

MOSFET – N-Channel, **SOT-23**

2.8 A, 20 V

MGSF2N02EL, MVSF2N02EL

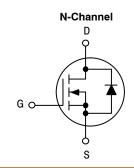
These miniature surface mount MOSFETs low $R_{DS(on)}$ assure minimal power loss and conserve energy, making these devices ideal for use in space sensitive power management circuitry.

Features

- Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Miniature SOT-23 Surface Mount Package Saves Board Space
- I_{DSS} Specified at Elevated Temperature
- AEC Q101 Qualified and PPAP Capable MVSF2N02EL
- These Devices are Pb-Free and are RoHS Compliant

Applications

- DC-DC Converters
- Power Management in Portable and Battery Powered Products, ie: Computers, Printers, PCMCIA Cards, Cellular and Cordless Telephones


MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)

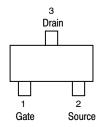
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	± 8.0	Vdc
Drain Current - Continuous @ T_A = 25 °C - Single Pulse (t_p = 10 μ s)	I _D I _{DM}	2.8 5.0	Α
Total Power Dissipation @ T _A = 25°C	P _D	1.25	W
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	°C
Thermal Resistance Junction-to-Ambient (Note 1) Thermal Resistance Junction-to-Ambient (Note 2)	$R_{ heta JA}$	100 300	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. 1" Pad, t < 10 sec.
- 2. Min pad, steady state.

2.8 A, 20 V $R_{\text{DS(on)}} = 85 \text{ m}\Omega \text{ (max)}$

MARKING DIAGRAM


SOT-23 CASE 318 STYLE 21

XXX M

- = Specific Device Code
- = Date Code
- = Pb-Free Package

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MGSF2N02EL, MVSF2N02EL

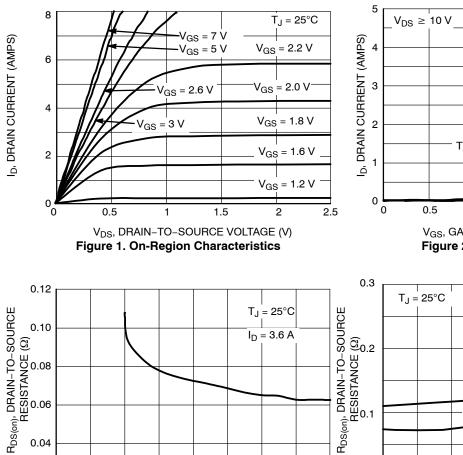
ELECTRICAL CHARACTERISTICS (T_A = 25 °C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•	•
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS}=0$ Vdc, $I_D=10~\mu Adc$) Temperature Coefficient (Positive)		V _{(BR)DSS}	20 -	- 22	- -	Vdc mV/°C
Zero Gate Voltage Drain Current (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc, T _J = 125 °C)		I _{DSS}	=	_ _	1.0 10	μAdc
Gate-Source Leakage Current (V _{GS}	= ± 8.0 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	_	±100	nA
ON CHARACTERISTICS (Note 3)		'		•	•	•
Gate-Source Threshold Voltage (V _{DS} = V _{GS} , I _D = 250 μAdc) Threshold Temperature Coefficient (Negative)			0.5 -	- -2.3	1.0	Vdc mV/°C
Static Drain-to-Source On-Resistanc (V_{GS} = 4.5 Vdc, I_D = 3.6 A) (V_{GS} = 2.5 Vdc, I_D = 3.1 A)	е	R _{DS(on)}	- -	78 105	85 115	mΩ
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	150	_	pF
Output Capacitance	$(V_{DS} = 5.0 \text{ Vdc}, V_{GS} = 0 \text{ V}, \\ f = 1.0 \text{ MHz})$	C _{oss}	-	130	_	
Transfer Capacitance	,	C _{rss}	-	45	-	
SWITCHING CHARACTERISTICS (Note 4)					
Turn-On Delay Time		t _{d(on)}	-	6.0	_	ns
Rise Time	(V _{DD} = 16 Vdc, I _D = 2.8 Adc,	t _r	-	95	-	
Turn-Off Delay Time	$V_{gs} = 4.5 \text{ V}, R_{G} = 2.3 \Omega$	t _{d(off)}	-	28	_	
Fall Time		t _f	-	125	_	
Gate Charge		Q _T	Q _T - 3.5 Q _{gs} - 0.6	-	nC	
	(V _{DS} = 16 Vdc, I _D = 1.75 Adc, V _{GS} = 4.0 Vdc) (Note 3)	Q_{gs}		-		
		Q_{gd}	_	- 1.5 -	_	
SOURCE-DRAIN DIODE CHARACT	TERISTICS					
Forward Voltage	(I _S = 1.0 Adc, V _{GS} = 0 Vdc) (Note 3)	V _{SD}	_ _	0.76	1.2	V
Reverse Recovery Time	e Recovery Time		-	104	_	ns
	$(I_S = 1.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	ta	_	42	_	-
	$dl_{S}/dt = 100 A/\mu s)$ (Note 3)	t _b	-	62	_	1
Reverse Recovery Stored Charge		Q _{RR}	_	0.20	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.
- 4. Switching characteristics are independent of operating junction temperature.

ORDERING INFORMATION


Device	Package	Shipping [†]
MGSF2N02ELT1G	SOT-23	3,000 / Tape & Reel
MVSF2N02ELT1G*	(Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

Specifications Brochure, BRD8011/D.
*MVSF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

MGSF2N02EL, MVSF2N02EL

TYPICAL CHARACTERISTICS

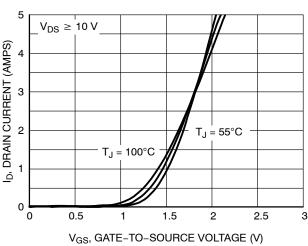
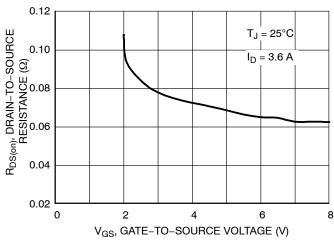



Figure 2. Transfer Characteristics

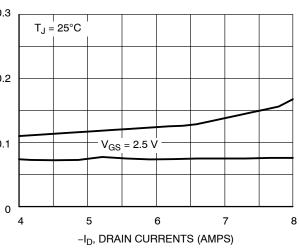
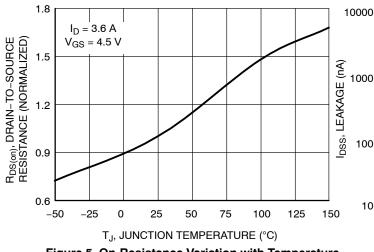



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Gate Voltage

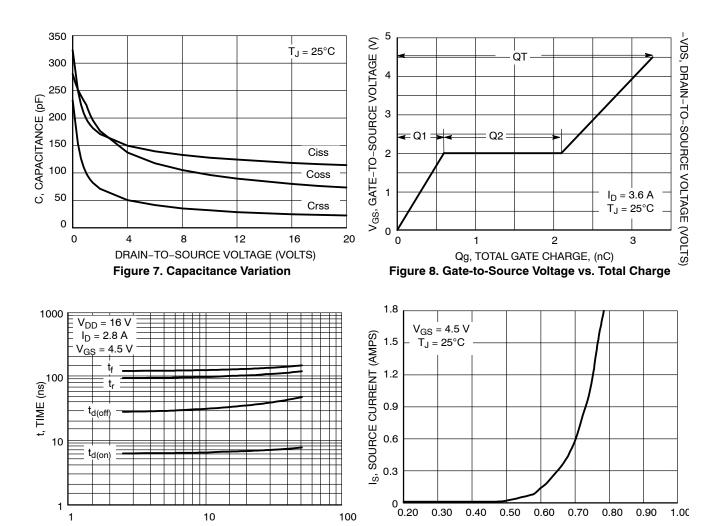

 $V_{GS} = 0 V$ $T_J = 150^{\circ}C$ 1000 $T_J = 100^{\circ}C$ 100 10 12 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 5. On-Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

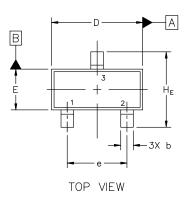
MGSF2N02EL, MVSF2N02EL

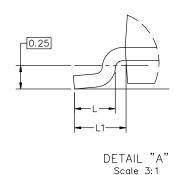
TYPICAL CHARACTERISTICS

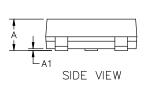
 $\label{eq:RG} \textbf{R}_{\textbf{G}}, \, \textbf{GATE} \,\, \textbf{RESISTANCE} \,\, (\Omega) \\ \textbf{Figure 9. Resistive Switching Time Variation vs.} \\ \textbf{Gate Resistance} \\$

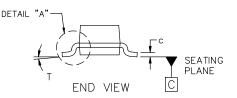
Figure 10. Diode Forward Voltage vs. Current

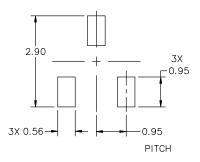
V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V)

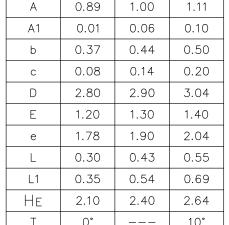





SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318 ISSUE AU**


DATE 14 AUG 2024


MAX



MILLIMETERS

MIN

NOM

NOTES:

DIM

- DIMENSIONING AND TOLERANCING 1. PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS:
- MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE
- BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	N: SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		PAGE 1 OF 2	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P CASE 318 ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR		NODE D CONNECTION ATHODE	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: STYLE 12: PIN 1. ANODE PIN 1. CA 2. CATHODE 2. CA 3. CATHODE-ANODE 3. AN	ATHODE PIN 1. SOURCE ATHODE 2. DRAIN	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE			STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: STYLE 24: PIN 1. ANODE PIN 1. GAT 2. ANODE 2. DR/ 3. CATHODE 3. SOU	TE PIN 1. ANODE AIN 2. CATHODE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE			

DOCUMENT NUMBER:	98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales