

Automotive 750 V, 820 A Single Side Direct Cooling 6-Pack Power Module

VE-Trac™ Direct Module NVH820S75L4SPC

Product Description

The NVH820S75L4SPC is a power module from the VE-Trac™ Direct family of highly integrated power modules with industry standard footprints for Hybrid (HEV) and Electric Vehicle (EV) traction inverter application.

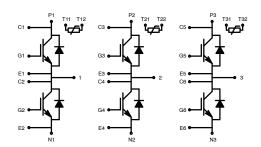
The module integrates six Field Stop 4 (FS4) 750 V Narrow Mesa IGBTs in a 6-pack configuration, which excels in providing high current density, while offering robust short circuit protection and increased blocking voltage. Additionally, FS4 750 V Narrow Mesa IGBTs show low power losses during lighter loads, which helps to improve overall system efficiency in automotive applications.

For assembly ease and reliability, a new generation of press-fit pins are integrated into the power module signal terminals. In addition, the power module has an optimized pin-fin heatsink in the baseplate and longer power terminals to easily integrate an external current sensor.

Features

- Direct Cooling w/ Integrated Pin-fin Heatsink
- Ultra-low Stray Inductance
- $T_{vi max} = 175$ °C Continuous Operation
- Low V_{CESAT} and Switching Losses
- Automotive Grade FS4 750 V Narrow Mesa IGBT
- Fast Recovery Diode Chip Technologies
- 4.2 kV Isolated DBC Substrate
- Easy to Integrate 6-pack Topology
- This Device is Pb-Free and is RoHS Compliant

Typical Applications


- Hybrid and Electric Vehicle Traction Inverter
- High Power Converters

SSDC33, 154.50x92.0 (SPC) CASE 183AC

MARKING DIAGRAM

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Pin Description

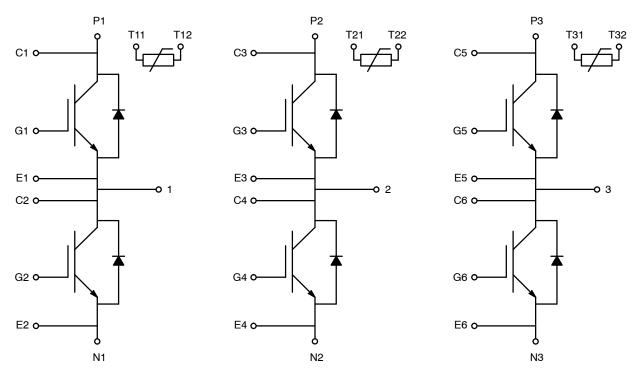


Figure 1. Pin Description

PIN FUNCTION DESCRIPTION

Pin #	Pin Function Description
P1, P2, P3	Positive Power Terminals
N1, N2, N3	Negative Power Terminals
1	Phase 1 Output
2	Phase 2 Output
3	Phase 3 Output
G1-G6	IGBT Gate
E1-E6	IGBT Gate Return
C1-C6	Desat Detect/Collector Sense
T11, T12	Phase 1 Temperature Sensor Output
T21, T22	Phase 2 Temperature Sensor Output
T31, T32	Phase 3 Temperature Sensor Output

Materials

DBC Substrate: Al₂O₃ isolated substrate, basic isolation,

and copper on both sides

Terminals: Copper + Tin electro-plating Signal Leads: Copper + Tin plating Pin-fin Base plate: Copper + Ni plating

Flammability Information

The module frame meets UL94V-0 flammability rating.

MODULE CHARACTERISTICS ($T_{vj} = 25^{\circ}C$, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit	
T_{vj}	Operating Junction Temperature		-40 to 175	°C
T _{STG}	Storage Temperature		-40 to 125	°C
V _{ISO}	Isolation Voltage (DC, 0 Hz, 1 s)		4200	V
L _{sCE}	Stray Inductance		8	nΗ
RCC'+EE'	Module Lead Resistance, Terminals - Chip		0.75	mΩ
G	Module Weight		700	g
CTI	Comparative Tracking Index		>200	-
d _{creep}	1 3	rminal to Heatsink erminal to Terminal	9.0 9.0	mm
d _{clear}		rminal to Heatsink erminal to Terminal	4.5 4.5	mm

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
Δр	Pressure Drop in Cooling Circuit	10 L/min, 65°C, 50/50 EGW	ı	95	ı	mbar
P (Note 1)	Maximum Pressure in Cooling Loop (relative)	T _{Baseplate} < 40°C T _{Baseplate} > 40°C		- 1	2.5 2.0	bar

^{1.} EPDM rubber 50 durometer 'O' ring used.

ABSOLUTE MAXIMUM RATINGS (T_{vj} = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit
IGBT			
V _{CES}	Collector to Emitter Voltage	750	V
V _{GES}	Gate to Emitter Voltage	±20	V
I _{CN}	Implemented Collector Current	820	Α
I _{C nom}	Continuous DC Collector Current, T _{vj} = 175°C, T _F = 65°C, Ref. Heatsink	600 (Note 2)	Α
I _{CRM}	Pulsed Collector Current @ V _{GE} = 15 V, t _p =1 ms	1640	Α
P _{tot}	Total Power Dissipation T _{vj} = 175°C, T _F = 65°C, Ref. Heatsink	1000	W
Diode			
V _{RRM}	Repetitive Peak Reverse Voltage	750	V
I _{FN}	Implemented Forward Current	820	Α
I _F	Continuous Forward Current, T _{vj} = 175°C, T _F = 65°C, Ref. Heatsink	400 (Note 2)	Α
I _{FRM}	Repetitive Peak Forward Current, t _p = 1 ms	1640	Α
l ² t value	Surge Current Capability, t_p = 10 ms, $T_{\nu j}$ = 150°C $T_{\nu j}$ = 175°C	19000 16000	A ² s

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Verified by characterization/design, not by test.

CHARACTERISTICS OF IGBT ($T_{vj} = 25^{\circ}C$, Unless Otherwise Specified)

Symbol	Parameters	Condition	ıs	Min	Тур	Max	Unit
V _{CESAT}	Collector to Emitter Saturation Voltage (Terminal)	V _{GE} = 15 V, I _C = 600 A	T _{vj} = 25°C	-	1.30	1.55	V
	Collector to Emitter Saturation	V _{GE} = 15 V, I _C = 600 A	T _{vj} = 25°C	-	1.25	1.50	
	Voltage (Chip)		T _{vj} = 150°C T _{vj} = 175°C	-	1.37 1.40	_	
		V _{GE} = 15 V, I _C = 820 A	T _{vi} = 25°C	_	1.40	_	
			T _{vj} = 150°C T _{vj} = 175°C	- -	1.59 1.63	- -	
I _{CES}	Collector to Emitter Leakage Current	V _{GE} = 0, V _{CE} = 750 V	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$	_ _	_ 2.0	500 -	μA mA
I _{GES}	Gate – Emitter Leakage Current	$V_{CE} = 0, V_{GE} = \pm 20 \text{ V}$		-	-	300	nA
V _{th}	Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 90 \text{ mA}$		4.8	5.7	6.6	V
Q_{G}	Total Gate Charge	$V_{GE=}$ -8 to 15 V, V_{CE} = 400	V	-	2.3	-	μС
R _{Gint}	Internal Gate Resistance			-	1.7	-	Ω
C _{ies}	Input Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 30 \text{ V}$	I00 kHz	_	60	_	nF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 30 \text{ V}$	I00 kHz	_	1.90	_	nF
C _{res}	Reverse Transfer Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 0$	100 kHz	_	0.2	_	nF
T _{d.on}	Turn On Delay, Inductive	I _C = 600 A, V _{CE} = 400 V,	T _{vj} = 25°C	_	315	_	ns
	Load	V_{GE} = +15/-8 V, Rg.on = 4 Ω	T _{vj} = 150°C T _{vj} = 175°C	-	320 322	-	
T _r	Rise Time, Inductive Load	I _C = 600 A, V _{CE} = 400 V,	T _{vj} = 25°C	_	108	_	ns
		$V_{GE} = +15/-8 \text{ V},$ Rg.on = 4 Ω	$T_{vj}^{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	_ _	127 132	_ _	
$T_{d.off}$	Turn Off Delay, Inductive Load	$I_C = 600 \text{ A}, V_{CE} = 400 \text{ V},$ $V_{GE} = +15/-8 \text{ V},$	T _{vj} = 25°C T _{vj} = 150°C	-	1063 1196	- -	ns
		Rg.off = 12Ω	T _{vj} = 175°C	_	1203	_	
T _f	Fall Time, Inductive Load	$I_C = 600 \text{ A}, V_{CE} = 400 \text{ V},$ $V_{GE} = +15/-8 \text{ V},$	T _{vj} = 25°C T _{vj} = 150°C	_ _	85 144	_	ns
		Rg.off = 12 Ω	$T_{vj} = 175^{\circ}C$	_	151	_	
E _{ON}	Turn-On Switching Loss (Including Diode Reverse	$I_C = 600 \text{ A}, V_{CE} = 400 \text{ V},$ $V_{GE} = +15/-8 \text{ V},$	di/dt = 4.5 A/nS,	-	26	-	mJ
	Recovery Loss)	$V_{GE} = +13/-6 V$, Ls = 22 nH, Rg.on = 4 Ω	$T_{vj} = 25^{\circ}C$ di/dt = 3.9 A/nS,	-	36	-	
			T _{vj} = 150°C di/dt = 3.6 A/nS,	_	38	_	
			$T_{vj} = 175^{\circ}C$				
E _{OFF}	Turn-Off Switching Loss	I _C = 600 A, V _{CE} = 400 V, V _{GE} = +15/-8 V,	dv/dt = 2.7 V/nS, $T_{vj} = 25^{\circ}\text{C}$	-	33	_	mJ
		Ls = 22 nH, Rg.off = 12 Ω	dv/dt = 1.9 V/nS,	_	46	_	
			$T_{vj} = 150^{\circ}C$		E0		
			dv/dt = 1.9 V/nS, $T_{vj} = 175^{\circ}C$	_	50	_	
E _{SC}	Minimum Short Circuit Energy	V _{GE} = 15 V, V _{CC} = 400 V	T _{vj} = 25°C	9	-	-	J
	Withstand		T _{vj} = 175°C	4.5			

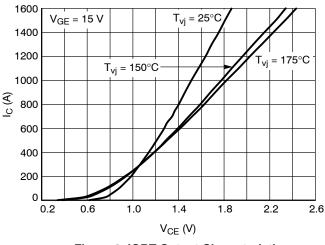
$\textbf{CHARACTERISTICS OF INVERSE DIODE} \ (T_{vj} = 25^{\circ}\text{C}, \text{Unless Otherwise Specified})$

Symbol	Parameters	Condition	s	Min	Тур	Max	Unit
V _F	Diode Forward Voltage (Terminal)	I _F = 600 A	T _{vj} = 25°C	ı	1.70	1.95	V
	Diode Forward Voltage (Chip)	I _F = 600 A	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$		1.60 1.55 1.50	1.85 - -	
		I _F = 820 A	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1.70 1.70 1.65	- - -	
E _{rr}	Reverse Recovery Energy	I_F = 600 A, V_R = 400 V, V_{GE} = -8 V, $Rg.on$ = 4 Ω	$\begin{aligned} &\text{di/dt} = 4.5 \text{ A/nS}, \\ &T_{vj} = 25^{\circ}\text{C} \\ &\text{di/dt} = 3.9 \text{ A/nS}, \\ &T_{vj} = 150^{\circ}\text{C} \\ &\text{di/dt} = 3.6 \text{ A/nS}, \end{aligned}$	-	3 9 11	-	mJ
Q _{RR}	Recovered Charge	$I_F = 600 \text{ A}, V_R = 400 \text{ V}, V_{GE} = +15/-8 \text{ V}, Rg.on = 4 \Omega$	$\begin{split} T_{vj} &= 175^{\circ}\text{C} \\ \text{di/dt} &= 4.5 \text{ A/nS}, \\ T_{vj} &= 25^{\circ}\text{C} \\ \text{di/dt} &= 3.9 \text{ A/nS}, \\ T_{vj} &= 150^{\circ}\text{C} \\ \text{di/dt} &= 3.6 \text{ A/nS}, \end{split}$		9 32 39		μC
Irr	Peak Reverse Recovery Current	$I_F = 600 \text{ A}, V_R = 400 \text{ V}, V_{GE} = -8 \text{ V}, Rg.on = 4 \Omega$	$\begin{split} &T_{vj} = 175^{\circ}\text{C} \\ &\text{di/dt} = 4.5 \text{ A/nS}, \\ &T_{vj} = 25^{\circ}\text{C} \\ &\text{di/dt} = 3.9 \text{ A/nS}, \\ &T_{vj} = 150^{\circ}\text{C} \\ &\text{di/dt} = 3.6 \text{ A/nS}, \\ &T_{vj} = 175^{\circ}\text{C} \end{split}$	- - -	133 246 282	- - -	A

$\textbf{NTC SENSOR CHARACTERISTICS} \ (T_{vj} = 25^{\circ}C, \ Unless \ Otherwise \ Specified)$

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
R ₂₅ (Note 3)	Rated Resistance	T _C = 25°C	-	5	-	kΩ
ΔR/R	Deviation of R100	$T_C = 100^{\circ}C, R_{100} = 493 \Omega$	5	-	5	%
P ₂₅	Power Dissipation	T _C = 25°C	-	-	20	mW
B _{25/50}	B-Value	$R = R_{25} \exp [B_{25/50} (1/T - 1/298)]$	ı	3375	1	K
B _{25/80}	B-Value	$R = R_{25} \exp [B_{25/80} (1/T - 1/298)]$	ı	3411	ı	K
B _{25/100}	B-Value	$R = R_{25} \exp \left[B_{25/100} \left(1/T - 1/298 \right) \right]$		3433	-	K

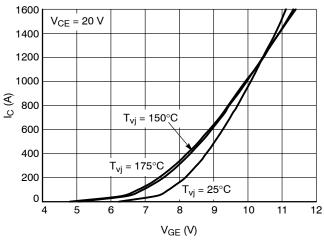
^{3.} Measured value at terminals.


THERMAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
IGBT.R _{th,J-F}	Rth, Junction to Fluid, 10 L/min, 65°C, 50/50 EGW	-	0.11	0.13	°C/W
Diode.R _{th,J-F}	Rth, Junction to Fluid, 10 L/min, 65°C, 50/50 EGW	-	0.185	0.20	°C/W

ORDERING INFORMATION

Part Number Package		Shipping
NVH820S75L4SPC	SSDC33, 154.50x92.0 (SPC) (Pb-Free)	4 Units / Tray


TYPICAL CHARACTERISTICS

T_{vi} = 150°C $V_{GE} = 17 V$ V_{GE} = 13 V 1400 $V_{GE} = 15 V$ V_{GE} = 11 V 1200 1000 800 $V_{GE} = 9 V$ 600 400 200 2 0 3 V_{CE} (V)

Figure 2. IGBT Output Characteristic

Figure 3. IGBT Output Characteristic

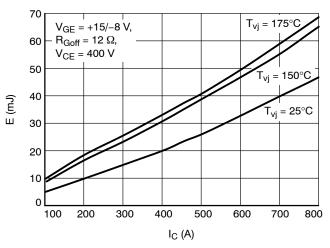
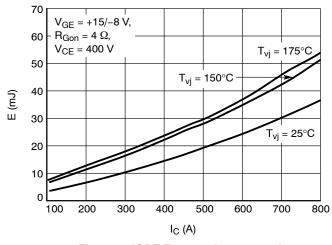



Figure 4. IGBT Transfer Characteristic

Figure 5. IGBT Turn-off Losses vs. I_C

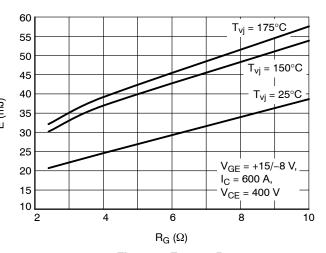


Figure 6. IGBT Turn-on Losses vs. I_C

Figure 7. E_{ON} vs. R_G

TYPICAL CHARACTERISTICS

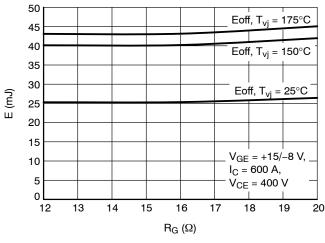
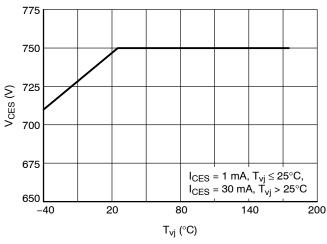



Figure 8. E_{OFF} vs. R_G

Figure 9. Gate Charge Characteristic

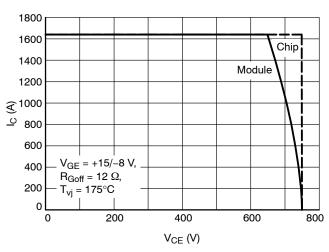



Figure 10. Maximum Allowed V_{CE}

Figure 11. Reverse Bias Safe Operating Area

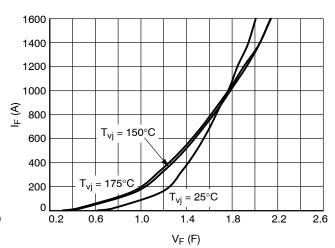



Figure 12. Capacitance Characteristic

Figure 13. Diode Forward Characteristic

TYPICAL CHARACTERISTICS

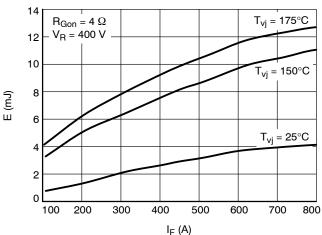


Figure 15. Diode Switching Losses vs. I_F

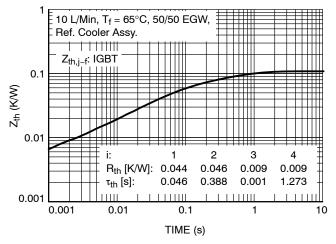


Figure 16. IGBT Transient Thermal Impedance (Typ.)

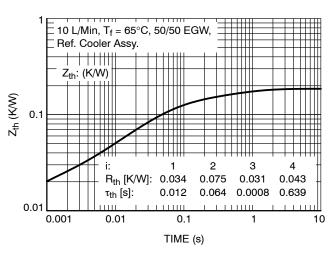


Figure 17. Diode Transient Thermal Impedance (Typ.)

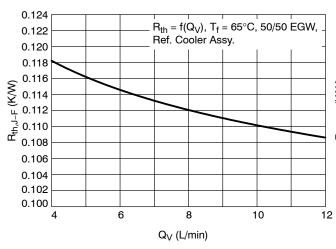


Figure 18. IGBT, Thermal Resistance (Typ.)

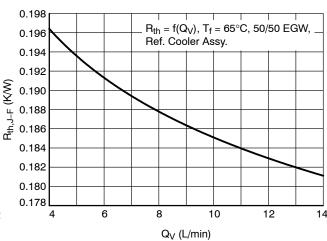


Figure 19. Diode, Thermal Resistance (Typ.)

TYPICAL CHARACTERISTICS

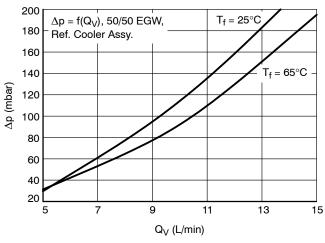


Figure 20. Pressure Drop in Cooling Circuit

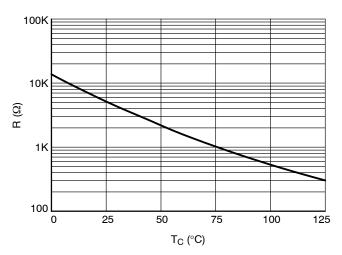


Figure 21. NTC Thermistor – Temperature Characteristic (Typical)

VE-Trac is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

