Ordering number : ENA2143

LV8068V

ві-смоs іс Fan Motor Driver Single-Phase Full-Wave Driver

http://onsemi.com

Overview

The LV8068V is single-phase bipolar fan motor is driven, through BTL output linear driver, at high efficiency, low power, and low noise by suppressing the reactive power. The BTL output can put PWM control by an outside signal together, which is optimum for the CPU cooler, etc.

Functions

- Single-phase full-wave operating by BTL output (BTL amplifier gain : +49dB)
- Speed control available by PWM input
- The characteristic of the motor rotational speed adjust by "VCONT" voltage
- The characteristic of the motor rotational minimum speed adjust by "RMI" voltage
- Hall bias output terminal (VHB = 1.32V (typ))
- Built-in Quick Start circuit
- Startup support function (50% Duty Start)
- FG (rotate detection) output terminal (Open drain output)
- RD (Lock detection) output terminal (Open drain output)
- Built-in Current Limiter circuit (limit at I_O = 250mA with Rf = 1 connection, the limiter value determined with Rf.)
- Built-in lock protection and automatic return circuit
- Built-in thermal shut-down (TSD) circuit

Specitications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		18	V
OUT pin output current	I _{OUT} max	In regular mode	1.2	Α
OUT pin output voltage handling	V _{OUT} max		18	V
RD output voltage handling	V _{RD} max		18	V
RD output current	I _{RD} max		5	mA
FG output voltage handling	V _{FG} max		18	V
FG output current	I _{FG} max		5	mA
HB output current	I _{HB} max		10	mA
PWM input voltage handling	VPWM max		7	V
Allowable power dissipation	Pd max	IC On board*	0.8	W
Operating temperature	Topr		-40 to +90	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specified board: 114.3mm × 76.1mm × 1.6mm, glass epoxy board

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol Conditions		Ratings	Unit
Operating supply voltage1	V _{CC} op1	Active at all circuit	6.0 to 16.0	V
Operating supply voltage2	V _{CC} op2	Start-up with PWM=H and RMI=VCONT=L	4.0 to 6.0	V
Hall input common-mode input voltage	VICM		0.3 to 5VREG-1.5	V
range				
VCONT input voltage range	VCONTIN		0.3 to 5VREG	V
RMI input voltage range	VRMIIN		0.3 to 5VREG	V
PWM input frequency range	FPWMIN		20 to 50	kHz

Electrical Characteristics at $\underline{Ta} = 25^{\circ}C$, $V_{CC} = 12.0V$

Parameter	Symbol	Conditions	Ratings			Unit
Farameter	Symbol	Cortaitions	min	typ	max	Offic
Circuit current	Icc			6	8	mA
5VREG output voltage	VRGL	I5VREG = 5mA	4.7	5.0	5.3	V
REGH output voltage	VRGH	IREGH = 5mA	V _{CC} -4.6	V _{CC} -4.2	V _{CC} -3.9	V
HB bias voltage	VHB	IHB = 5mA	1.22	1.32	1.42	V
Hall Input bias current	IHIN				1	μΑ
Output ON voltage	Vo	I _O = 250mA, source + sink		0.35	0.5	V
Current limiter	VRF		200	250	300	mV
Hall amplifier output offset voltage	V _{IN} OFS		-10		10	mV
Hall amplifier voltage gain	GH		44	49		dB
PWM pin bias current	IPWM	PWM = GND	-20	-10	-3	μΑ
PWM pin input Low level	V _{PWM} L		0		0.7	V
PWM pin input High level	V _{PWM} H		2.5		5VREG	V
PWM input smallest pulse width	TPWM	Design guarantee*		5		μs
CPWM charge current	ICPC		13	18	23	μΑ
CPWM discharge current	ICPD		13	18	23	μΑ
CPWM charge/ discharge current ratio	ICPRTO	ICPRTO = ICPC/ICPD	0.7	1	1.2	
CPWM oscillation High level	VCPH		3.3	3.5	3.8	V
CPWM oscillation Low level	VCPL		0.7	1.0	1.3	V
CPWM oscillation amplitude width	VCPA		2.3	2.5	2.7	V
VCONT pin input bias current	ICONT				1	μΑ
RMI pin input bias current	IRMI				1	μΑ
RD output Low-level voltage	VRD	IRD = 3mA			0.3	V

^{*:} Design guarantee: Indicates a design target value. These parameters are not tested in the independent IC.

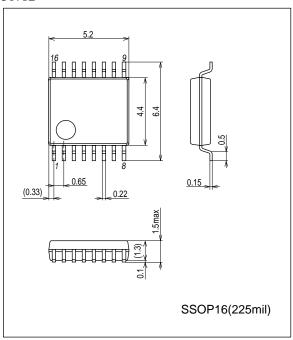
Continued on next page.

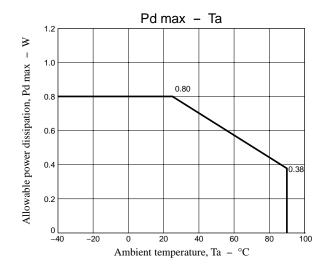
Caution 1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

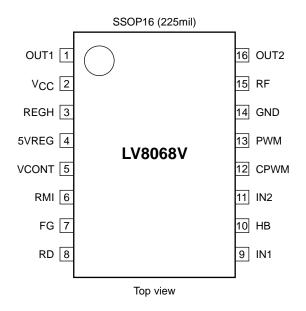
LV8068V

Continued from preceding page.

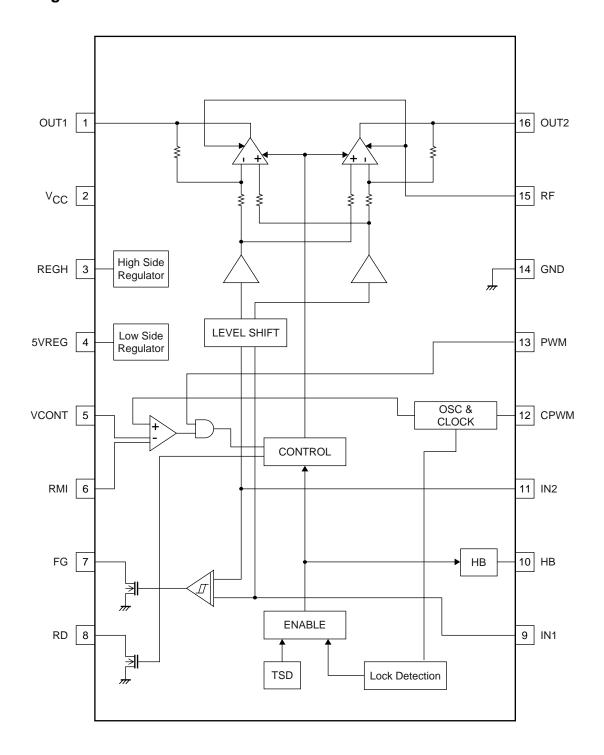

Doromotor	Cumbal	Conditions	Ratings			Unit	
Parameter	Symbol Conditions		min	typ	max	Offic	
RD output leakage current	I _{RDL}	VRD = 18V			10	μΑ	
FG output Low-level voltage	V _{FG}	I _{FG} = 3mA			0.3	V	
FG output leakage current	I _{FGL}	V _{FG} = 18V			10	μΑ	
FG comparator hysteresis width	ΔVFG		±2	±4	±10	mV	
Output ON time in Lock-detection	TACT	CPWM = 100pF	0.35	0.5	0.65	sec	
Output OFF time in Lock-detection	TDET	CPWM = 100pF	3.0	4.5	6.0	sec	
Output ON/OFF ratio in Lock-detection TRTO TRTO = TDET		TRTO = TDET/TACT	7	9	11		
Thermal shutdown oprating temperature	TSD Design guarantee*			180		°C	
Thermal shutdown hysteresis width	ΔTSD	Design guarantee*		40		°C	


^{*} Design guarantee: Indicates a design target value. These parameters are not tested in the independent IC.

Package Dimensions


unit : mm (typ)

3178B

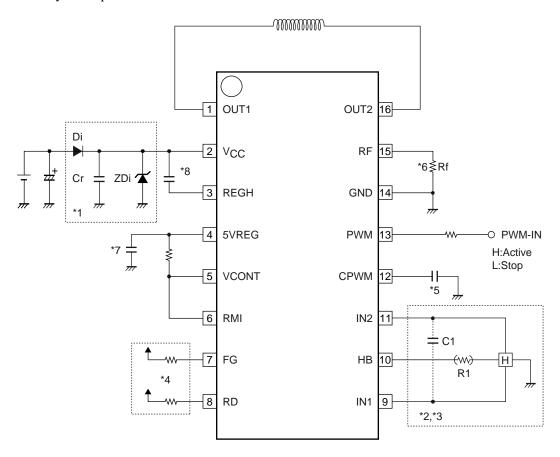


Pin Assignment

Block Diagram

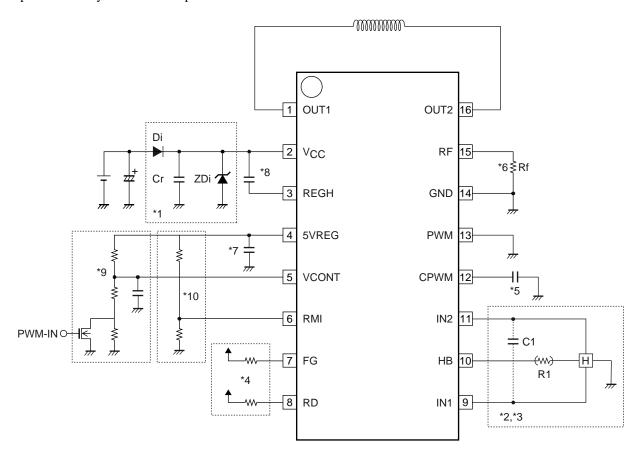
Pin Function

Pin Fur			
Pin No.	Pin name	Function	Equivalent circuit
1	OUT1	Motor driver output pin	
16	OUT2	Motor driver output pin	15
2	VCC	Voltage supply pin	
3	REGH	Regulator voltage output pin for internal circuit (Upper side)	3
4	5VREG	Regulator voltage output pin for internal circuit (Lower side)	4
5	VCONT	Output duty control pin for CPWM	
6	RMI	Output minimum duty control pin for CPWM	(5) 1 (6) 4 (7)
7	FG	FG pulse output pin	
8	RD	RD pulse output pin	8 1 1
9	IN1	Hall input - pin	
11	IN2	Hall input + pin	9 11 11
10	НВ	Hall bias output pin	10


Continued on next page.

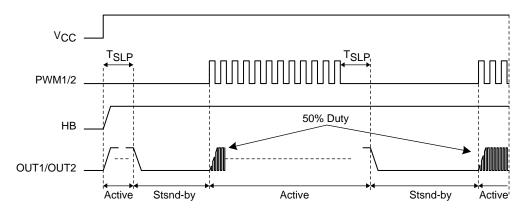
LV8068V

Continued from preceding page Pin No. Pin name Function Equivalent circuit CPWM Capacitor connection pin for PWM oscillator and 12 Main clock PWM PWM control input pin 13 14 GND RF 15 Reference voltage pin for current limiter


Sample Application Circuit

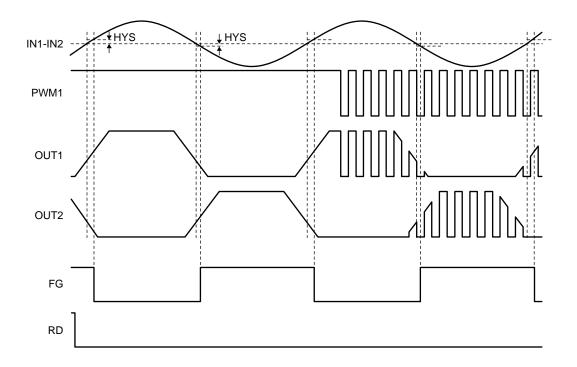
1. Speed control by PWM pin

- *1 When the diode Di is used to prevent device destruction from reverse connection, the capacitor Cr must be inserted to assure a path for regenerative currents.
 - Similarly, if there no nearby capacitors on the fan power supply line, the capacitor Cr is also required to increase reliability. When a protection diode against reverse connection is used, if supply voltage increases due to coil kickback, connect zener diode between power supply and GND.
- *2 The Hall element is biased at a constant voltage of approximately 1.3V from the HB pin. Thus the LV8068V provides a stable Hall output with excellent temperature characteristics. If the Hall output is needed to adjust the amplitude, use the resistor R1 as shown in the figure.
- *3 When the wiring from the Hall output to IC Hall input is long, noise may be carried through the wiring. In this case, insert the capacitor C1 as shown in the figure.
- *4 FG/RD pin is open collector (drain) output. This pin must be left open if unused.
- *5 It is a capacitor for PWM oscillations. (Cpwm = 100pF, fpwm = about 33kHz (typ))
- *6 The current limiter is activated when the voltage between current detection resistor exceeds 0.25V between GND and RF. The current limiter is activated at $I_O = 250 \text{mA}$ when $R_L = 1\Omega$. Setting is made with the Rf resistance. Short-circuit GND and RF when the current-limiter PWM is not to be used.
- *7 Please insert enough capacitor value between GND and RGL for stabilization on a terminal.
- *8 Please insert enough capacitor value between Vcc and RGH for stabilization on a terminal.


2. Speed control by VCONT/RMI pin

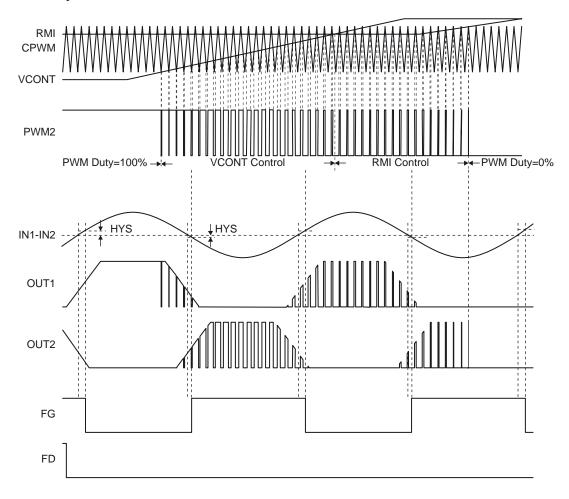
- *1 When the diode Di is used to prevent device destruction from reverse connection, the capacitor Cr must be inserted to assure a path for regenerative currents.
 - Similarly, if there no nearby capacitors on the fan power supply line, the capacitor Cr is also required to increase reliability. When a protection diode against reverse connection is used, if supply voltage increases due to coil kickback, connect zener diode between power supply and GND.
- *2 The Hall element is biased at a constant voltage of approximately 1.3V from the HB pin. Thus the LV8068V provides a stable Hall output with excellent temperature characteristics. If the Hall output is needed to adjust the amplitude, use theresistor R1 as shown in the figure.
- *3 When the wiring from the Hall output to IC Hall input is long, noise may be carried through the wiring. In this case, insert the capacitor C1 as shown in the figure.
- *4 FG/RD pin is open collector (drain) output. This pin must be left open if unused.
- *5 It is a capacitor for PWM oscillations. (Cpwm = 100pF, fpwm = about 33kHz (typ))
- *6 The current limiter is activated when the voltage between current detection resistor exceeds 0.25V between GND and RF. The current limiter is activated at $I_O = 250 \text{mA}$ when $R_L = 1\Omega$. Setting is made with the Rf resistance. Short-circuit GND and RF when the current limiter PWM is not to be used.
- *7 Please insert enough capacitor value between GND and RGL for stabilization on a terminal.
- *8 Please insert enough capacitor value between Vcc and RGH for stabilization on a terminal.
- *9 VCONT is speed control pin. For the control method ,refer to the timing chart.
- *10 RMI is minimum speed setting pin. When you do not use RMI, please make pull-up to 5VREG

Timing Chart


1. Stand-by/Start-up

- $*T_{SLP} = 400\mu s \text{ (typ)}$
- *When PWM signal is input "L" level for continuousness TSLP, it becones the Stand-by mode by detecting above situation.
- *When "H" level is input, it becomes the Active mode at once.

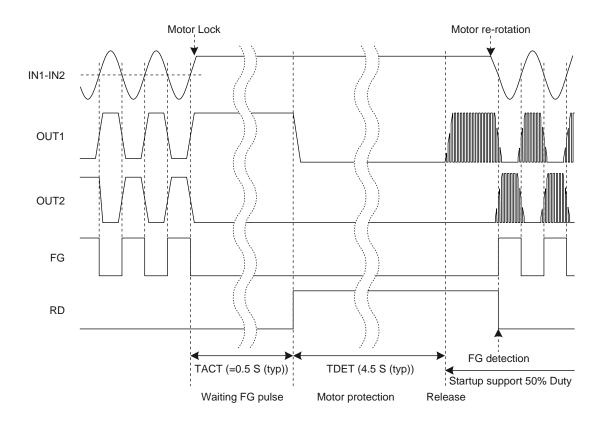
2. In Regular-Rotation


• PWM pin control

• Truth table of mode in Regular-Rotation at PWM pin

Trust there of more in regular restaurant as 1 (1) pin								
IN1	IN2	PWM	OUT1	OUT2	FG	Mode		
Н		Н	Н	L	L	Drive		
"	_	L	L	L		Regenerate		
	н	Н	L	Н	OFF	Drive		
L		L	L	L		Regenerate		

• VCONT/RMI pin control



• Truth table of mode in Regular-Rotation at VCONT/RMI pin

IN1	IN2	*PWM2	OUT1	OUT2	FG	Mode
11		Н	Н	L	,	Drive
Н	L	L	L	L	L	Regenerate
		Н	L	Н	OFF	Drive
L	Н	L	L	L		Regenerate

^{*:} IC's internal signal

3. In Motor-Lock

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa