

N-channel 800 V, 515 m Ω typ., 7 A MDmesh K6 Power MOSFET in a TO-220 package

TAB COMMITTEE STATE OF THE STAT

TO-220

AM01476v1_tab

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STP80N600K6	800 V	600 mΩ	7 A

- Worldwide best R_{DS(on)} x area
- Worldwide best FOM (figure of merit)
- · Ultra low gate charge
- 100% avalanche tested
- · Zener-protected

Applications

- Flyback converter
- · Adapters for tablets, notebook and AIO
- LED lighting

Description

This very high voltage N-channel Power MOSFET is designed using the ultimate MDmesh K6 technology based on 20 years STMicroelectronics experience on super junction technology. The result is the best-in-class on-resistance per area and gate charge for applications requiring superior power density and high efficiency.

Product status link STP80N600K6

Product summary				
Order code	STP80N600K6			
Marking	80N600K6			
Package	TO-220			
Packing	Tube			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±30	V
1_	Drain current (continuous) at T _C = 25 °C	7	
I _D	Drain current (continuous) at T _C = 100 °C	5	_ A
I _{DM} ⁽¹⁾	Drain current (pulsed)	15	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	86	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	5	V/ns
di/dt ⁽²⁾	Peak diode recovery current slope	100	A/µs
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	120	V/ns
T _{stg}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature range	-55 (0 150	

- 1. Pulse width limited by safe operating area.
- 2. $I_{SD} \le 3.5 \, A$; V_{DS} (peak) = 400 V.
- 3. $V_{DS} \le 640 \text{ V}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	1.46	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	62.5	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _J max.)	2.3	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	85	mJ

DS14252 - Rev 1 page 2/13

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified.

Table 4. On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	800			V
lass	Zoro goto voltago drain ourrent	V _{GS} = 0 V, V _{DS} = 800 V			1	μA
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 800 V, T _C = 125 °C ⁽¹⁾			50	μA
I _{GSS}	Gate body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±1	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3.0	3.5	4.0	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3 A		515	600	mΩ

^{1.} Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{DS} = 400 V, f = 1 MHz, V _{GS} = 0 V	-	540	-	pF
C _{oss}	Output capacitance	V _{DS} = 400 V, I = 1 WH2, V _{GS} = 0 V	-	7.5	-	pF
C _{o(er)} ⁽¹⁾	Equivalent capacitance energy related	V _{DS} = 0 to 640 V, V _{GS} = 0 V	-	11	-	pF
C _{o(tr)} ⁽²⁾	Equivalent capacitance time related		-	61	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz , I _D = 0 A	-	2.8	-	Ω
Qg	Total gate charge	V _{DD} = 640 V, I _D = 3.5 A, V _{GS} = 0 to 10 V	-	10.7	-	nC
Q _{gs}	Gate-source charge	(see Figure 18. Test circuit for gate	-	2.9	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	3.4	-	nC

C_{O(er)} is a constant capacitance value that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 V to the stated value.

Table 6. Switching times

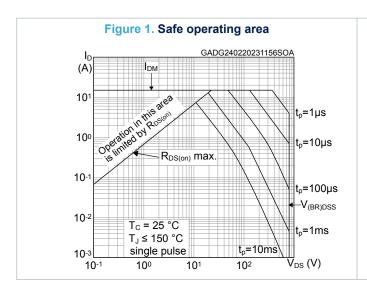
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 400 V, I _D = 3.5 A,	-	9	-	ns
t _r	Rise time	R_G = 4.7 Ω , V_{GS} = 10 V see (Figure 16. Test circuit for resistive load switching times and	-	4.1	-	ns
t _{d(off)}	Turn-off delay time		-	28.2	-	ns
t _f	Fall time	Figure 17. Switching time waveform)	-	12.6	-	ns

DS14252 - Rev 1 page 3/13

^{2.} $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 V to the stated value.

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		15	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 7 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs,	-	235		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	2.5		μC
I _{RRM}	Reverse recovery current	(see Figure 19. Test circuit for inductive load switching and diode recovery times)	-	17.7		Α
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs,	-	372		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	3.7		μC
I _{RRM}	Reverse recovery current	(see Figure 19. Test circuit for inductive load switching and diode recovery times)	-	15.2		Α


^{1.} Pulse width limited by safe operating area.

DS14252 - Rev 1 page 4/13

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

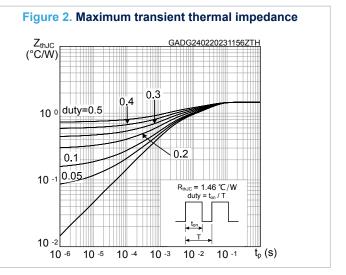
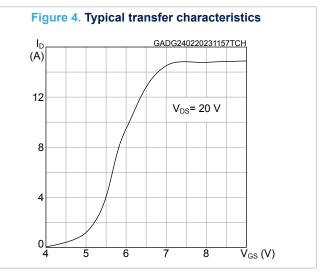


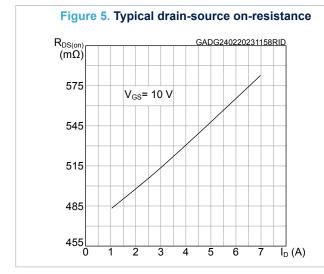
Figure 3. Typical output characteristics

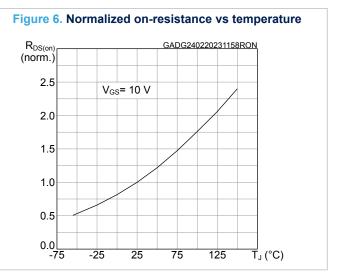
GADG240220231157OCH

V_{GS}= 8, 9, 10 V

7 V


12


6 V


8

4

0 0 4 8 12 16 V_{DS} (V)

DS14252 - Rev 1 page 5/13

Figure 7. Typical gate charge characteristics

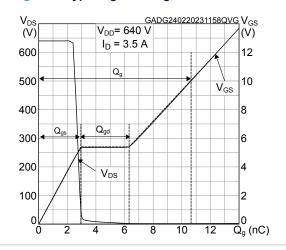


Figure 8. Typical capacitance characteristics

Figure 9. Normalized gate threshold vs temperature

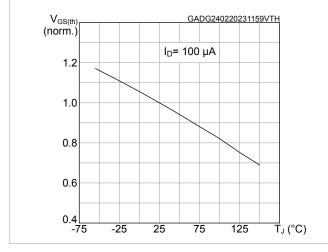


Figure 10. Normalized breakdown voltage vs temperature

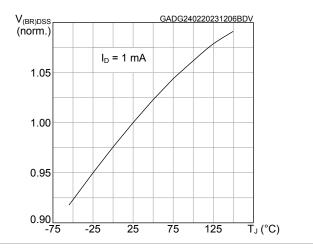


Figure 11. Typical output capacitance stored energy

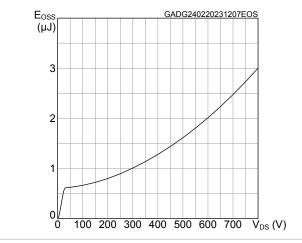
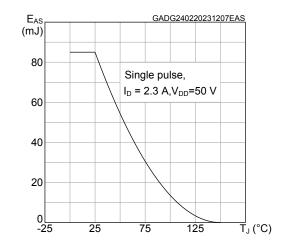



Figure 12. Maximum avalanche energy vs temperature

DS14252 - Rev 1 page 6/13

Figure 13. Typical reverse diode forward characteristics

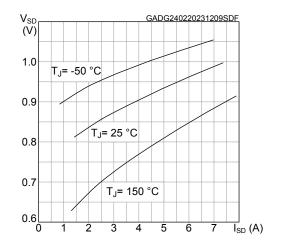
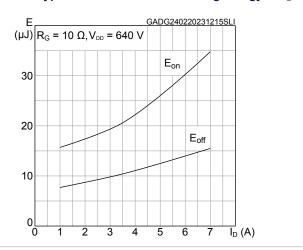
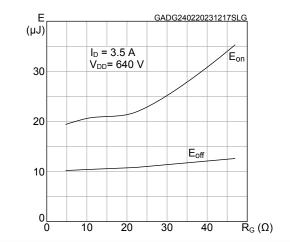
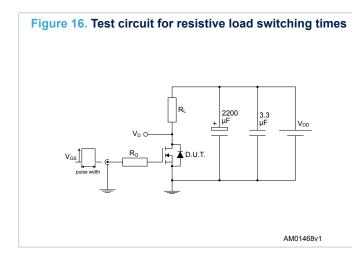




Figure 14. Typical inductive load switching energy vs I_D



DS14252 - Rev 1 page 7/13

3 Test circuits

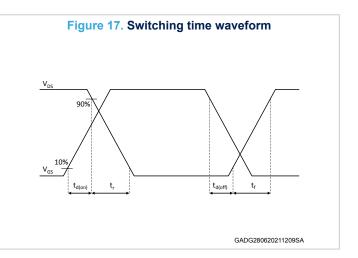
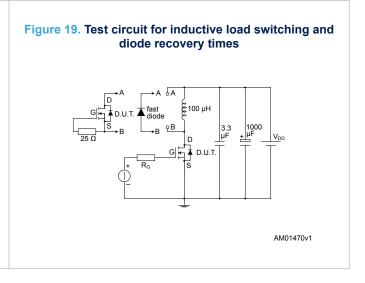
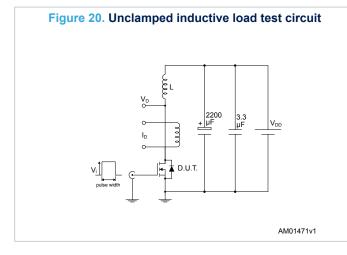
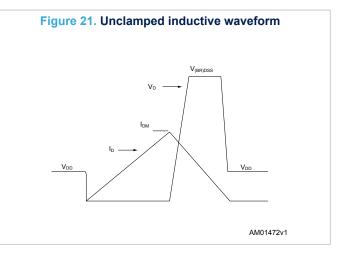
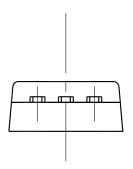
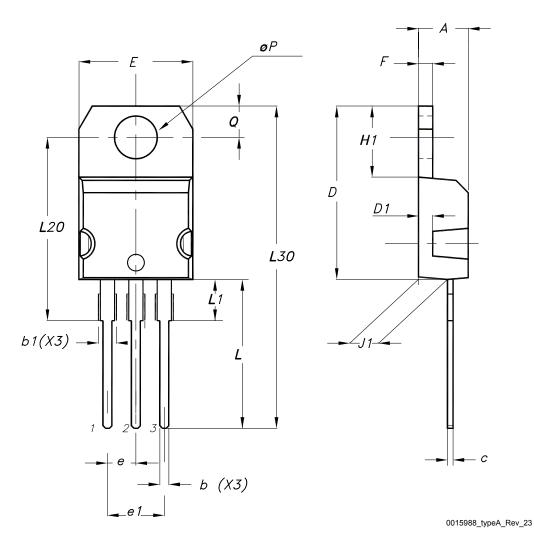





Figure 18. Test circuit for gate charge behavior $\begin{array}{c} V_{GS} \\ V_{GS} \\ \hline \end{array}$


DS14252 - Rev 1 page 8/13


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-220 type A package information

Figure 22. TO-220 type A package outline

DS14252 - Rev 1 page 9/13

Table 8. TO-220 type A package mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
Α	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.55		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10.00		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13.00		14.00		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
øΡ	3.75		3.85		
Q	2.65		2.95		
Slug flatness		0.03	0.10		

DS14252 - Rev 1 page 10/13

Revision history

Table 9. Document revision history

Date	Revision	Changes
02-Mar-2023	1	First release.

DS14252 - Rev 1 page 11/13

Contents

1	Elec	trical ratings	2
2	Elec	trical characteristics	3
	2.1	Electrical characteristics (curves)	5
3	Test	circuits	8
4	Pac	kage information	9
	4.1	TO-220 type A package information	9
Rev		history	

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics - All rights reserved

DS14252 - Rev 1 page 13/13