1:0]	Remote fault definitions: 00 = No error, link okay 01 = Offline 10 = Link failure 11 = Auto-negotiation_Error	R/W	00
11:9	Reserved	Write as 0, ignore on Read	R/W	000
8	Asym Pause	Asym Pause. The ability to send pause frames.	R/W	1
7	Sym Pause	Sym Pause. The ability to send and receive pause frames.	R/W	1
6	Half Duplex	Half-duplex	R/W	0
5	Full Duplex	Full-duplex	R/W	1
4:0	Reserved	Write as 0, ignore on read	R/W	0x00

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Note: A value of 0x0 must be written to all reserved bits of the *TX Config Word (\$ Port_Index + 0x17)* Register.

Table 89 Diverse Config Write (\$ Port_Index + 0x18)

Bit	Name	Description	Type ¹	Default
Regist	er Description: This regist	er contains various configuration bits for general use.		0x00110D
18:13	Reserved	Write as 0, ignore on Read.	R/W	0x0000
12	Reserved ²	Write as 1, ignore on Read.	R/W	1
11-9	Reserved ²	Write as 0, ignore on Read.	R/W	0x0
8	Reserved ²	Write as 1, ignore on Read.	R/W	1
7	pad_enable	O = Normal operation 1 = Enable padding of undersized packets Note: Assertion of this bit results in the automatic addition of a CRC to the padded packet.	R/W	0
6	crc_add	0 = Normal operation 1 = Enable automatic CRC appending	R/W	0
5	AN_enable	Enable auto-negotiation (used for fiber mode only) to be performed by the hardware state machines in the MAC. The hardware auto-negotiation (AN) state machine controls the config words transmitted when this bit is set. Note: In copper mode, this bit must be set to 0 (reserved).	R/W	0
4 ²	Reserved	Write as 0, ignore on Read.	R/W	0
3:2 ²	Reserved	Write as 1, ignore on Read.	R/W	11
1 ²	Reserved	Write as 0, ignore on Read.	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

^{2.} Reserved bits must be written to the default value for proper operation.

Table 90 RX Packet Filter Control (\$ Port_Index + 0x19) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default
	used in conjunction with the	ster allows for specific packet types to be marked for ne RX FIFO Errored Frame Drop Counter Ports 0 - 3		0x00000000
31:6	Reserved	Reserved		0
5	CRC Error Pass	This bit enables a Global filter on frames with a CRC Error. 0 = When CRC Error Pass = 0, all frames with a CRC Error are marked as bad. ² 1 = Frames with a CRC Error are not marked as bad and are passed to the SPI3 interface for transfer as good frames, regardless of the state of the bits in the RX FIFO Errored Frame Drop Enable (\$0x59F). Note: When the CRC Error Pass Filter bit = 0, it takes precedence over the other filter bits. Any packet, whether is a Pause, Unicast, Multicast or Broadcast packet with a CRC error, is marked as a bad frame when CRC Error Pass = 0	R/W	0
4	Pause Frame Pass	This bit enables a Global filter on Pause frames. 0 = All pause frames are dropped. ² 1 = All pause frames are passed to the SPI3 Interface. Note: Pause Frames can only be filtered if RXFD flow control is enabled in the FC Enable (\$ Port_Index + 0x12).	R/W	0
3	VLAN Drop En	This bit enables a global filter on VLAN frames. 0 = All VLAN frames are passed to the SPI3 Interface. 1 = All VLAN frames are dropped. ²	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Used in conjunction with the Table 122, RX FIFO Errored Frame Drop Enable (\$0x59F), on page 188. This allows the frame to be dropped in the RX FIFO. Otherwise, the frame is sent out the SP3 interface and may be optionally signaled with an RERR (see bit 0 of RX FIFO Errored Frame Drop Enable (\$0x59F)RX FIFO Errored Frame Drop Enable (\$0x59F).

Table 90 RX Packet Filter Control (\$ Port_Index + 0x19) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
2	B/Cast Drop En	This bit enables a Global filter on broadcast frames. 0 = All broadcast frames are passed to the SPI3 Interface. 1 = All broadcast frames are dropped. ²	R/W	0
1	M/Cast Match En	This bit enables a filter on multicast frames. 0 = All muticast frames are good and passed to the SPI3 Interface. 1 = Only multicast frames with a destination address that matches the PortMulticastAddress are forwarded. All other muticast frames are dropped. ²	R/W	0
0	U/Cast Match En ²	This bit enables a filter on unicast frames. 0 = All unicast frames are good and are passed to the SPI3 Interface. 1 = Only unicast frames with a Destination Address that matches the Station Address are forwarded. All other unicast frames are dropped. *Note:* The VLAN filter overrides the unicast filter. Therefore, a VLAN frame cannot be filtered based on the unicast address.	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 91 Port Multicast Address (\$ Port_Index +0x1A - +0x1B)

Name	Description	Address	Type*	Default
Port Multicast Address Low	This address compares against multicast frames at the receiving side if multicast filtering is enabled. This register contains bits 31:0 of the address.	Port_Index + 0x1A	R/W	0x0000000
Port Multicast Address High	This address compares against multicast frames at the receiving side if Multicast filtering is enabled. This register contains bits 47:32 of the address.	Port_Index + 0x1B	R/W	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.2 MAC RX Statistics Register Overview

The MAC RX Statistics registers contain the MAC receiver statistic counters and are cleared when read. The software polls these registers and accumulates values to ensure that the counters do not wrap. The 32-bit counters wrap after approximately 30 seconds.

Table 92 covers the RX statistics for the four MAC ports. Port_Index is the port number (0, 1, 2, or 3).

^{2.} Used in conjunction with the Table 122, RX FIFO Errored Frame Drop Enable (\$0x59F), on page 188. This allows the frame to be dropped in the RX FIFO. Otherwise, the frame is sent out the SP3 interface and may be optionally signaled with an RERR (see bit 0 of RX FIFO Errored Frame Drop Enable (\$0x59F)RX FIFO Errored Frame Drop Enable (\$0x59F).

Table 92 MAC RX Statistics (\$ Port_Index + 0x20 - + 0x39) (Sheet 1 of 4)

Name	Description	Address	Type ¹	Default
RxOctetsTotalOK	Counts the bytes received in all legal frames, including all bytes from the destination MAC address to and including the cyclic redundancy check (CRC). The initial preamble and Start of Frame Delimiter (SFD) bytes are not counted.	Port_Index + 0x20	R	0x00000000
RxOctetsBAD ²	Counts the bytes received in all bad frames with legal size (frames with CRC error, alignment errors, or code violations), including all bytes from the destination MAC address to (and including) the CRC. The initial preamble and SFD bytes are not counted. Frames with illegal size do not add to this counter (shorts, runts, longs, jabbers, and very longs). Note: This register does not count octets on undersized received packets.	Port_Index + 0x21	R	0x00000000
RxUCPkts	The total number of unicast packets received (excluding bad packets). Note: This count includes non-pause control and VLAN packets, which are also counted in other counters. These packet types are counted twice. Take care when summing register counts for reporting Management Information Base (MIB) information.	Port_Index + 0x22	R	0x00000000
RxMCPkts	The total number of multicast packets received (excluding bad packets) Note: This count includes pause control packets, which are also counted in the PauseMacControl-ReceivedCounter. These packet types are counted twice. Take care when summing register counts for reporting MIB information.	Port_Index + 0x23	R	0x00000000
RxBCPkts	The total number of Broadcast packets received (excluding bad packets).	Port_Index + 0x24	R	0x00000000
RxPkts64Octets	The total number of packets received (including bad packets) that were 64 octets in length. Incremented for tagged packets with a length of 64 bytes, including tag field.	Port_Index + 0x25	R	0x00000000
RxPkts65to127 Octets	The total number of packets received (including bad packets) that were 65-127 octets in length. Incremented for tagged packets with a length of 65-127 bytes, including tag field.	Port_Index + 0x26	R	0x00000000
RxPkts128t0255 Octets	The total number of packets received (including bad packets) that were 128-255 octets in length. Incremented for tagged packets with a length of 128-255 bytes, including tag field.	Port_Index + 0x27	R	0x00000000

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

^{2.} When sending in large frames, the counters can only handle certain limits. The behavior of the LongErrors and VeryLongErrors counters is as follows: VeryLongErrors counts frames that are 2*maxframesize, dependent upon where maxframesize is set. If maxframesize sets greater than half of the available count in RxOctetsBad (2^14-1), VeryLongErrors is never incremented, but LongErrors is incremented. This is due to a limitation in the counter size, which means that an accurate count will not occur in the RxOctetsBAD counter if the frame is larger than 2^14-1.

^{3.} This register is relevant only when configured for copper operation.
4. This register is relevant only when configured for fiber operation (line side interface is SerDes).

Table 92 MAC RX Statistics (\$ Port_Index + 0x20 - + 0x39) (Sheet 2 of 4)

Name	Description	Address	Type ¹	Default
RxPkts256to511 Octets	The total number of packets received (including bad packets) that were 256-511 octets in length. Incremented for tagged packets with a length of 256-511 bytes, including tag field.	Port_Index + 0x28	R	0x00000000
RxPkts512to1023O ctets	The total number of packets received (including bad packets) that were 512-1023 octets in length. Incremented for tagged packets with a length of 512-1023 bytes, including tag field.	Port_Index + 0x29	R	0x00000000
RxPkts1024to1518 Octets	The total number of packets received (including bad packets) that were 1024-1518 octets in length. Incremented for tagged packet with a length between 1024-1522, including the tag.	Port_Index + 0x2A	R	0x00000000
RxPkts1519toMaxO ctets	The total number of packets received (including bad packets) that were greater than 1518 octets in length. Incremented for tagged packet with a length between 1523-max frame size, including the tag.	Port_Index + 0x2B	R	0x00000000
RxFCSErrors	Number of frames received with legal size, but with wrong CRC field (also called Frame Check Sequence (FCS) field). Note: Legal size is 64 bytes through the value programmed in the Table 80, Max Frame Size (Addr: Port_Index + 0x0F), on page 159.	Port_Index + 0x2C	R	0x00000000
RxTagged	Number of OK frames with VLAN tag. (Type field = 0x8100)	Port_Index + 0x2D	R	0x00000000
RxDataError ³	Number of frames received with legal length, containing a code violation (signaled with RX_ERR on RGMII).	Port_Index + 0x2E	R	0x00000000
RxAlignErrors ³	Frames with a legal frame size, but containing less than eight additional bits. This occurs when the frame is not byte aligned. The CRC of the frame is wrong when the additional bits are stripped. If the CRC is OK, then the frame is not counted but treated as an OK frame. This counter increments in 10 Mbps or 100 Mbps RGMII mode only. Note: This counter increments in 10 or 100 Mbps RGMII mode only.	Port_Index + 0x2F	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

^{2.} When sending in large frames, the counters can only handle certain limits. The behavior of the LongErrors and VeryLongErrors counters is as follows: VeryLongErrors counts frames that are 2*maxframesize, dependent upon where maxframesize is set. If maxframesize sets greater than half of the available count in RxOctetsBad (2^14-1), VeryLongErrors is never incremented, but LongErrors is incremented. This is due to a limitation in the counter size, which means that an accurate count will not occur in the RxOctetsBAD counter if the frame is larger than 2^14-1.

^{3.} This register is relevant only when configured for copper operation.

^{4.} This register is relevant only when configured for fiber operation (line side interface is SerDes).

Table 92 MAC RX Statistics (\$ Port_Index + 0x20 - + 0x39) (Sheet 3 of 4)

Name	Description	Address	Type ¹	Default
RxLongErrors ²	Frames bigger than the maximum allowed, with both OK CRC and the integral number of octets. Default maximum allowed is 1518 bytes untagged and 1522 bytes tagged, but the value can be changed by a register. Frames bigger than the larger of 2*maxframesize and 50,000 bits are not counted here, but they are counted in the VeryLongError counter.	Port_Index + 0x30	R	0x00000000
RxJabberErrors	Frames bigger than the maximum allowed, with either a bad CRC or a non-integral number of octets. The default maximum allowed is 1518 bytes untagged and 1522 bytes tagged, but the value can be changed by a register. Frames bigger than the larger of 2*maxframesize and 50,000 bits are not counted here, but they are counted in the VeryLongError counter.	Port_Index + 0x31	R	0x00000000
RxPauseMacContr olReceivedCounter	Number of Pause MAC control frames received. This statistic register increments on any valid 64-byte pause frame with a valid CRC and also increments on a 64-byte pause frame with an invalid CRC if bit 5 of the RX Packet Filter Control (\$ Port_Index + 0x19) is set to 1.	Port_Index + 0x32	R	0x00000000
RxUnknownMac ControlFrame Counter	Number of MAC control frames received with an op code different from 0001 (Pause).	Port_Index + 0x33	R	0x00000000
RxVeryLongErrors ²	Frames bigger than the larger of 2*maxframesize and 50,000 bits	Port_Index + 0x34	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

^{2.} When sending in large frames, the counters can only handle certain limits. The behavior of the LongErrors and VeryLongErrors counters is as follows: VeryLongErrors counts frames that are 2*maxframesize, dependent upon where maxframesize is set. If maxframesize sets greater than half of the available count in RxOctetsBad (2^14-1), VeryLongErrors is never incremented, but LongErrors is incremented. This is due to a limitation in the counter size, which means that an accurate count will not occur in the RxOctetsBAD counter if the frame is larger than 2^14-1.

^{3.} This register is relevant only when configured for copper operation.

^{4.} This register is relevant only when configured for fiber operation (line side interface is SerDes).

Table 92 MAC RX Statistics (\$ Port_Index + 0x20 - + 0x39) (Sheet 4 of 4)

Name	Description	Address	Type ¹	Default
RxRuntErrors ³	The total number of packets received that are less than 64 octets in length, but longer than or equal to 96 bit times, which corresponds to a 4-byte frame with a well-formed preamble and SFD. This is the shortest fragment and can be transmitted in case of a collision event on a half-duplex segment. This counter indicates fragment sizes, which is expected on half-duplex segments but not on full-duplex links. **Note:** The ShortRuntsThreshold register controls the byte count used to determine the difference between Runts and Shorts and therefore controls which counter is incremented for a given frame size. This counter is only updated after receipt of two good frames. **Note:** This counter is only valid when the selected port within the IXF1104 MAC is operating in copper (RGMII or GMII) mode. The RuntError counter is not updated when the selected port within the IXF1104 MAC is operated in fiber (SerDes) mode.	Port_Index + 0x35	R	0x00000000
RxShort Errors ³	The total number of packets received that are less than 96 bit times, which corresponds to a 4-byte frame with a well-formed preamble and SFD. This counter indicates fragment sizes illegal in all modes and is only fully updated after reception of a good frame following a fragment. **Note:** This register is only relevant when the IXF1104 MAC port is configured for copper operation (the line side interface is configured for either RGMII or GMII operation). This register will not increment when the IXF1104 MAC port is configured for fiber operation using the SerDes interface.	Port_Index + 0x36	R	0x00000000
RxCarrier Extend Error	Not applicable.	Port_Index + 0x37	R	0x00000000
RxSequenceErrors ⁴	Records the number of sequencing errors that occur in fiber mode.	Port_Index + 0x38	R	0x00000000
RxSymbolErrors ⁴	Records the number of symbol errors encountered by the PHY.	Port_Index + 0x39	R	0x00000000

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

^{2.} When sending in large frames, the counters can only handle certain limits. The behavior of the LongErrors and VeryLongErrors counters is as follows: VeryLongErrors counts frames that are 2*maxframesize, dependent upon where maxframesize is set. If maxframesize sets greater than half of the available count in RxOctetsBad (2^14-1), VeryLongErrors is never incremented, but LongErrors is incremented. This is due to a limitation in the counter size, which means that an accurate count will not occur in the RxOctetsBAD counter if the frame is larger than 2^14-1.

^{3.} This register is relevant only when configured for copper operation.

^{4.} This register is relevant only when configured for fiber operation (line side interface is SerDes).

8.4.3 MAC TX Statistics Register Overview

The MAC TX Statistics registers contain all the MAC transmit statistic counters and are cleared when read. The software must poll these registers to accumulate values and to ensure that the counters do not wrap. The 32-bit counters wrap after approximately 30 seconds.

Table 93 covers all four MAC ports TX statistics. Port_Index is the port number (0, 1, 2, or 3).

Table 93 MAC TX Statistics (\$ Port_Index +0x40 - +0x58) (Sheet 1 of 4)

Name	Description	Address	Type ¹	Default
OctetsTransmittedOK	Counts the bytes transmitted in all legal frames. The count includes all bytes from the destination MAC address to and including the CRC. The initial preamble and SFD bytes are not counted. Any initial collided transmission attempts before a successful frame transmission do not add to this counter.	Port_Index + 0x40	R	0x00000000
OctetsTransmittedBad	Counts the bytes transmitted in all bad frames. The count includes all bytes from the destination MAC address to and including the CRC. The initial preamble and SFD bytes are not counted. Late collision counted: The count is close to the actual number of bytes transmitted before the frame is discarded. Excessive collision counted: The count is close to the actual number of bytes transmitted before the frame is discarded. TX counters transmitted before the frame is discarded. TX under-run counted: The count is expected to match the number of bytes actually transmitted before the frame is discarded. TX CRC error counted: All bytes not sent with success are counted by this counter. Any initial collided transmission attempts before a successful frame transmission do not add to this counter.	Port_Index + 0x41	R	0x00000000
TxUCPkts	The total number of unicast packets transmitted (excluding bad packets).	Port_Index + 0x42	R	0x00000000
TxMCPkts	The total number of multicast packets transmitted (excluding bad packets). Note: This count includes pause control packets, which are also counted in the TxPauseFrames Counter. Thus, these types of packets are counted twice. Take care when summing register counts for reporting MIB information.	Port_Index + 0x43	R	0x00000000
1 RO = Read Only No clear on Read: R = Read Clear on Read: W = Write only: R/W = Read/Write No				

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 93 MAC TX Statistics (\$ Port_Index +0x40 - +0x58) (Sheet 2 of 4)

Name	Description	Address	Type ¹	Default
TxBCPkts	The total number of broadcast packets transmitted (excluding bad packets).	Port_Index + 0x44	R	0x00000000
TxPkts64Octets	The total number of packets transmitted (including bad packets) that were 64 octets in length. Incremented for tagged packets with a length of 64 bytes, including tag field.	Port_Index + 0x45	R	0x00000000
Txpkts65to127Octets	The total number of packets transmitted (including bad packets) that were 65-127 octets in length. Incremented for tagged packets with a length of 65-127 bytes, including tag field.	Port_Index + 0x46	R	0x00000000
Txpkts128to255Octets	The total number of packets transmitted (including bad packets) that were 128-255 octets in length. Incremented for tagged packets with a length of 128-255 bytes, including tag field.	Port_Index + 0x47	R	0x00000000
Txpkts256to511Octets	The total number of packets transmitted (including bad packets) that were 256-511 octets in length. Incremented for tagged packets with a length of 256-511 bytes, including tag field.	Port_Index + 0x48	R	0x00000000
Txpkts512to1023Octets	The total number of packets transmitted (including bad packets) that were 512-1023 octets in length. Incremented for tagged packets with a length of 512-1023 bytes, including tag field.	Port_Index + 0x49	R	0x00000000
Txpkts1024to1518Octets	The total number of packets transmitted (including bad packets) that were 1024-1518 octets in length. Incremented for tagged packet with a length between 1024-1522, including the tag.	Port_Index + 0x4A	R	0x00000000
Txpkts1519toMaxOctets	The total number of packets transmitted (including bad packets) that were greater than 1518 octets in length. Incremented for tagged packet with a length between 1523 - max fame size, including the tag.	Port_Index + 0x4B	R	0x00000000
TxDeferred	Number of times the initial transmission attempt of a frame is postponed due to another frame already being transmitted on the Ethernet network. TxTotalCollisions. Note: NA - half-duplex only	Port_Index + 0x4C	R	0x00000000
TxTotalCollisions	Sum of all collision events. Note: NA - half-duplex only	Port_Index + 0x4D	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 93 MAC TX Statistics (\$ Port_Index +0x40 - +0x58) (Sheet 3 of 4)

Name	Description	Address	Type ¹	Default
TxSingleCollisions	A count of successfully transmitted frames on a particular interface where the transmission is inhibited by exactly one collision. A frame that is counted by an instance of this object is also counted by the corresponding instance of either the UnicastPkts, MulticastPkts, or BroadcastPkts, and is not counted by the corresponding instance of the MultipleCollisionFrames object. Note: NA - half-duplex only	Port_Index + 0x4E	R	0x00000000
TxMultipleCollisions	A count of successfully transmitted frames on a particular interface for which transmission is inhibited by more than one collision. A frame that is counted by an instance of this object is also counted by the corresponding instance of either the UnicastPkts, MulticastPkts, or BroadcastPkts, and is not counted by the corresponding instance of the SingleCollisionFrames object. Note: NA - half-duplex only	Port_Index + 0x4F	R	0x00000000
TxLateCollisions	The number of times a collision is detected on a particular interface later than 512 bit-times into the transmission of a packet. Such frame are terminated and discarded. Note: NA - half-duplex only	Port_Index + 0x50	R	0x00000000
TxExcessiveCollisionErrors	A count of frames, which collides 16 times and is then discarded by the MAC. Not effecting xMultipleCollisions Note: NA - half-duplex only	Port_Index + 0x51	R	0x00000000
TxExcessiveDeferralErrors	Number of times frame transmission is postponed more than 2*MaxFrameSize because of another frame already being transmitted on the Ethernet network. This causes the MAC to discard the frame. Note: NA - half-duplex only	Port_Index + 0x52	R	0x00000000
TxExcessiveLengthDrop	Frame transmissions aborted by the MAC because the frame is longer than maximum frame size. These frames are truncated by the MAC when the maximum frame size violation is detected by the MAC.	Port_Index + 0x53	R	0x00000000
TxUnderrun	Internal TX error that causes the MAC to end the transmission before the end of the frame because the MAC did not get the needed data in time for transmission. The frames are lost and a fragment or a CRC error is transmitted.	Port_Index + 0x54	R	0x00000000
TxTagged	Number of OK frames with VLAN tag. (Type field = 0x8100).	Port_Index + 0x55	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 93 MAC TX Statistics (\$ Port_Index +0x40 - +0x58) (Sheet 4 of 4)

Name	Description	Address	Type ¹	Default
TxCRCError	Number of frames transmitted with a legal size but with the wrong CRC field (also called FCS field).	Port_Index + 0x56	R	0x00000000
TxPauseFrames	Number of pause MAC frames transmitted.	Port_Index + 0x57	R	0x00000000
TxFlowControlCollisions Send	Intentionally generates collisions to curb reception of incoming traffic due to insufficient memory available for additional frames. The port must be in half-duplex mode with flow control enabled. Note: To receive a correct statistic, a last frame may have to be transmitted after the last flow control collisions send. Note: NA - half-duplex only	Port_Index + 0x58	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.4 PHY Autoscan Registers

Note:

These register hold the current values of the PHY registers only when Autoscan (see Section 5.5.8, *Autoscan Operation*, on page 99) is enabled and the IXF1104 MAC is configured in copper mode. These registers are not applicable in fiber mode.

Table 94 PHY Control (\$ Port Index + 0x60) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default		
31:16	Reserved	Reserved	RO	0x0000		
15	Reset	PHY Soft Reset. Resets the PHY registers to their default value. This register bit self-clears after the reset is complete. 0 = Normal Operation 1 = PHY reset	RO	0		
14	Loopback	0 = Disable loopback mode 1 = Enable loopback mode	RO	0		
13	Speed Selection	0.6 (Speed<1> 0.13 (Speed<0>) 00 = 10 Mbps 01 = 100 Mbps 10 = 1000 Mbps (manual mode not allowed) 11 = Reserved	RO	0 ²		
12	Auto-Negotiation Enable	0 = Disable auto-negotiation process 1 = Enable auto-negotiation process This register bit must be enabled for 1000BASE-T operation.	RO	1		
11	Power-Down	0 = Normal operation 1 = Power-down	RO	0		
1. RO	= Read Only: RR = Clear	r on Read; W = Write; R/W = Read/Write				

RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write

^{2.} This register is ignored if auto-negotiation is enabled.

Table 94 PHY Control (\$ Port Index + 0x60) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
10	Isolate	0 = 1 = Electrically isolate PHY from GMII	RO	0
9	Restart Auto-Negotiation	0 = Normal operation 1 = Restart auto-negotiation process	RO	0
8	Duplex Mode	0 = Half-duplex mode 1 = Full-duplex mode	RO	1 ²
7	Collision Test	0 = Disable COL signal test 1 = Enable COL signal test This register bit is ignored unless loopback is enabled (Register bit 0.14 = 1)	RO	0
6	Speed Selection 1000 Mbps	0.6 (Speed<1>) 0.13 (Speed<0>) 00 = 10 Mbps 01 = 100 Mbps 10 = 1000 Mbps (manual mode now allowed) 11 = Reserved	RO	0 ²
5:0	Reserved	Reserved	RO	0

^{1.} RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write

Table 95 PHY Status (\$ Port Index + 0x61) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default		
31:16	Reserved	Reserved	RO	0		
15	100BASE-T4	0 = PHY not able to operate in 100BASE-T4 1 = PHY able to operate in 100BASE-T4	RO	0		
14	100BASE-X Full-Duplex	0 = PHY not able to operate in 100BASE-X in full- duplex mode 1 = PHY able to operate in 100BASE-X in full- duplex mode	RO	1		
13	100BASE-X Half-Duplex	0 = PHY not able to operate in 100BASE-X in half- duplex mode 1 = PHY able to operate in 100BASE-X in half- duplex mode	RO	1		
12	10 Mbps Full-Duplex	0 = PHY not able to operate in 10 Mbps in full- duplex mode 1 = PHY able to operate in 10 Mbps in full-duplex mode	RO	1		
11	10 Mbps Half-Duplex	0 = PHY not able to operate in 10 Mbps in half- duplex mode 1 = PHY able to operate in 10 Mbps in half-duplex mode	RO	1		
10	100BASE-T2 Full-Duplex	0 = PHY not able to operate in 10BASE-T2 in full- duplex mode (not supported) 1 = PHY able to operate in 100BASE-T2 in full- duplex mode	RO	0		
1. R=	Read Only; RR = Clear o	on Read; W = Write; R/W = Read/Write				

^{2.} This register is ignored if auto-negotiation is enabled.

Table 95 PHY Status (\$ Port Index + 0x61) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
9	100BASE-T2 Half-Duplex	0 = PHY not able to operate in 100BASE-T2 in half-duplex mode 1 = PHY able to operate in 100BASE-T2 in half- duplex mode	RO	0
8	Extended Status	0 = No extended status information in Register 15 1 = Extended status information in Register 15	RO	1
7	Reserved	Reserved	RO	0
6	MF Preamble Suppression	0 = PHY will not accept management frames with preamble suppressed 1 = PHY will accept management frames with preamble suppressed	RO	0
5	Reserved	Reserved	RO	0
4	Remote Fault	0 = 1 = Remote fault condition detected	RO	0
3	Auto-Negotiation Ability	0 = 1 = PHY is able to perform auto-negotiation	RO	1
2	Link Status	0 = Link is down 1 = Link is up	RO	0
1	Jabber Detect	0 = Jabber condition not detected 1 = Jabber condition detected	RO	0
0	Extended Capability	0 = No extended register capabilities 1 = Extended register capabilities	RO	1
1. R=	Read Only; RR = Clear	on Read; W = Write; R/W = Read/Write		

Table 96 PHY Identification 1 (\$ Port Index + 0x62)

Bit	Name	Description	Type ¹	Default	
				0x00013	
31:16	Reserved	Reserved	RO	0	
15:0	PHY ID Number	The PHY identifier is composed of register bits 18:3 of the OUI (Organizationally Unique Identifier)	RO	h0013	
1. RO	RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write				

Table 97 PHY Identification 2 (\$ Port Index + 0x63) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default		
				0x001111001 00000000		
31:16	Reserved	Reserved	RO	0		
1. RO	1. RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

Table 97 PHY Identification 2 (\$ Port Index + 0x63) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default		
15:10	PHY ID Number	The PHY identifier is composed of register bits 24:19 of the OUI (Organizationally Unique Identifier)	RO	011110		
9:4	Manufacturer's Model	Six bits containing the manufacturer's part number	RO	010000		
3:0	Manufacturer's Revision Number	Four bits containing the manufacturer's revision number	RO	0000		
1. RO	RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

Table 98 Auto-Negotiation Advertisement (\$ Port Index + 0x64) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default		
				0x00000100 111100001		
31:16	Reserved	Reserved	RO	0		
15	Next Page	0 = 1 = Manual control of Next Page (software)	RO	0		
14	Reserved	Reserved	RO	0		
13	Remote Fault	0 = No remote fault 1 = Remote fault	RO	0		
12	Reserved	Reserved	RO	0		
11	ASM_DIR	Advertise Asymmetric Pause Direction register bit. This register bit is used in conjunction with Pause (Register bit 4.10) 0 = Link partner is not capable of asymmetric pause 1 = Link partner is capable of asymmetric pause	RO	1		
10	Pause	Advertise to link partner that Pause operation is desired (IEEE 802.3x Standard)	RO	0		
9	100BASE-T4	0 = 100BASE-T4 capability is not available 1 = 100BASE-T4 capability is available The IXF1104 MAC does not support 100BASE-T4, but allows this register bit to be set to advertise in auto-negotiation sequence for 100BASE-T4 operation. If this capability is desired, an external 100BASE-T4 transceiver can be switched in.	RO	0		
8	100BASE-TX Full-Duplex	0 = DTE is not 100BASE-TX, full-duplex mode capable 1 = DTE is 100BASE-TX, full-duplex mode capable	RO	1		
7	100BASE-TX Half-Duplex	0 = DTE is not 100BASE-TX, half-duplex mode capable 1 = DTE is 100BASE-TX, half-duplex mode capable	RO	1		
1. RO	RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

Table 98 Auto-Negotiation Advertisement (\$ Port Index + 0x64) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default		
6	10BASE-T Full-Duplex	0 = DTE is not 10BASE-T, full-duplex mode capable 1 = DTE is 10BASE-T, full-duplex mode capable	RO	1		
5	10BASE-T Half-Duplex	0 = DTE is not 10BASE-T, half-duplex mode capable 1 = DTE is 10BASE-T, half-duplex mode capable	RO	1		
4:0	Selector Field, S[4:0]	00001 =IEEE 802.3 00010 =IEEE 802.9 ISLAN-16T Reserved for future auto-negotiation development 11111 = Reserved for future auto-negotiation development Unspecified or reserved combinations should not be transmitted Setting this field to a value other than 00001 will most likely cause auto-negotiation to fail	RO	00001		
1. RO	1. RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write 1. RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

Table 99 Auto-Negotiation Link Partner Base Page Ability (\$ Port Index + 0x65) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default		
				0x0 01001111000 01		
31:16	Reserved	Reserved	RO	0		
15	Next Page	U = Link partner has no ability to send multiple pages Elink partner has the ability to send multiple pages	RO	NA		
14	Acknowledge	U = Link partner has not received Link Code Word from the IXF1104 MAC U = Link partner has received Link Code Word from the IXF1104 MAC	RO	NA		
13	Remote Fault	0 = No remote fault 1 = Remote fault	RO	NA		
12	Reserved	Reserved	RO	0		
11	ASM_DIR	Advertise Asymmetric Pause Direction Register bit. This register bit is used in conjunction with Pause (Register bit 4.10) 0 = Link partner is not capable of asymmetric pause 1 = Link partner is capable of asymmetric pause	RO	1		
10	Link Partner Pause	Link partner wants to utilize Pause Operation as defined in IEEE 802.3x Standard	RO	0		
9	1000BASE-T4	0 = Link partner is not 100BASE-T4 capable 1 = Link partner is 100BASE-T4 capable	RO	0		
1. RO	1. RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

Table 99 Auto-Negotiation Link Partner Base Page Ability (\$ Port Index + 0x65) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default		
8	100BASE-TX Full-Duplex	0 = Link partner is not 100BASE-TX, full-duplex mode capable 1 = Link partner is 100BASE-TX, full-duplex mode capable	RO	1		
7	100BASE-TX Half-Duplex	U = Link partner is not 100BASE-TX, half-duplex mode capable U = Link partner is 100BASE-TX, half-duplex mode capable	RO	1		
6	10BASE-T Full-Duplex	U = Link partner is not 10BASE-T, full-duplex mode capable 1 = Link partner is 10BASE-T, full-duplex mode capable	RO	1		
5	10BASE-T Half-Duplex	= Link partner is not 10BASE-T, half-duplex mode capable = Link partner is 10BASE-T, half-duplex mode capable	RO	1		
4:0	Selector Field, S[4:0]	00001 =IEEE 802.3 00010 =IEEE 802.9 ISLAN-16T 00000 =Reserved for future auto-negotiation development 11111 = Reserved for future auto-negotiation development Unspecified or reserved combinations should not be transmitted Setting this field to a value other than 00001 will most likely cause auto-negotiation to fail	RO	00001		
1. RO	RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

Table 100 Auto-Negotiation Expansion (\$ Port Index + 0x66) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default
				0x0000000
31:6	Reserved	Reserved	RO	0
5	Base Page	This register bit indicates the status of the autonegotiation variable, base page. It flags synchronization with the autonegotiation state diagram allowing detection of interrupted links. This register bit is only used if Register bit 16.1 (alternate Next Page feature) is set. 0 = base_page = false 1 = base_page = true	RO	0
4	Parallel Detection Fault	0 = Parallel detection fault has not occurred 1 = Parallel detection fault has occurred	RO	0
3	Link Partner Next Page Able	0 = Link partner is not Next Page able 1 = Link partner is Next Page able	RO	0
1. RO	= Read Only; RR = Clear	r on Read; W = Write; R/W = Read/Write		

Table 100 Auto-Negotiation Expansion (\$ Port Index + 0x66) (Continued) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default	
2	Next Page Able	0 = Local device is not Next Page able 1 = Local device is Next Page able	RO	0	
1	Page Received	Indicates that a new page has been received and the received code word has been loaded into Register 5 (base pages) or Register 8 (next pages) as specified in the EEE 802.3 Standard. This bit clears on Read.	RO	0	
0	Link Partner Auto- Negotiation Able	0 = Link partner is not auto-negotiation able 1 = Link partner is auto-negotiation able	RO	0	
1. RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

Table 101 Auto-Negotiation Next Page Transmit (\$ Port Index + 0x67)

Bit	Name	Description	Type ¹	Default		
31:16	Reserved	Reserved	RO	0		
15	Next Page (NP)	0 = Last page 1 = Additional Next Pages follow	RO	0		
14	Reserved	Reserved	RO	0		
13	Message Page (MP)	0 = Unformatted page 1 = Message page	RO	0		
12	Acknowledge 2	0 = Cannot comply with message 1 = Complies with message	RO	0		
11	Toggle (T)	Previous value of the transmitted Link Code Word was logic one Previous value of the transmitted Link Code Word was logic zero	RO	0		
10:0	Message/Unformatted Code Field	11-bit message code field See IEEE 802.3 Annex 28C	RO	0		
1. RO	RO = Read Only; RR = Clear on Read; W = Write; R/W = Read/Write					

8.4.5 Global Status and Configuration Register Overview

Table 102 through Table 111, *JTAG ID* (\$0x50C), on page 184 provide an overview for the Global Control and Status Registers.

Table 102 Port Enable (\$0x500)

Bit	Name	Description	Type*	Default		
Register Description: A control register for each port in the IXF1104 MAC. Port ID = bit position in the register. To make a port active, the bit must be set High. For example, Port 2 active implies a register value of 0000.0100. Setting the bit to 0 de-asserts the enable. The default state for this register is for all four ports to be disabled.						
31:4	Reserved	Reserved	RO	0x0000000		
3	Port 3 Enable	Port 3 0 = Disable 1 = Enable	R/W	0		
2	Port 2 Enable	Port 2 0 = Disable 1 = Enable	R/W	0		
1	Port 1 Enable	Port 1 0 = Disable 1 = Enable	R/W	0		
0	Port 0 Enable	Port 0 0 = Disable 1 = Enable	R/W	0		
1. RC	1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No					

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 103 Interface Mode (\$0x501)

Bit	Name	Description	Type ¹	Default			
Register Description: If_Mode – Four bits of this register determines the PHY interface mode. 0 = Fiber (SerDes/OMI interface) 1 = Copper (GMII or RGMII interface) Changes to the data setting of this register must be made in conjunction with the Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794) to ensure a safe transition to a new operational mode (see Section 6.1, Change Port Mode Initialization Sequence, on page 124). The Enable clock mode change bit has to be set back to 1 after the configuration change takes effect.				0x00000000			
31:4	Reserved	Reserved	RO	0x0000000			
3	Port 3 Interface Mode	0 = Fiber mode 1 = Copper mode	R/W	0			
2	Port 2 Interface Mode	0 = Fiber mode 1 = Copper mode	R/W	0			
1	Port 1 Interface Mode	0 = Fiber mode 1 = Copper mode	R/W	0			
0	Port 0 Interface Mode	0 = Fiber mode 1 = Copper mode	R/W	0			
1. RO	RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No						

clear; R/W/C = Read/Write, Clear on Write

Cortina Systems® IXF1104 4-Port Gigabit Ethernet Media Access Controller

Table 104 Link LED Enable (\$0x502)

Bit	Name	Description	Type ¹	Default	
Register Description: Per port bit should be set upon detection of link to enable proper operation of the link LEDs.					
31:4 Reserved R/W					
3	Link LED Enable Port 3	Port 3 link 0 = No link 1 = Link	R/W	0	
2	Link LED Enable Port 2	Port 2 link 0 = No link 1 = Link	R/W	0	
1	Link LED Enable Port 1	Port 1 link 0 = No link 1 = Link	R/W	0	
0	Link LED Enable Port 0	Port 0 link 0 = No link 1 = Link	R/W	0	

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 105 MAC Soft Reset (\$0x505)

Bit	Name	Description	Type ¹	Default	
Register Description: Per-port software-activated reset of the MAC core.					
31:4	Reserved	Reserved	R/W	0x00000	
3	Software Reset MAC 3	Port 3 0 = Reset inactive 1 = Enable	R/W	0	
2	Software Reset MAC 2	Port 2 0 = Reset inactive 1 = Enable	R/W	0	
1	Software Reset MAC 1	Port 1 0 = Reset inactive 1 = Enable	R/W	0	
0	Software Reset MAC 0	Port 0 0 = Reset inactive 1 = Enable	R/W	0	

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 106 MDIO Soft Reset (\$0x506)

Bit	Name	Description	Type ¹	Default		
Register Description: Software-activated reset of the MDIO module. The MDIO controller inside of the IXF1104 is reset by bit 0. The IXF1104 MDIO registers and the PHY MDIO registers are not reset.						
31:1	Reserved	Reserved	RO	0x00000000		
0 Software MDIO Reset 0 = Reset inactive 1 = Reset active R/W 0						
1. RC	= Read Only, No clear or	n Read; R = Read, Clear on Read; W = Write only; R/	W = Read	d/Write, No		

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 107 CPU Interface (\$0x508)

Bit	Name	Description	Type ¹	Default	
	Register Description: CPU Interface Endian select. Allows the user to select the Endian of the CPU interface to allow for various CPUs to be connected to the IXF1104 MAC.				
31:25	Reserved	Reserved	RO	0x00	
24	CPU Endian	Reserved in Little Endian Valid in Big endian 0 = Little Endian 1 = Big Endian	R/W	0	
23:1	Reserved	Reserved	RO	0x000000	
0	CPU Endian Control	Reserved in Big Endian Valid in Little Endian 0 = Little Endian 1 = Big Endian	R/W	0	

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Note: Since the Endianess of the bus is unknown when writing to this register, write 0x01000001 to set the bit and 0x0 to clear it.

Table 108 LED Control (\$0x509)

Bit	Name	Description	Type ¹	Default
Register Description: Global selection of LED mode.				0x00000000
31:2	Reserved	Reserved	RO	0x00000000
1	LED Enable	0 = Disable LED Block 1 = Enable LED Block	R/W	0
0	LED Control	0 = Enable LED Mode 0 for use with SGS Thomson M5450 LED driver (Default) 1 = LED Mode 1 for use with Standard Octal Shift register	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 109 LED Flash Rate (\$0x50A)

Bit	Name	Description	Type ¹	Default		
Regist	Register Description: Global selection of LED flash rate.					
31:3	Reserved	Reserved	RO	0x00000000		
2:0	LED Flash Rate Control	000 =100 ms flash rate 001 = 200 ms flash rate 010 = 300 ms flash rate 011 = 400 ms flash rate 100 = 500 ms flash rate 101 = Reserved 110 = Reserved 111 = Reserved	R/W	000		

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 110 LED Fault Disable (\$0x50B)

Bit	Name	Description	Type ¹	Default		
Register Description: Per-port fault disable. Disables the LED flashing for local or remote faults.						
31:4	31:4 Reserved Reserved RO					
3	LED Port 3 Fault Control	Port 3 0 = Fault enabled 1 = Fault disabled	R/W	0		
2	LED Port 2 Fault Control	Port 2 0 = Fault enabled 1 = Fault disabled	R/W	0		
1	LED Port 1 Fault Control	Port 1 0 = Fault enabled 1 = Fault disabled	R/W	0		
0	LED Port 0 Fault Control	Port 0 0 = Fault enabled 1 = Fault disabled	R/W	0		
1 00	- Poad Only No clear or	Read: R = Read. Clear on Read: W = Write only: R/	\\/ - Door	N/Mrito No		

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 111 JTAG ID (\$0x50C)

Bit	Name	Description	Type ¹	Default	
identific silicon manufa	Register Description: The value of this register follows the same scheme as the device identification register found in the IEEE 1149.1 specification. The upper four bits correspond to silicon stepping. The next 16 bits store a Part ID Number. The next 11 bits contain a JEDEC manufacturer ID. Bit zero = 1 if the chip is the first in a stack. The encoding scheme used for the Product ID field is implementation-dependent.				
31:28	Version	Version	RO	0001 ²	
27:12	Part ID	Part ID	RO	0000010001 010000	
11:8	JEDEC Continuation Characters	JEDEC Continuation Characters	RO	0000	
7:1	JEDEC ID	JEDEC ID	RO	0001001	
0	Fixed	Fixed	RO	1	

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.6 RX FIFO Register Overview

Table 112 through Table 130 provide an overview of the RX FIFO registers, which include the RX FIFO High and Low watermarks.

Table 112 RX FIFO High Watermark Port 0 (\$0x580)

Bit	Name	Description	Type ¹	Default
Register Description: The default value of 0x0E6 represents 230 eight-byte locations. This equates to 1840 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the RX FIFO exceeds the high watermark, flow control is automatically initiated within the MAC to avoid an overflow condition.				
31:12	Reserved	Reserved	RO	0x00000
11: 0	RX FIFO High Watermark Port 0	The high water mark value. Note: Must be greater than the RX FIFO Low Watermark and RX FIFO transfer threshold.	R/W	0x0E6

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

^{2.} These bits vary with stepping.

Table 113 RX FIFO High Watermark Port 1 (\$0x581)

Bit	Name	Description	Type ¹	Default		
Registe equates amount automa	s. This /hen the	0x0E6				
31:12	Reserved	Reserved	RO	0x00000		
11: 0	RX FIFO High Watermark Port 1	Note: Must be greater than the RX FIFO Low Watermark and RX FIFO transfer threshold.	R/W	0x0E6		
	1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write 1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write					

Table 114 RX FIFO High Watermark Port 2 (\$0x582)

Bit	Name	Description	Type ¹	Default	
Register Description: The default value of 0x0E6 represents 230 eight-byte locations. This equates to 1840 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the RX FIFO exceeds the high watermark, flow control is automatically initiated within the MAC to avoid an overflow condition.					
31:12	Reserved	Reserved	RO	0x00000	
11: 0	RX FIFO High Watermark Port 2	The high water mark value. Note: Must be greater than the RX FIFO Low Watermark and RX FIFO transfer threshold.	R/W	0x0E6	
1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write Clear Clear					

Table 115 RX FIFO High Watermark Port 3 (\$0x583)

Bit	Name	Description	Type ¹	Default	
Registe equates amount automa	0x0E6				
31:12	Reserved	Reserved	RO	0x00000	
11: 0	RX FIFO High Watermark Port 3	Note: Must be greater than the RX FIFO Low Watermark and RX FIFO transfer threshold.	R/W	0x0E6	
RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write					

Table 116 RX FIFO Low Watermark Port 0 (\$0x58A)

Bit	Name	Description	Type ¹	Default	
Register Description: The default value of 0x072 represents 114 eight-byte locations. This equates to 912 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the RX FIFO falls below the Low Watermark, flow control is automatically de-asserted within the MAC to allow more line-side data to be captured by the RX FIFO.					
31:12	Reserved	Reserved	RO	0x00000	
11: 0	RX FIFO Low Watermark Port 0	The High Watermark value Note: Should never be greater or equal to the High Watermark.	R/W	0x072	
1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write 1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write					

Table 117 RX FIFO Low Watermark Port 1 (\$0x58B)

Bit	Name	Description	Type ¹	Default
Register Description: The default value of 0x072 represents 114 eight-byte locations. This equates to 912 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the RX FIFO falls below the Low Watermark, flow control is automatically de-asserted within the MAC to allow more line-side data to be captured by the RX FIFO.				
31:12	Reserved	Reserved	RO	0x00000
11: 0	RX FIFO Low Watermark Port 1	The High Watermark value Note: Should never be greater or equal to the High Watermark.	R/W	0x072
RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write				

Table 118 RX FIFO Low Watermark Port 2 (\$0x58C)

Bit	Name	Description	Type ¹	Default	
Register Description: The default value of 0x072 represents 114 eight-byte locations. This equates to 912 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the RX FIFO falls below the Low Watermark, flow control is automatically de-asserted within the MAC to allow more line-side data to be captured by the RX FIFO.					
31:12	Reserved	Reserved	RO	0x00000	
11: 0	RX FIFO Low Watermark Port 2	The High Watermark value Note: Should never be greater or equal to the High Watermark.	R/W	0x072	
1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write 1. RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write					

Table 119 RX FIFO Low Watermark Port 3 (\$0x58D)

11: 0 RX FIFO Low Watermark Port 3 Note: Should never be greater or equal to the R/W 0x072	Bit	Name	Description	Type ¹	Default
11: 0 RX FIFO Low Watermark Port 3 Note: Should never be greater or equal to the R/W 0x072	equates to 912 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the RX FIFO falls below the Low watermark, flow control is automatically de-asserted within the MAC to allow more line-side data to be captured by the RX FIFO.				
11: 0 RX FIFO Low Note: Should never be greater or equal to the R/W 0x072	31:12	Reserved	Reserved	RO	0x00000
High Watermark.	11: 0	RX FIFO Low Watermark Port 3		R/W	0x072

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 120 RX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x594 - 0x597)

Name	Description	Address	Type ¹	Default
RX FIFO Overflow Frame Drop Counter on port 0	When RX FIFO on port 0 becomes full or reset, the number of frames lost/dropped on this port are shown in this register.	0x594	R	0x00000000
RX FIFO Overflow Frame Drop Counter on port 1	When RX FIFO on port 1 becomes full or reset, the number of frames lost/dropped on this port are shown in this register.	0x595	R	0x00000000
RX FIFO Overflow Frame Drop Counter on port 2	When RX FIFO on port 2 becomes full or reset, the number of frames lost/dropped on this port are shown in this register.	0x596	R	0x00000000
RX FIFO Overflow Frame Drop Counter on port 3	When RX FIFO on port 3 becomes full or reset, the number of frames lost/dropped on this port are shown in this register.	0x597	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 121 RX FIFO Port Reset (\$0x59E) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default
Register Description: The soft reset register for each port in the RX block. Port ID = bit position in the register. To make the reset active, the bit must be set High. For example, reset of port 1 implies register value = 0000_0018. Setting the bit to 0 de-asserts the reset.				
31:4	Reserved	Reserved	RO	0x0000000
3	Reset RX FIFO for Port 3	Port 3 0 = De-assert reset 1 = Reset	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 121 RX FIFO Port Reset (\$0x59E) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
2	Reset RX FIFO for Port 2	Port 2 0 = De-assert reset 1 = Reset	R/W	0
1	Reset RX FIFO for Port 1	Port 1 0 = De-assert reset 1 = Reset	R/W	0
0	Reset RX FIFO for Port 0	Port 0 0 = De-assert reset 1 = Reset	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 122 RX FIFO Errored Frame Drop Enable (\$0x59F)

Bit	Name	Description	Type ¹	Default
Register Description: This register configures the dropping of error packets (DEBAD). Note: Jumbo packets are not dropped.				
31:4	Reserved	Reserved	RO	0x0000000
3	RX FIFO Errored Frame Drop Enable Port 3	This bit is used in conjunction with MAC filter bits. This allows the user to select whether the errored packets are to be dropped or not. 1 = Frame Drop Enable 0 = Frame Drop Disable	R/W	0
2	RX FIFO Errored Frame Drop Enable Port 2	This bit is used in conjunction with MAC filter bits. This allows the user to select whether the errored packets are to be dropped or not. 1 = Frame Drop Enable 0 = Frame Drop Disable	R/W	0
1	RX FIFO Errored Frame Drop Enable Port 1	This bit is used in conjunction with MAC filter bits. This allows the user to select whether the errored packets are to be dropped or not. 1 = Frame Drop Enable 0 = Frame Drop Disable	R/W	0
0	RX FIFO Errored Frame Drop Enable Port 0	This bit is used in conjunction with MAC filter bits. This allows the user to select whether the errored packets are to be dropped or not. 1 = Frame Drop Enable 0 = Frame Drop Disable	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 123 RX FIFO Overflow Event (\$0x5A0)

Bit	Name	Description	Type ¹	Default
Register Description: This register provides a status if a FIFO-full situation occurs (for example, a FIFO overflow). The bit position equals the port number. This register is cleared on Read.				
31:4	Reserved	Reserved	RO	0x0000000
3	RX FIFO Overflow Event on Port 3	Port 3 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0
2	RX FIFO Overflow Event on Port 2	Port 2 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0
1	RX FIFO Overflow Event on Port 1	Port 1 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0
0	RX FIFO Overflow Event on Port 0	Port 0 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0
1. RC	= Read Only, No clear or	n Read; R = Read, Clear on Read; W = Write only; R/	W = Read	l/Write, No

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 124 RX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x5A2 - 0x5A5) (Sheet 1 of 2)

Name	Description	Address	Type	Default
RX FIFO Errored	This register counts all frames dropped from the RX FIFO for port 0 by meeting one of the following conditions:			
Frame Drop Counter	 Frames are removed in conjunction with RX Packet Filter Control (\$ Port_Index + 0x19). 	0x5A2	R	0x00000000
on Port o	Frames are greater than the Max Frame Size (Addr: Port_Index + 0x0F).			
	This register is cleared on Read.			
	This register counts all frames dropped from the RX FIFO for port 1 by meeting one of the following conditions:			
RX FIFO Errored Frame Drop Counter on Port 1	 Frames are removed in conjunction with RX Packet Filter Control (\$ Port_Index + 0x19). 	0x5A3	R	0x00000000
OII POIL I	 Frames are greater than Max Frame Size (Addr: Port_Index + 0x0F). 			
	This register is cleared on Read.			

Table 124 RX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x5A2 - 0x5A5) (Sheet 2 of 2)

Name	Description	Address	Туре	Default
	This register counts all frames dropped from the RX FIFO for port 2 by meeting one of the following conditions:			
RX FIFO Errored Frame Drop Counter on Port 2	 Frames are removed in conjunction with RX Packet Filter Control (\$ Port_Index + 0x19). 	0x5A4	R	0x00000000
on Port 2	 Frames are greater than Max Frame Size (Addr: Port_Index + 0x0F). 			
	This register is cleared on Read.			
	This register counts all frames dropped from the RX FIFO for port 3 by meeting one of the following conditions:			
RX FIFO Errored Frame Drop Counter on Port 3	 Frames are removed in conjunction with RX Packet Filter Control (\$ Port_Index + 0x19). 	0x5A5	R	0x00000000
on Port 3	 Frames are greater than Max Frame Size (Addr: Port_Index + 0x0F). 			
	This register is cleared on Read.			

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 125 RX FIFO SPI3 Loopback Enable for Ports 0 - 3 (\$0x5B2)

Bit	Name	Description	Type ¹	Default		
Register Description: Enables the TX SPI3 port to send packets into the RX_FIFO instead of into the TX FIFO, creating a SPI3 loopback.						
31:12	31:12 Reserved Reserved RO					
11	SPI3 loopback enable for Port 3	0 = Disabled 1 = Enabled	R/W	0x0		
10	SPI3 loopback enable for Port 2	0 = Disabled 1 = Enabled	R/W	0x0		
9	SPI3 loopback enable for Port 1	0 = Disabled 1 = Enabled	R/W	0x0		
8	SPI3 loopback enable for Port 0	0 = Disabled 1 = Enabled	R/W	0x0		
7:0	Reserved	Write as 0, ignore on Read.	R/W	0x00		

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 126 RX FIFO Padding and CRC Strip Enable (\$0x5B3)

Bit	Name	Description	Type ¹	Default
	er Description: This contant also enables the CRC	trol register enables to pre-pend every packet with two stripping of a packet.	o extra	0x00000000
31:8	Reserved	Reserved	RO	0x000000
7	CRC Stripping Enable for Port 3	CRC stripping is enabled for Port 3. 0 = Disabled 1 = Enabled	R/W	0
6	CRC Stripping Enable for Port 2	CRC stripping is enabled for Port 2. 0 = Disabled 1 = Enabled	R/W	0
5	CRC Stripping Enable for Port 1	CRC stripping is enabled for Port 1. 0 = Disabled 1 = Enabled	R/W	0
4	CRC Stripping Enable for Port 0	CRC stripping is enabled for Port 0. 0 = Pre-pending Disabled 1 = Pre-pending Enabled	R/W	0
3	Pre-pending Enable ² Port 3	Enables pre-pending of two bytes at the start of every packet – Port 3. 0 = Disabled 1 = Enabled	R/W	0
2	Pre-pending Enable ² Port 2	Enables pre-pending of two bytes at the start of every packet – Port 2. 0 = Disabled 1 = Enabled	R/W	0
1	Pre-pending Enable ² Port 1	Enables pre-pending of two bytes at the start of every packet – Port 1. 0 = Disabled 1 = Enabled	R/W	0
0	Pre-pending Enable ² Port 0	Enables pre-pending of two bytes at the start of every packet – Port 0. 0 = Disabled 1 = Enabled	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 127 RX FIFO Transfer Threshold Port 0 (\$0x5B8) (Sheet 1 of 2)

Bit	Name	Description	Туре	Default
Register Description: RX FIFO transfer threshold for port 0 in 8-byte location.				0x000000BE

^{2.} Pre-pending should not be enabled in loopback mode.

Table 127 RX FIFO Transfer Threshold Port 0 (\$0x5B8) (Sheet 2 of 2)

31:12	Reserved	Reserved		0x00000
		RX FIFO transfer threshold for port 0. This must be less than the RX FIFO High water mark.		
11:0	RX FIFO Transfer Threshold - Port 0	User definable control register that sets the threshold where a packet starts transitioning to the SPI3 interface from the RX FIFO before the EOP is received. Packets received in the RX FIFO below this threshold are treated as store and forward. Note: Do not program the RX FIFO transfer threshold below a setting of 0xBE (1520bytes).	R/W	0x0BE

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 128 RX FIFO Transfer Threshold Port 1 (\$0x5B9)

Bit	Name	Description	Туре	Default	
Register	Register Description: RX FIFO transfer threshold for port 1in 8-byte location.				
31:12	Reserved	Reserved	RO	0x00000	
11:0	RX FIFO Transfer Threshold - Port 1	RX FIFO transfer threshold for port 1. This must be less than the RX FIFO High watermark. User definable control register that sets the threshold where a packet starts transitioning to the SPI3 interface from the RX FIFO before the EOP is received. Packets received in the RX FIFO below this threshold are treated as store and forward. Note: Do not program the RX FIFO transfer threshold below a setting of 0xBE	R/W	0x0BE	

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 129 RX FIFO Transfer Threshold Port 2 (\$0x5BA)

Bit	Name	Description	Туре	Default
Registe	Register Description: RX FIFO transfer threshold for port 2 in 8-byte location.			
31:12	Reserved	Reserved	RO	0x00000
11:0	RX FIFO Transfer Threshold - Port 2	RX FIFO transfer threshold for port 2. This must be less than the RX FIFO High water mark. User definable control register that sets the threshold where a packet starts transitioning to the SPI3 interface from the RX FIFO before the EOP is received. Packets received in the RX FIFO below this threshold are treated as store and forward. Note: Do not program the RX FIFO transfer threshold below a setting of 0xBE (1520bytes).	R/W	0x0BE

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 130 RX FIFO Transfer Threshold Port 3 (\$0x5BB)

Bit I	Name	Description	Туре	Default
Register De	escription: RX FIFO tr	ransfer threshold for port 3 in 8-byte location.		0x000000BE
31:12 F	Reserved	Reserved	RO	0x00000
11:()	RX FIFO Transfer Threshold - Port 3	RX FIFO transfer threshold for port 3. This must be less than the RX FIFO High water mark. User definable control register that sets the threshold where a packet starts transitioning to the SPI3 interface from the RX FIFO before the EOP is received. Packets received in the RX FIFO below this threshold are treated as store and forward. Note: Do not program the RX FIFO transfer threshold below a setting of 0xBE (1520bytes).	R/W	0x0BE

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.7 TX FIFO Register Overview

Table 131 through Table 138 provide an overview of the TX FIFO registers, which include the TX FIFO High and Low watermark.

Table 131 TX FIFO High Watermark Ports 0 - 3 (\$0x600 - 0x603) (Sheet 1 of 2)

Name	Description	Address	Type ¹	Default
TX FIFO High Watermark Port 0	High watermark for TX FIFO Port 0. The default value of 0x3E0 represents 992 8-byte locations. This equates to 7936 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO exceeds the high watermark, flow control is automatically initiated on the SPI3 interface to request that the switch fabric stops data transfers to avoid an overflow condition.	0x600	R/W	0x000003E0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 131 TX FIFO High Watermark Ports 0 - 3 (\$0x600 - 0x603) (Sheet 2 of 2)

Name	Description	Address	Type ¹	Default
TX FIFO High Watermark Port 1	High watermark for TX FIFO Port 1. The default value of 0x3E0 represents 992 8-byte locations. This equates to 7936 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO exceeds the high watermark, flow control is automatically initiated on the SPI3 interface to request that the switch fabric stops data transfers to avoid an overflow condition.	0x601	R/W	0x000003E0
TX FIFO High Watermark Port 2	High watermark for TX FIFO Port 2. The default value of 0x3E0 represents 992 8-byte locations. This equates to 7936 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO exceeds the high watermark, flow control is automatically initiated on the SPI3 interface to request that the switch fabric stops data transfers to avoid an overflow condition.	0x602	R/W	0x000003E0
TX FIFO High Watermark Port 3	High watermark for TX FIFO Port 3. The default value of 0x3E0 represents 992 8-byte locations. This equates to 7936 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO exceeds the high watermark, flow control is automatically initiated on the SPI3 interface to request that the switch fabric stops data transfers to avoid an overflow condition.	0x603	R/W	0x000003E0

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 132 TX FIFO Low Watermark Register Ports 0 - 3 (\$0x60A - 0x60D)

Name	Description	Address	Type ¹	Default
TX FIFO Low Watermark Port 0	Low watermark for TX FIFO Port 0. The default value of 0x0D0 represents 208 8-byte locations. This equates to 1664 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO falls below the low watermark, flow control is automatically de-asserted on the SPI3 interface to allow further data to be sent by the switch fabric to the IXF1104 MAC.	0x60A	R/W	0x000000D0
TX FIFO Low Watermark Port 1	Low watermark for TX FIFO Port 1. The default value of 0x0D0 represents 208 8-byte locations. This equates to 1664 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO falls below the low watermark, flow control is automatically de-asserted on the SPI3 interface to allow further data to be sent by the switch fabric to the IXF1104 MAC.	0x60B	R/W	0x000000D0
TX FIFO Low Watermark Port 2	Low watermark for TX FIFO Port 2. The default value of 0x0D0 represents 208 8-byte locations. This equates to 1664 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO falls below the low watermark, flow control is automatically de-asserted on the SPI3 interface to allow further data to be sent by the switch fabric to the IXF1104 MAC.	0x60C	R/W	0x000000D0
TX FIFO Low Watermark Port 3	Low watermark for TX FIFO Port 3. The default value of 0x0D0 represents 208 8-byte locations. This equates to 1664 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO falls below the low watermark, flow control is automatically de-asserted on the SPI3 interface to allow further data to be sent by the switch fabric to the IXF1104 MAC.	0x60D	R/W	0x000000D0

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 133 TX FIFO MAC Threshold Register Ports 0 - 3 (\$0x614 - 0x617)

Name	Description	Address	Type ¹	Default
TX FIFO MAC Threshold Port 0	MAC threshold for TX FIFO Port 0. The default value of 0x1BE represents 446 8-byte locations. This equates to 3568 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO reaches this threshold, data is forwarded to the MAC core and line-side interfaces for onward transmission. By setting the threshold to an appropriate value, the user can configure the TX FIFO to operate in a "cut-through" mode rather than the default "store and forward" operation mode.	0x614	R/W	0x000001BE
TX FIFO MAC Threshold Port 1	MAC threshold for TX FIFO Port 1. The default value of 0x1BE represents 446 8-byte locations. This equates to 3568 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO reaches this threshold, data is forwarded to the MAC core and line-side interfaces for onward transmission. By setting the threshold to an appropriate value, the user can configure the TX FIFO to operate in a "cut-through" mode rather than the default "store and forward" operation mode.	0x615	R/W	0x000001BE
TX FIFO MAC Threshold Port 2	MAC threshold for TX FIFO Port 2. The default value of 0x1BE represents 446 8-byte locations. This equates to 3568 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO reaches this threshold, data is forwarded to the MAC core and line-side interfaces for onward transmission. By setting the threshold to an appropriate value, the user can configure the TX FIFO to operate in a "cut-through" mode rather than the default "store and forward" operation mode.	0x616	R/W	0x000001BE
TX FIFO MAC Threshold Port 3	MAC threshold for TX FIFO Port 3. The default value of 0x1BE represents 446 8-byte locations. This equates to 3568 bytes of data. A unit entry in this register equates to 8 bytes of data. When the amount of data stored in the TX FIFO reaches this threshold, data is forwarded to the MAC core and line-side interfaces for onward transmission. By setting the threshold to an appropriate value, the user can configure the TX FIFO to operate in a "cut-through" mode rather than the default "store and forward" operation mode.	0x617	R/W	0x000001BE

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 134 TX FIFO Overflow/Underflow/Out of Sequence Event (\$0x61E)

Bit	Name	Description	Type ¹	Default	
hese	register bits provide	FIFO Out of Sequence Event: status information, and indicate if out-of-sequence data h quals the port number + 8. These bits are cleared on Rea		0x0	
his re	gister provides a sta	FIFO Underflow Event: tus that a FIFO Empty situation has occurred (for exampl equals the port number + 4. This register is cleared on R	e, a FIFO lead.	0x0	
his re	gister provides a sta	FIFO Overflow Event: tus that a FIFO full situation has occurred (for example, a equals the port number. This register is cleared on Read.	FIFO	0x0	
31:12	1:12 Reserved Reserved RO				
11	FOSE3	Port 3 0 = FIFO out of sequence event did not occur 1 = FIFO out of sequence event occurred	R	0	
10	FOSE2	Port 2 0 = FIFO out of sequence event did not occur 1 = FIFO out of sequence event occurred	R	0	
9	FOSE1	Port 1 0 = FIFO out of sequence event did not occur 1 = FIFO out of sequence event occurred	R	0	
8	FOSE0	Port 0 0 = FIFO out of sequence event did not occur 1 = FIFO out of sequence event occurred	R	0	
7	FUE3	Port 3 0 = FIFO underflow event did not occur 1 = FIFO underflow event occurred	R	0	
6	FUE2	Port 2 0 = FIFO underflow event did not occur 1 = FIFO underflow event occurred	R	0	
5	FUE1	Port 1 0 = FIFO underflow event did not occur 1 = FIFO underflow event occurred	R	0	
4	FUE0	Port 0 0 = FIFO underflow event did not occur 1 = FIFO underflow event occurred	R	0	
3	FOE3	Port 3 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0	
2	FOE2	Port 2 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0	
1	FOE1	Port 1 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0	
0	FOE0	Port 0 0 = FIFO overflow event did not occur 1 = FIFO overflow event occurred	R	0	

Table 135 Loop RX Data to TX FIFO (Line-Side Loopback) Ports 0 - 3 (\$0x61F)

Registe		Description	Type ¹	Default
through	nterface e.	0x00000000		
31:4	Reserved	Reserved	RO	0x0000000
3	Port 3 Line-Side Loopback	0 = Disable line-side loopback 1 = Enable line-side loopback	R/W	0
2	Port 2 Line-Side Loopback	0 = Disable line-side loopback 1 = Enable line-side loopback	R/W	0
1	Port 1 Line-Side Loopback	0 = Disable line-side loopback 1 = Enable line-side loopback	R/W	0
0	Port 0 Line-Side Loopback	0 = Disable line-side loopback 1 = Enable line-side loopback	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 136 TX FIFO Port Reset (\$0x620)

Bit	Name	Description	Type ¹	Default		
Register Description: This is a port reset register for each port in the TX block. Port ID = bit position in the register. To make the port active, the bit must be set to Low. (For example, reset of Port 3 implies register value = 1000, setting the bit to 1 asserts the port reset).						
31:4	31:4 Reserved Reserved RO					
3	Port 3 Reset	Port 3 0 = De-assert Reset 1 = Assert Reset	R/W	0		
2	Port 2 Reset	Port 2 0 = De-assert Reset 1 = Assert Reset	R/W	0		
1	Port 1 Reset	Port 1 0 = De-assert Reset 1 = Assert Reset	R/W	0		
0	Port 0 Reset	Port 0 0 = De-assert Reset 1 = Assert Reset	R/W	0		

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 137 TX FIFO Overflow Frame Drop Counter Ports 0 - 3 (\$0x621 - 0x624)

Name	Description	Address	Type*	Default
TX FIFO overflow frame drop counter on Port 0	When TX FIFO on Port 0 becomes full or reset, the number of frames lost or removed on this port is shown in this register. This register is cleared on Read.	0x621	R	0x00000000
TX FIFO overflow frame drop counter on Port 1	When TX FIFO on Port 1 becomes full or reset, the number of frames lost or removed on this port is shown in this register. This register is cleared on Read.	0x622	R	0x00000000
TX FIFO overflow frame drop counter on Port 2	When TX FIFO on Port 2 becomes full or reset, the number of frames lost or removed on this port is shown in this register. This register is cleared on Read.	0x623	R	0x00000000
TX FIFO overflow frame drop counter on Port 3	When TX FIFO on Port 3 becomes full or reset, the number of frames lost or removed on this port is shown in this register. This register is cleared on Read.	0x624	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 138 TX FIFO Errored Frame Drop Counter Ports 0 - 3 (\$0x625 - 0x629)

Name	Description	Address	Type*	Default
TX FIFO errored frame drop counter on Port 0	This register provides the number of packets dropped by the TX FIFO due to the following: Data Parity Errors Short SOPs (two consecutive SOPs for a port with no EOP) Small Packets (9-14 bytes) Frames received that are signaled with TERR on the SPI3 TX interface. Note: This register is cleared on Read.	0x625	R	0x00000000
TX FIFO errored frame drop counter on Port 1	This register provides the number of packets dropped by the TX FIFO due to the following: Data Parity Errors Short SOPs (two consecutive SOPs for a port with no EOP) Small Packets (9-14 bytes) Frames received that are signaled with TERR on the SPI3 TX interface. Note: This register is cleared on Read.	0x626	R	0x00000000
TX FIFO errored frame drop counter on Port 2	This register provides the number of packets dropped by the TX FIFO due to the following: Data Parity Errors Short SOPs (two consecutive SOPs for a port with no EOP) Small Packets (9-14 bytes) Frames received that are signaled with TERR on the SPI3 TX interface. Note: This register is cleared on Read.	0x627	R	0x00000000
TX FIFO errored frame drop counter on Port 3	This register provides the number of packets dropped by the TX FIFO due to the following: Data Parity Errors Short SOPs (two consecutive SOPs for a port with no EOP) Small Packets (9-14 bytes) Frames received that are signaled with TERR on the SPI3 TX interface. Note: This register is cleared on Read.	0x628	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 139 TX FIFO Occupancy Counter for Ports 0 - 3 (\$0x62D - 0x630) (Sheet 1 of 2)

Name	Description	Address	Туре	Default
Occupancy for Tx FIFO Port 0	This register gives the Occupancy for TX FIFO Port 0. This is a Read only register	0x62D	R	0x00000000
Occupancy for Tx FIFO Port 1	This register gives the Occupancy for TX FIFO Port 1. This is a Read only register	0x62E	R	0x00000000

Table 139 TX FIFO Occupancy Counter for Ports 0 - 3 (\$0x62D - 0x630) (Sheet 2 of 2)

Occupancy for Tx FIFO Port 2	This register gives the Occupancy for TX FIFO Port 2. This is a Read only register	0x62F	R	0x00000000
Occupancy for Tx FIFO Port 3	This register gives the Occupancy for TX FIFO Port 3. This is a Read only register	0x630	R	0x00000000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 140 TX FIFO Port Drop Enable (\$0x63D)

Bit	Name	Description	Туре	Default
Register packets.		pendently enables the individual TX FIFOs to drop erroneous		0x0000000f
31:4	Reserved	Reserved	RO	0x000000
3	Port 3 Drop	0 = Disable the TXFIFO from dropping erroneous packets 1 = Enable the TXFIFO to drop erroneous packets	R/W	1
2	Port 2 Drop	0 = Disable the TXFIFO from dropping erroneous packets 1 = Enable the TXFIFO to drop erroneous packets	R/W	1
1	Port 1 Drop	0 = Disable the TXFIFO from dropping erroneous packets 1 = Enable the TXFIFO to drop erroneous packets	R/W	1
0	Port 0 Drop	0 = Disable the TXFIFO from dropping erroneous packets 1 = Enable the TXFIFO to drop erroneous packets	R/W	1
	•			1

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.8 MDIO Register Overview

Table 141 through Table 144 provide an overview of the MDIO registers.

Table 141 MDIO Single Command (\$0x680) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default	
	Register Description: Gives the CPU the ability to perform single MDIO read and write accesses to the external PHY for ports that are configured in copper mode.				
31:21	Reserved	Reserved	RO	00000000000	
20	MDIO Command	Performs the MDIO operation. Cleared when done. 0 = MDIO ready, operation complete 1 = Perform operation	R/W	0	
19:18	Reserved	Reserved	RO	00	
17:16	OP Code	MDIO Op Code; two bits identify operation to be performed: 00 = Reserved 01 = Write operation (as defined in IEEE 802.3, clause 22.2.4.5) 10 = Read operation (as defined in IEEE 802.3, clause 22.2.4.5) 11 = Reserved	R/W	01	
15:10	Reserved	Reserved	RO	000000	

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 141 MDIO Single Command (\$0x680) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
9:8	PHY Address	Sets bits 1:0 of the external PHY address. Bits 4:2 of the PHY address are fixed at 000.	R/W	00
7:5	Reserved	Reserved	RO	000
4:0	REG Address	Five-bit address to one among 32 registers in an addressed PHY device.	R/W	00000

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 142 MDIO Single Read and Write Data (\$0x681)

Bit	Name	Description	Type ¹	Default		
Regist	Register Description: MDIO read and write data.			0x00000000		
31:16	MDIO Read Data	MDIO Read data from external device.	RO	0x0000		
15:0	MDIO Write Data	MDIO Write data to external device.	R/W	0x0000		
1 RO	1 RO = Read Only No clear on Read: R = Read Clear on Read: W = Write only: R/W = Read/Write No					

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 143 Autoscan PHY Address Enable (\$0x682)

Bit	Name	Description	Type ¹	Default
Register Description: Defines valid PHY addresses. Each bit enables the corresponding PHY address. 0 = Disable the PHY address 1 = Enable the PHY address Note: Autoscan is only applicable for the ports in copper mode.				
31:4	Reserved	Reserved	RO	0x0000000
3:0	Autoscan PHY Address	Autoscan PHY address enable 0 = Disable address 1 = Enable address	R/W	1111
1 RO	= Read Only No clear or	n Read; R = Read, Clear on Read; W = Write only; R/	W = Read	d/Write No

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 144 MDIO Control (\$0x683) (Sheet 1 of 2)

Bit	Name	Description	Type ¹	Default	
Regist	Register Description: Miscellaneous control bits.				
31:4	Reserved	Reserved	RO	0x000	
3	MDIO in Progress	MDIO progress. This bit reflects the status of MDIO transaction 0 = MDIO Single command not in progress 1 = MDIO Single Command in progress	RO	0	

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 144 MDIO Control (\$0x683) (Sheet 2 of 2)

Bit	Name	Description	Type ¹	Default
2	MDIO in Progress Enable	Enables the MDIO in progress bit 0 = Disable MDIO in progress register bit 1 = Enable MDIO in progress register bit	R/W	0
1	Autoscan Enable	Autoscan enable 0 = Disable Autoscan 1 = Enable Autoscan	R/W	0
0	MDC Speed	MDC speed 0 = MDC runs at 2.5 MHz 1 = MDC runs at 18 MHz	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.9 SPI3 Register Overview

Table 145 through Table 147, Address Parity Error Packet Drop Counter (\$0x70A), on page 208 provide an overview of the SPI3 registers.

Table 145 SPI3 Transmit and Global Configuration (\$0x700) (Sheet 1 of 3)

Bit	Name	Description	Type ¹	Default
	Register Description: This register gives the configuration related to the SPI3 Transmitter and Global configuration (4 \times 8 mode).			0x00200000
31:24	Reserved	Reserved	RO	0x00
23	SPI3 Transmitter Soft Reset	1 = The SPI3 TX block is reset.	R/W	0
22	SPI3 Receiver Soft Reset	1 = The SPI3 RX block is reset.	R/W	0
21	SPHY/MPHY Mode	Indicates that SPI3 block operates in 32-bit MPHY mode. Indicates that the SPI3 block operates in 4 x 8 SPHY mode. This configuration affects both the SPI3 transmitter and receiver functionality.	R/W	1
20	Tx_ad_prtyer_drop	Indicates whether to drop packets received with parity error during the address selection phase (Tsx and nTenb High) should be dropped. 0 = Do not drop packets with address parity error 1 = Drop packets with address parity error This is applicable only in MPHY mode of operation. This bit is ignored in SPHY (4 x 8) mode as there will be no address selection.	R/W	0
19	Dat_prtyer_drp Port 3	SPHY/MPHY Mode: Indicates whether to drop packets with data parity error for port 3. 0 = Do not drop packets with data parity error (default) 1 = Drop packets with data parity error	R/W	0x0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 145 SPI3 Transmit and Global Configuration (\$0x700) (Sheet 2 of 3)

Bit	Name	Description	Type ¹	Default
18	Dat_prtyer_drp Port 2	SPHY/MPHY Mode: Indicates whether to drop packets with data parity error for port 2. 0 = Do not drop packets with data parity error (default) 1 = Drop packets with data parity error	R/W	0
17	Dat_prtyer_drp Port 1	SPHY/MPHY Mode: Indicates whether to drop packets with data parity error for port 1. 0 = Do not drop packets with data parity error (default) 1 = Drop packets with data parity error	R/W	0
16	Dat_prtyer_drp Port 0	SPHY/MPHY Mode: Indicates whether to drop packets with data parity error for port 0. 0 = Do not drop packets with data parity error (default) 1 = Drop packets with data parity error	R/W	0
15:8	Reserved	Write as 0, ignore on Read.	R/W	00000000
7	Tx_parity_sense Port 3	SPHY Mode: Indicates the parity sense to check the parity on TDAT bus for port 3. 0 = Odd Parity 1 = Even Parity MPHY Mode: NA	R/W	0
6	Tx_parity_sense Port 2	SPHY Mode: Indicates the parity sense to check the parity on TDAT bus for port 2. 0 = Odd Parity 1 = Even Parity MPHY Mode: NA	R/W	0
5	Tx_parity_sense Port 1	SPHY Mode: Indicates the parity sense to check the parity on TDAT bus for port 1. 0 = Odd Parity 1 = Even Parity MPHY Mode: NA	R/W	0
4	Tx_parity_sense Port 0	SPHY Mode: Indicates the parity sense to check the parity on TDAT bus for port 0. 0 = Odd Parity 1 = Even Parity MPHY Mode: Indicates the parity sense to check the parity on TDAT bus for all ports. 0 = Odd Parity 1 = Even Parity	R/W	0

clear; R/W/C = Read/Write, Clear on Write

Table 145 SPI3 Transmit and Global Configuration (\$0x700) (Sheet 3 of 3)

Bit	Name	Description	Type ¹	Default
3	Tx_port_enable Port 3	SPHY Mode: 0 = Disables the selected SPI3TX port 3. 1 = Enables the selected SPI3 TX port 3. MPHY Mode: 0 = Disables the selected SPI3 TX port 3. 1 = Enables the selected SPI3 TX port 3.	R/W	1
2	Tx_port_enable Port 2	SPHY Mode: 0 = Disables the selected SPI3 TX port 2 1 = Enables the selected SPI3 TX port 2 MPHY Mode: 0 = Disables the selected SPI3 TX port 2 1 = Enables the selected SPI3 TX port 2	R/W	1
1	Tx_port_enable Port 1	SPHY Mode: 0 = Disables the selected SPI3 TX port 1 1 = Enables the selected SPI3 TX port 1 MPHY Mode: 0 = Disables the selected SPI3 TX port 1 1 = Enables the selected SPI3 TX port 1	R/W	1
0	Tx_port_enable Port 0	SPHY Mode: 0 = Disables the selected SPI3 TX port 0 1 = Enables the selected SPI3 TX port 0 MPHY Mode: 0 = Disables the selected SPI3 TX port 0 1 = Enables the selected SPI3 TX port 0	R/W	1

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 146 SPI3 Receive Configuration (\$0x701) (Sheet 1 of 4)

Bit	Name	Description	Type ¹	Default
Regist	Register Description: This register gives the configuration related to the SPI3 receiver.			
31:28	Reserved	Reserved	RO	0x0
27	B2B_PAUSE Port 3	SPHY Mode: Indicates the number of pause cycles to be introduced between back-to-back transfers for port 3. 0 = Zero pause cycles 1 = Two pause cycles MPHY Mode: NA	R/W	0
26	B2B_PAUSE Port 2	SPHY Mode: Indicates the number of pause cycles to be introduced between back-to-back transfers for port 2. 0 = Zero pause cycles 1 = Two pause cycles MPHY Mode: NA	R/W	0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 146 SPI3 Receive Configuration (\$0x701) (Continued) (Sheet 2 of 4)

Bit	Name	Description	Type ¹	Default
25	B2B_PAUSE Port 1	SPHY Mode: Indicates the number of pause cycles to be introduced between back-to-back transfers for port 1. 0 = Zero pause cycles 1 = Two pause cycles MPHY Mode: NA	R/W	0
24	B2B_PAUSE Port 0	SPHY Mode: Indicates the number of pause cycles to be introduced between back-to-back transfers for port 0. 0 = Zero pause cycles 1 = Two pause cycles MPHY Mode: Indicates the number of pause cycles to be introduced between back-to-back transfers for all ports. 0 = Zero pause cycles 1 = Two pause cycles	R/W	0
23:22	RX_BURST Port 3	SPHY Mode: NA MPHY Mode: NA	R/W	0x0
21:20	RX_BURST Port 2	SPHY Mode: NA MPHY Mode: NA	R/W	0x0
19:18	RX_BURST Port 1	SPHY Mode: NA MPHY Mode: NA	R/W	0x0
17:16	RX_BURST Port 0	SPHY Mode: NA MPHY Mode: Selects the maximum burst size on the RX path for all ports. 0x = 64 bytes maximum burst size 10 = 128 bytes maximum burst size 11 = 256 bytes maximum burst size	R/W	0x0
15	Rx_parity_sense Port 3	SPHY Mode: Indicates the parity sense to check the parity on RDAT bus for port 3. 0 = Odd Parity 1 = Even Parity MPHY Mode: NA	R/W	0x0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 146 SPI3 Receive Configuration (\$0x701) (Continued) (Sheet 3 of 4)

Bit	Name	Description	Type ¹	Default
14	Rx_parity_sense Port 2	SPHY Mode: Indicates the parity sense to check the parity on RDAT bus for port 2. 0 = Odd Parity 1 = Even Parity MPHY Mode: NA	R/W	0x0
13	Rx_parity_sense Port 1	SPHY Mode: Indicates the parity sense to check the parity on RDAT bus for port 1. 0 = Odd Parity 1 = Even Parity MPHY Mode: NA	R/W	0x0
12	Rx_parity_sense Port 0	SPHY Mode: Indicates the parity sense to check the parity on RDAT bus for port 0. 0 = Odd Parity 1 = Even Parity MPHY Mode: Indicates the parity sense to check the parity on RDAT bus for all ports. 0 = Odd Parity 1 = Even Parity	R/W	0x0
11	Rx_port_enable Port 3	SPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port. MPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port.	R/W	0x1
10	Rx_port_enable Port 2	SPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port. MPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port.	R/W	0x1
9	Rx_port_enable Port 1	SPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port. MPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port.	R/W	0x1
8	Rx_port_enable Port 0	SPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port. MPHY Mode: 0 = Disables the selected SPI3 RX port. 1 = Enables the selected SPI3 RX port.	R/W	0x1

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 146 SPI3 Receive Configuration (\$0x701) (Continued) (Sheet 4 of 4)

Bit	Name	Description	Type ¹	Default
7	Rx_core_enable	SPHY Mode: NA. Write as 1, ignore on Read. MPHY Mode: 0 = Disables the RX SPI3 core. 1 = Enables the RX SPI3 core.	R/W	0x1
6:1	IBA[5:0]	SPHY Mode: NA. Write as 0, ignore on Read. MPHY Mode: Sets the 6-bit value appended to the 2-bit address during the port address selection.	R/W	0x00
0	RERR_enable	SPHY Mode/MPHY Mode: Frames marked to be filtered (based on the settings in RX FIFO Errored Frame Drop Enable (\$0x59F) can be optionally indicated with an RERR when sent out the SPI3 interface. 0 = Packets not indicated with RERR. 1 = Packets indicated with RERR.	R/W	0
1 DO) = Dood Only No alogs on	Read: R = Read. Clear on Read: W = Write only: R/	W = Bood	I/M/sita Na

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 147 Address Parity Error Packet Drop Counter (\$0x70A)

Bit	Name	Description	Type ¹	Default	
	Register Description: This register counts the number of packets dropped due to parity error detection during the address selection cycle.				
31:8	Reserved	Reserved	RO	0x000000	
7:0	Address Parity Error Packet Drop Counter	This is an 8-bit counter that counts the number of packets dropped due to parity error detection during the address selection cycle. This gets cleared when read and saturates at 8'hFF. There is only one counter for address parity drop as address will be used only in MPHY mode of operation. The counter gets cleared once the register is read.	R	0x00	
1 RO	= Read Only No clear or	Read: R = Read. Clear on Read: W = Write only: R/	W = Read	1/Write No	

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.10 SerDes Register Overview

Table 148 through Table 151, *Clock and Interface Mode Change Enable Ports 0 - 3* (\$0x794), on page 210 define the contents of the SerDes registers at base location 0x780, which contain the control and status for the four SerDes interfaces on the IXF1104 MAC.

Table 148 TX Driver Power Level Ports 0 - 3 (\$0x784) (Sheet 1 of 2)

Bit	Name	Description	Туре	Default
Register Description: Allows selection of various programmable drive strengths on each SerDes port. Refer to Section 5.6.2.2, <i>Transmitter Programmable Driver-Power Levels</i> , on page 100.				0x0000dddd
31:16	Reserved	Reserved	RO	0x0000

Table 148 TX Driver Power Level Ports 0 - 3 (\$0x784) (Sheet 2 of 2)

15:12	DRVPWR3[3:0]	Encoded input that sets Power Level for Port 3	R/W	1101
11:8	DRVPWR2[3:0]	Encoded input that sets Power Level for Port 2	R/W	1101
7:4	DRVPWR1[3:0]	Encoded input that sets Power Level for Port 1	R/W	1101
3:0	DRVPWR0[3:0]	Encoded input that sets Power Level for Port 0	R/W	1101

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 149 TX and RX Power-Down (\$0x787)

ower-down of unu		0x00000000
F	RO (0x0000000
ower-down) R	R/W	0000
F	30	0x00
ower-down) R	R/W	0000
	ower-down) F	RO

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 150 RX Signal Detect Level Ports 0 - 3 (\$0x793)

Bit	Name	Description	Type ¹	Default
	Register Description: This register shows the status of the Rx input in relation to the level of the signal being received from the line. This register is meant for debug and test use.			
31:4	Reserved	Reserved	RO	0x0000000
3:0	SIGDET[3:0]	Signal Detect for Ports 0-3 0 = Noise 1 = Signal	RO	0x0

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 151 Clock and Interface Mode Change Enable Ports 0 - 3 (\$0x794)

Bit	Name	Description	Type1	Default
Register Description: This register is used when a change to the operational mode or speed of the IXF1104 MAC is required. This register ensures that when a change is made that the internal clocking of the IXF1104 MAC is managed correctly and no unexpected effects of the operational or speed change are observable on the line interfaces.			0x00000000	
31:4	Reserved	Reserved	RO	0x0000000
3	Clock and Interface Mode Change Enable Port 3 ²	Enables internal clock generator for Port 3 to sample the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 0 = Set to zero when changes are being made to the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 1 = Set to 1 for the configuration changes to take effect.	R/W	0
2	Clock and Interface Mode Change Enable Port 2 ²	Enables internal clock generator for Port 2 to sample the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 0 = Set to zero when changes are being made to the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 1 = Set to 1 for the configuration changes to take effect.	R/W	0
1	Clock and Interface Mode Change Enable Port 1 ²	Enables internal clock generator for Port 1 to sample the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 0 = Set to zero when changes are being made to the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 1 = Set to 1 for the configuration changes to take effect.	R/W	0
0	Clock and Interface Mode Change Enable Port 0 ²	Enables internal clock generator for Port 0 to sample the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 0 = Set to zero when changes are being made to the MAC IF Mode and RGMII Speed (\$ Port_Index + 0x10) and the Interface Mode (\$0x501). 1 = Set to 1 for the configuration changes to take effect.	R/W	0

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

8.4.11 Optical Module Register Overview

Table 152 through Table 155, I^2C Data Ports 0 - 3 (\$0x79F), on page 212 provide an overview of the Optical Module Registers.

Note: All registers in this section are only applicable to ports that are configured in fiber mode.

^{2.} Refer to Section 6.1, Change Port Mode Initialization Sequence, on page 124 for the proper sequence to change the port mode and speed in conjunction with this register.

Table 152 Optical Module Status Ports 0-3 (\$0x799)

Bit	Name	Description	Type ¹	Default
Register Description: This register provides a means to control and monitor the interface to the optical modules when a port is used in fiber mode.				0x00000000
31:24	Reserved	Reserved	RO	0x00
23:20	Rx_LOS_3:0	Rx_LOS inputs for Ports 0-3	R	0x0
19:14	Reserved	Reserved		0X00
13:10	Tx_FAULT_3:0	Tx_FAULT inputs for Ports 0-3	R	0x0
9:4	Reserved	Reserved		0X00
3:0	MOD_DEF_3:0	MOD_DEF inputs for Ports 0-3	R	0x0
1 DO - Dood Only, No close on Dood, D - Dood, Close on Dood, W - Write only, DAW - Dood Awrite, No				

^{1.} RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 153 Optical Module Control Ports 0 - 3 (\$0x79A)

Name	Description	Type ¹	Default
Register Description: This register provides access to optical module interrupt enables and sets the TX_DISABLE output for the ports configured in fiber mode.			
Reserved	Reserved	RO	0x0000
I ² C_port_enable	When set, individually enables the four I ² C ports.	R/W	0xF
RX_LOS_EN	Enable for RX_LOS_INT operation 1 = Enabled	R/W	0
TX_FAULT_EN	Enable for TX_FAULT_INT operation 1 = Enabled	R/W	0
MOD_DEF_EN	Enable for MOD_DEF_INT operation 1 = Enabled	R/W	0
Reserved	Reserved	RO	0X00
TX_DISABLE_3:0	Tx_DISABLE outputs for Ports 0-3	R/W	0x0
	er Description: This regise TX_DISABLE output for Reserved I ² C_port_enable RX_LOS_EN TX_FAULT_EN MOD_DEF_EN Reserved	Pr Description: This register provides access to optical module interrupt enable TX_DISABLE output for the ports configured in fiber mode. Reserved Reserved When set, individually enables the four I²C ports. RX_LOS_EN Enable for RX_LOS_INT operation 1 = Enabled TX_FAULT_EN Enable for TX_FAULT_INT operation 1 = Enabled MOD_DEF_EN Enable for MOD_DEF_INT operation 1 = Enabled Reserved Reserved Reserved	Propertion: This register provides access to optical module interrupt enables and a TX_DISABLE output for the ports configured in fiber mode. Reserved Reserved RO I^2C_port_enable When set, individually enables the four I^2C ports. R/W RX_LOS_EN Enable for RX_LOS_INT operation 1 = Enabled R/W TX_FAULT_EN Enable for TX_FAULT_INT operation 1 = Enabled R/W MOD_DEF_EN Enable for MOD_DEF_INT operation 1 = Enabled R/W Reserved Reserved RO

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Table 154 I²**C Control Ports 0 - 3 (\$0x79B)**

Bit	Name	Description	Type ¹	Default
Register Description: This register controls and monitors the interface to the optical modul when used in fiber mode.			modules	0x00000000
31:29	Reserved	Reserved	RO	0x0
28	Port address Err (R)	Port addressing error.	R	0
27	wp_err	An attempt to write to the protected E ² PROM has occurred.		0
26	no_ack_err	This bit is set to 1 when a write and subsequent read from an Optical Module Interface has failed. Use this signal to validate the data being read. Data is only valid if this bit is equal to zero.		0
25	I ² C_enable	Enable the I ² C block.	R/W	0
24	I ² C_start	Start the I ² C transfer.	R/W	0
23	Reserved	Reserved	RO	0
22	write_complete	Bit is asserted when write access is complete.	R	0
21	Reserved	Reserved	RO	0
20	Read_complete	Bit asserted when read access is complete.	R	0
19:18	Reserved	Reserved	RO	0
17:16	Port Select	Selects the port for which the I ² C transaction is targeted. Valid range is 0 to 3.	R/W	00
15	Read/Write	0 = Write transaction 1 = Read transaction	R/W	0
14:11	Device ID	Most-significant four bits of device address field.	R/W	0x0
10:0	Register Address	Bits 10:8 select the least-significant three bits of the device address field Bits 7:0 select the word/register address	R/W	0x000
	= Read Only, No clear c ar; R/W/C = Read/Write,	n Read; R = Read, Clear on Read; W = Write only; R Clear on Write	/W = Read	d/Write, No

Table 155 I²C Data Ports 0 - 3 (\$0x79F)

	•	-		
Bit	Name	Description	Type ¹	Default
Register Description: These registers hold data bytes that are read and written using the I ² C interface to Optical Module Interfaces connected to each port of the IXF1104 4-Port Gigabit Ethernet Media Access Controller.				0x00000000
31:24	Reserved	Reserved	RO	0x00
23:16	Write Data	Bit 23=MSB, Bit 16 = LSB Data to be written to the Optical Module Interface.	R/W	0X00
15:8	Reserved	Reserved	RO	0x00
7:0	Read Data	Bit 7 = MSB, Bit 0 = LSB Data read from the Optical Module Interface.	R/W	0X00
1 PO = Pead Only, No clear on Pead: P = Pead, Clear on Pead: W = Write only, P/W = Pead/Write No				

RO = Read Only, No clear on Read; R = Read, Clear on Read; W = Write only; R/W = Read/Write, No clear; R/W/C = Read/Write, Clear on Write

Mechanical Specifications 9.0

The IXF1104 MAC is packaged in a 576-ball BGA package with 6 balls removed diagonally from each corner, for a total of 552 balls used measuring 25 mm x 25 mm. The pitch of the package balls is 1 mm.

9.1 **Overview**

CBGA (standard and RoHS-compliant) and FC-PBGA packages are suited for applications requiring high I/O counts and high electrical performance, and are recommended for highpower applications with high noise immunity requirements.

9.1.1 **Features**

- Flip chip die attach; surface mount second-level interconnect
- · High electrical performance
- High I/O counts
- Area array I/O options
- Multiple power-zone offering supports core and four additional voltages
- JEDEC-compliant package

9.2 **Package Specifics**

The IXF1104 MAC uses the following package:

- · 576-ball BGA package with 6 balls removed diagonally from each corner, for a total of 552 balls used
- Ball pitch of 1.0 mm
- Overall package dimensions of 25 mm x 25 mm

9.3 **Package Information**

Table 156 Package Description

Product Name	Package	Substrate Thickness	Solder Ball Diameter
IXF1104 Leaded	552 CBGA Leaded	2.48 max, 2.02 min	0.8 +/04 mm
IXF1104 RoHS	552 CBGA RoHS	2.48 max, 2.02 min	0.7 +/- 0.1 mm
IXF1104 Leaded	552 FC-PBGA Leaded	1.34 max, 1.09 min	0.6 +/- 0.1 mm
IXF1104 RoHS	552 FC-PBGA RoHS	1.34 max, 1.09 min	0.6 +/- 0.1 mm

Cortina Systems® IXF1104 4-Port Gigabit Ethernet Media Access Controller ordering Note:

information can be found at www.cortina-systems.com.

9.3.1 CBGA Package Diagrams

Figure 55 and Figure 56 illustrate the CBGA top, side, and bottom package views and Table 156 on page 213 lists the FC-PBGA mechanical specifications.

Figure 55 CBGA Package Diagram (Top and Side View)

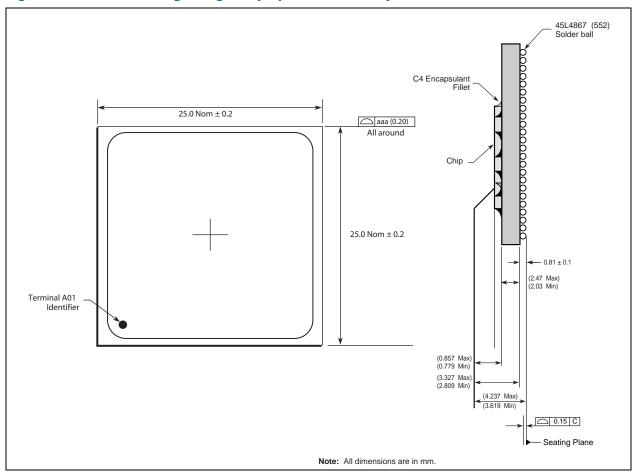
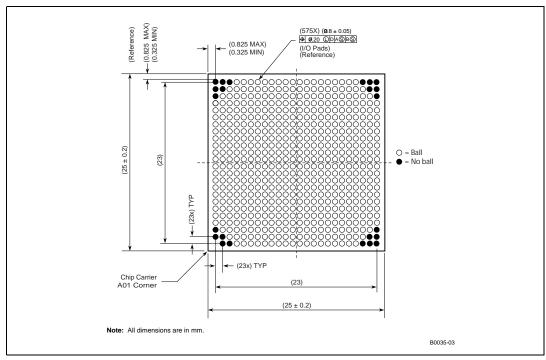



Figure 56 CBGA Package Diagram (Bottom View)

9.3.2 Plastic Ball Grid Array Package Diagram

Figure 57 and Figure 58 illustrate the FC-PBGA top, side, and bottom package views and Table 156 on page 213 lists the FC-PBGA mechanical specifications.

Note: Please contact your field sales representative for more information on the FC-PBGA package.

Figure 57 FC-PBGA Package Diagram (Top and Side View)

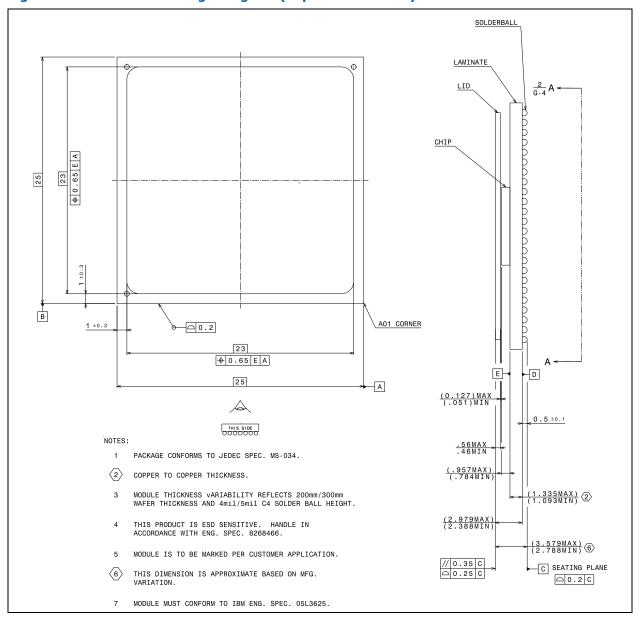
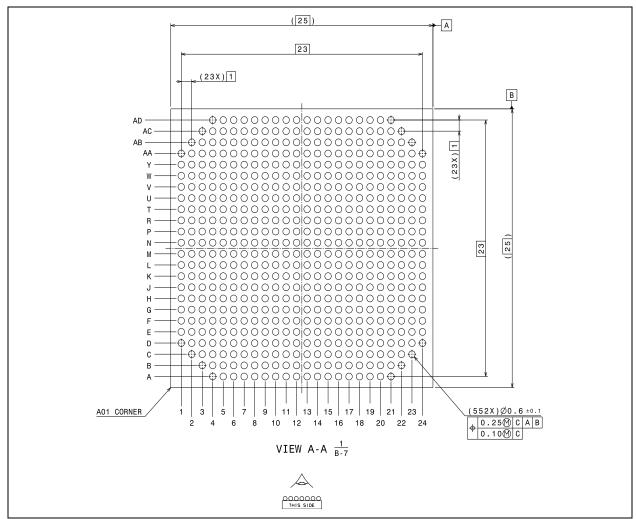



Figure 58 FC-PBGA Package Diagram (Bottom View)

For additional product and ordering information:

www.cortina-systems.com