MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

General Description

The MAX17843 is a programmable, highly integrated, high-voltage, 12-channel battery-monitoring smart data-acquisition interface with extensive features for safety. It is optimized for use with batteries used in automotive systems, hybrid electric battery packs, electric cars, and any system that stacks long series strings of secondary metal batteries. This highly integrated battery sensor incorporates a high-speed differential UART bus for robust daisy-chained serial communication.

The analog front-end combines a 12-channel voltage-measurement data-acquisition system with a high-voltage switch-bank input. All measurements are done differentially across each cell. The full-scale measurement range is from 0 to 5.0V with a usable range of 0.2V to 4.8V. A high-speed successive approximation (SAR) A/D converter is used to digitize the cell voltages at 14-bit resolution with oversampling. All 12 cells can be measured in under 142µs. The MAX17843 uses a 2-scan approach for collecting cell measurements and correcting them for errors. This 2-phase approach yields excellent accuracy over temperature and in the face of extreme noise in the system.

The MAX17843 has two auxiliary analog inputs that can be used to measure external thermistor components. A negative temperature coefficient (NTC) thermistor can be configured with the AUXIN analog inputs to accurately monitor module or battery-cell temperature. A thermal-overload detector disables the MAX17843's linear regulator to protect the IC, and a die-temperature measurement is also available.

Applications

- 48V Vehicle Battery Modules or Systems
- High-Voltage Electric Vehicle (EVs)
- Hybrid Electric Vehicles (HEVs)
- Battery Packs
- Electric Bikes
- High-Power Battery-Backup Systems
- Super-Cap Backup Systems
- Power Tools

Ordering Information appears at end of data sheet.

Benefits and Features

- 12-Cell Battery-Voltage Measurement for Lithium-Ion, NiMH, or Super-Cap Cells
- Two Auxiliary Analog Inputs for NTC Thermistor or Absolute Voltage Measurement
- Die Temperature Measurement and alert
- High-Accuracy Differential Measurement I/Os
 - ±2mV Accuracy at +25°C and 3.6V
- Integrated 12-Channel Data-Acquisition System
 - · Differential High-Voltage Mux to ADC
 - 14-Bit ADC Resolution with Oversampling
 - 12 Cell Voltages Measured within 142µs
 - · Module Voltage Measurement
 - Redundant ADC
- Battery Fault Detection
 - Overvoltage and Undervoltage Digital Threshold Detection
 - Enhanced Diagnostic Features for Fault Detection to Support ASIL and FMEA
- 12 Internal Cell-Balancing Switches
 - Support Up to 150mA per Switch
 - · Emergency Cell-Discharge Mode
- Integrated 9V to 65V Input Linear Regulator
- Integrated Temperature-Compensated, Voltage Reference
- Robust Differential Daisy-Chain UART Interface
 - · Up to 32 Connected ICs in a Single Daisy-Chain
 - · Compatible with Direct MCU Connection
 - Standard UART bytes at 2Mb/s (max) Rate
- Four General-Purpose Digital I/O Lines
- Built-In Diagnostics to Support ASIL D and FMEA Requirements
- Ultra-Low-Power Dissipation
 - · 2.0mA (typ) Standby-Mode Supply Current
 - 3µA Shutdown Mode Leakage Current
- -40°C to +125°C Operating Temperature Range (AEC-Q100 Grade 1)
- 64-Pin, Lead-Free/RoHS-Compliant, 10mm x 10mm LQFP Package

TABLE OF CONTENTS

General Description	
Applications	
Benefits and Features	
Simplified Operating Circuit	
Functional Block Diagram	
Absolute Maximum Ratings	
Electrical Characteristics	
Pin Configuration	21
Pin Description	
Detailed Description	24
Data Conventions	
Data Acquisition	
Precision Internal Voltage References	
Measurement Calibration	
Cell Inputs	
Input Range	
Block Voltage Input	
Auxiliary Inputs	
THRM Output	
Computing Temperature	
Temperature Alerts	
Die Temperature Measurement	
Die Temperature Alert	
Acquisition Mode	
Oversampling	
Infinite Impulse Response Filtering (IIR Filter):	
RDFILT Bit in SCANCTRL Register (0x13)	
AUTOBALSWDIS Feature	
Acquisition Watchdog Timeout	
Scan Modes	
Acquisition Time	
Measurement Alerts	
Voltage Alerts	
Cell Mismatch	
Cell Statistics	
Temperature Alerts	40

TABLE OF CONTENTS (CONTINUED)	
Cell Balancing	41
Cell-Balancing Switches	41
Maximum Cell-Balancing Current	42
Cell-Balancing Watchdog	42
Emergency-Discharge Mode	43
Low-Voltage Regulator	44
HV Charge Pump	45
Oscillators	46
Device ID Number	46
Power-On And Shutdown	46
Power-On Method	46
Power-On Sequence	47
Shutdown Mode	48
Shutdown Sequence	48
UART Interface	50
UART Ports	51
UART Transmitter	51
UART Receiver	51
UART RX Modes	51
UART Loopback	53
External Loopback Mode	53
Internal Loopback Mode	53
Baud Rate Detection	53
TX Adaptive Mode for Single-Ended Mode	53
Battery-Management UART Protocol	53
Command Packet	54
Preamble Character	54
Data Characters	55
Stop Character	56
UART Idle Mode	56
UART Communication Mode	56
Data Types	57
Command Bytes	57
Command-Byte Encoding	57
Register Addresses	57
Register Data	57
Data-Check Byte	58

Downloaded from Arrow.com.

TABLE OF CONTENTS (CONTINUED)	
PEC Byte	58
Alive-Counter Byte	58
Fill Bytes	58
Battery-Management	50
UART Protocol Commands	
HELLOALL Command	
WRITEALL Command	
WRITEDEVICE Command	
READALL Command	
READDEVICE Command	
READBLOCK Command	
Diagnostics	
ALTREF Diagnostic Measurement.	
VAA Diagnostic Measurement.	
LSAMP Offset Diagnostic Measurement	
Zero-Scale ADC Diagnostic Measurement	
Full-Scale ADC Diagnostic Measurement	
BALSW Diagnostics	
BALSW Short Diagnostic.	
BALSW Open Diagnostics	
Even/Odd Sense Wire Open Diagnostics	
·	
Shutdown Diagnostic	
HVMUX Switch Shorted Diagnostic	
Cn Open Diagnostic	
Cn Shorted to SWn Diagnostic	
Cn Leakage Diagnostic	
Cill Overvoltage Diagnostic	
Cell Undervoltage Diagnostic	
ALRTHVUV Comparator Diagnostic	
HVMUX Sequencer Diagnostic	
ALUVIND Open Diagnostic	
AUXINn Open Diagnostic	
Calibration ROM Diagnostic	87

TABLE OF CONTENTS (CONTIN	NUED)
Applications Information	
Vehicle Applications	
Battery-Management Systems	
Daisy-Chain System	
Distributed-Module Communication	
External Cell Balancing Using BJT Switches	
External Cell-Balancing Short-Circuit Detection	
High-Z Idle Mode	
UART Supplemental ESD Protection	
UART Supplemental ESD Protection	
Single-Ended RX Mode	
UART Isolation	
UART Transformer Isolation	
UART Optical Isolation	
Device Initialization Sequence	
Error Checking	
PEC Errors	
Register Map	
VERSION Register (address 0x00)	
ADDRESS Register (address 0x01)	
STATUS Register (address 0x02)	
FMEA1 Register (address 0x03)	
ALRTCELL Register (address 0x04)	
ALRTOVCELL Register (address 0x05)	
ALRTUVCELL Register (address 0x07)	
ALRTBALSW Register (address 0x08)	
MINMAXCELL Register (address 0x0A)	
FMEA2 Register (address 0x0B)	
AUTOBALSWDIS Delay Register (address 0x0C)	
ID1 Register (address 0x0D)	
ID2 Register (address 0x0E)	
DEVCFG1 Register (address 0x10)	
GPIO Register (address 0x11)	
MEASUREEN Register (address 0x12)	
SCANCTRL Register (address 0x13)	
ALRTOVEN Register (address 0x14)	
ALRTUVEN Register (address 0x15)	

	TABLE OF CONTENTS (CONTINUED)	
٧	VATCHDOG Register (address 0x18)	. 114
A	ACQCFG Register (address 0x19)	. 115
Е	BALSWEN Register (address 0x1A)	. 115
	DEVCFG2 Register (address 0x1B)	. 116
Е	BALDIAGCFG1 Register (address 0x1C)	. 117
Е	BALSWDCHG Register (address 0x1D)	. 118
Т	TOPCELL Register (address 0x1E)	. 118
C	CELLn Register (addresses 0x20 to 0x2B)	. 119
V	/BLOCK Register (address 0x2C)	. 119
A	AIN1 Register (address 0x2D)	. 120
A	AIN2 Register (address 0x2E)	. 120
Т	FOTAL Register (address 0x2F)	. 121
C	DVTHCLR Register (address 0x40)	. 121
C	DVTHSET Register (address 0x42)	. 122
ι	JVTHCLR Register (address 0x44)	. 122
ι	JVTHSET Register (address 0x46)	. 123
Ν	MSMTCH Register (address 0x48)	. 123
Α	AINOT Register (address 0x49)	. 124
Α	AINUT Register (address 0x4A)	. 124
Е	BALSHRTTHR Register (address 0x4B)	. 125
Е	BALLOWTHR Register (address 0x4C)	. 125
Е	BALHIGHTHR Register (address 0x4D)	. 126
С	DIAG Register (address 0x50)	. 126
	DIAGCFG Register (address 0x51)	. 127
C	CTSTEN Register (address 0x52)	. 128
Α	ADCTEST1A Register (address 0x57)	. 128
A	ADCTEST1B Register (address 0x58)	. 129
A	ADCTEST2A Register (address 0x59)	. 129
A	ADCTEST2B Register (address 0x5A)	. 130
	ering Information	
	kage Information	
	ision History	.131

LIST OF FIGURES

Figure 1. Simplified Operating Circuit	
Figure 2. Cell and switch input Filter Operating Circuit	12
Figure 3. MAX17843 Functional block diagram	13
Figure 4. MAX17843 64-Pin LQFP Pin Configuration	21
Figure 5. ESD Diode Diagram	25
Figure 6. Analog Front-End (AFE Inputs)	26
Figure 7. V _{BLKP} Measurement	28
Figure 8. Auxiliary Measurement	29
Figure 9. Auxiliary Application Circuit	29
Figure 10. Die Temperature Measurement	31
Figure 11. IIR Filter Block Diagram	33
Figure 12. IIR Flowchart with Respect to the AMENDFILT Bit	34
Figure 13. IIR Filter Diagram with Respect to RDFILT	35
Figure 14. Logic Diagram when Balancing Switches Are Disabled	36
Figure 15. Acquisition Mode Flowchart	37
Figure 16. Acquisition, OVSAMP[2:0]=0h and SCANMODE=0	38
Figure 17. Acquisition, OVSAMP[2:0] > 0 and SCANMODE=0	38
Figure 18. Cell Voltage-Alert Thresholds	
Figure 19. Internal Cell Balancing	
Figure 20. Cell-Balancing Watchdog	42
Figure 21. Low-Voltage Regulator	44
Figure 22. HV Charge Pump	45
Figure 23. SHDNL Charge Pump	46
Figure 24. Power-On Sequence	47
Figure 25. Shutdown Sequence	48
Figure 26. Power-On and Shutdown Timing (UART Control)	49
Figure 27. Shutdown Timing (Software Control)	49
Figure 28. System Data Flow	50
Figure 29. UART Transmitter	51
Figure 30. UART Receiver	52
Figure 31. Command Packet	54
Figure 32. Preamble Character	54
Figure 33. Data Characters	55
Figure 34. Stop Character	56
Figure 35. Communication Mode	56
Figure 36. ALTREF Diagnostic	66
Figure 37 V. Diagnostic ADC1	67

LIST OF FIGURES (CONTINUED)	
Figure 38. V _{AA} Diagnostic ADC2	67
Figure 39. LSAMP Offset Diagnostic	68
Figure 40. ADC Zero-Scale Diagnostic	68
Figure 41. ADC Full-Scale Diagnostic	69
Figure 42. Balancing Switch Short	
Figure 43. BALSW Short Diagnostic	
Figure 44. BALSW Open Diagnostics	72
Figure 45. Cell Sense-Wire Open Diagnostics	73
Figure 46. Sense-Wire Open Diagnostic	
Figure 47. Test Current Sources	76
Figure 48. Shutdown Diagnostic Timing	77
Figure 49. HVMUX Switch Open Diagnostic	77
Figure 50. SWn to Cn Short	80
Figure 51. SWn-1 to Cn Short	80
Figure 52. Redundant HVMUX Paths	81
Figure 53. HVMUX Sequencer Diagnostic	82
Figure 54. HVMUX Sequencer Diagnostic	83
Figure 55. ALU Diagnostic	84
Figure 56. AUXINn Open Diagnostic	85
Figure 57. AUXINn Open Diagnostic	86
Figure 58. Electric Vehicle System	88
Figure 59. Daisy-Chain System	89
Figure 60. Distributed System	
Figure 61. External Cell Balancing (BJT)	91
Figure 62. UART Connection	
Figure 63. High-Z Idle Mode Application Circuit	93
Figure 64. External ESD Protection for UART TX Ports	93
Figure 65. External ESD Protection for UART RX Ports	94
Figure 66. Application Circuit for Single-Ended Mode	94
Figure 67. UART Transformer Isolation	
Figure 68. UART Optical Isolation	
Figure 69. Device Initialization Sequence in Differential Mode	
Figure 70. CRC Calculation	97
Figure 71 PEC Calculation Pseudocode	98

LIST OF TABLES Table 2. Numeric Conventions..... Table 3. Data-Acquisition Processes..... Table 6. AINTIME..... Table 8. AMENDFILT Bit Table 10. Acquisition Time..... Table 11. Acquisition Time Examples (with AINCFG[5:0] = 00h)..... Table 15. Emergency Discharge Mode Table 16. Low-Voltage Regulator..... Table 18. HV Charge-Pump Diagnostics..... Table 19. Oscillator Diagnostics..... Table 21. UART RX Modes Table 22. Data Character..... Table 23. Battery-Management UART Protocol (Data Types)..... Table 26. Data-Check Byte Table 27. HELLOALL Sequencing (z = Total Number of Devices)..... Table 29. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain)..... Table 30. READALL Command Sequencing (z = Number of Devices)..... Table 31. READDEVICE Sequencing Table 33. READBLOCK Sequencing for Block Size = 2......

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

LIST OF TABLES (CONTINUED)

Table 36. BALSW Diagnostics	
Table 37. BALSW Open-Diagnostic Autoconfiguration	
Table 38. Odd Sense-Wire Open Measurement Result	
Fable 39. Sense-Wire Open-Diagnostic Configurations	
Fable 40. HVMUX Output Assignment.	
Fable 41. Shutdown Diagnostic	
Fable 42. HVMUX Switch Open Diagnostic	
Fable 43. HVMUX Test-Source Diagnostic	
Fable 44. Cn Pin Open Diagnostic	
Table 45. Expected ALU Diagnostic and Block Register Results	
Table 46. CRC Bit Mask	
Table 47. BJT Balancing Components	

Simplified Operating Circuit

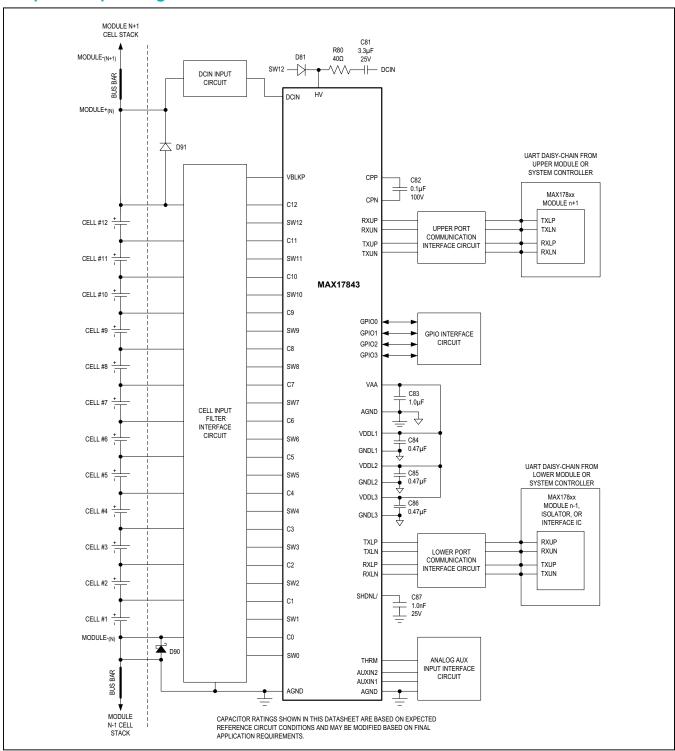


Figure 1. Simplified Operating Circuit

www.maximintegrated.com Maxim Integrated | 11

Simplified Operating Circuit (continued)

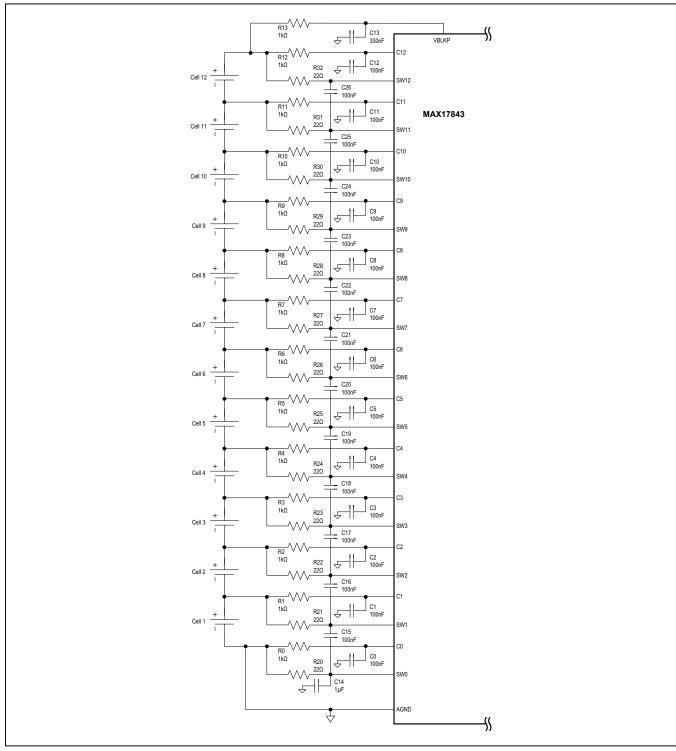


Figure 2. Cell and switch input Filter Operating Circuit

www.maximintegrated.com Maxim Integrated | 12

Functional Block Diagram

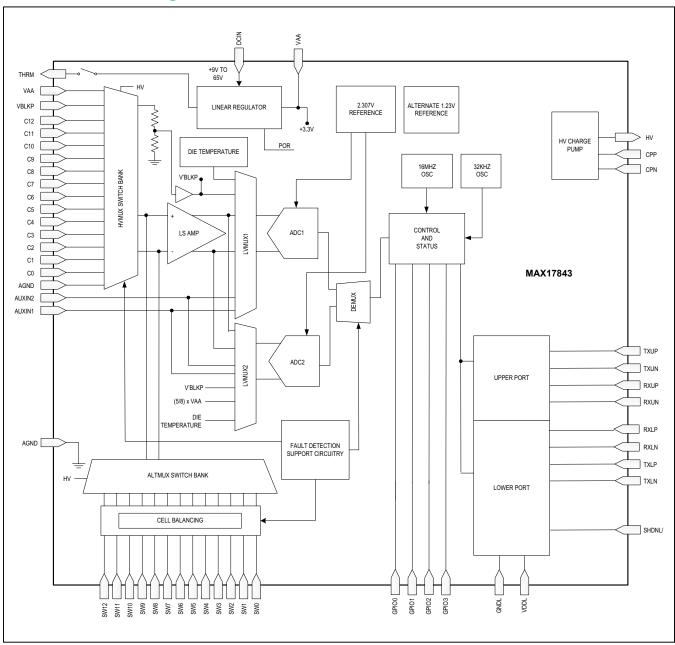


Figure 3. MAX17843 Functional block diagram

MAX17843

12-Channel, High-Voltage Smart Sensor **Data-Acquisition Interface**

Absolute Maximum Ratings

HV to AGND	0.3 to +80V	TXLP, TXLN to GNDL2
DCIN, SWn, VBLK, and Cn to AGND	0.3V to V _{HV} + 0.3V	TXUP, TXUN to GNDL3
	-0.3V to +72V	CPP to AGND
Cn to Cn-1	72V to +72V	CPN to AGND
SWn to SWn-1	0.3V to +16V	GPIO0, GPIO1, GPIO2, GF
V _{AA} to AGND	0.3v to +4V	Max Continuous Current i
V _{DDL1} to GNDL1	0.3V to +4V	Max Continuous Current i
V _{DDL2} to GNDL2		Max Average Power for E
V _{DDL3} to GNDL3	0.3V to +6V	Package Continuous Pow
VAA to VDDL1, VDDL2, and VDDL3		Package Junction-to-Amb
AGND to GNDL1, GNDL2, GNDL3	0.3V to +0.3V	Thermal Resistance (θ _J
AUXIN1, AUXIN2, THRM to AGND	0.3V to V _{AA} + 0.3V	Operating Temperature R
SHDNL to AGND	0.3 to V _{DCIN} + 0.3V	Storage Temperature Rar
CTG to AGND	0.3V to +6V	Junction Temperature (co
RXLP, RXLN, RXUP, RXUN to GNDL1	30V to +30V	Soldering Lead Temperate

TXLP, TXLN to GNDL2	0.3V to +6V
TXUP, TXUN to GNDL3	0.3V to +6V
CPP to AGNDVDCIN	
CPN to AGND0.3\	√ to V _{DCIN} + 0.3V
GPIO0, GPIO1, GPIO2, GPIO3 to GNDL10.3	V to V _{DDL1} + 0.3V
Max Continuous Current into Any Pin (Note 1)±20mA
Max Continuous Current into SWn Pin (Note 2	2)±400mA
Max Average Power for ESD Diodes (Note 3)	14.4/√tW
Package Continuous Power (Note 4)	2000mW
Package Junction-to-Ambient	
Thermal Resistance (θ _{JA})	40°C/W
Operating Temperature Range	40°C to +125°C
Storage Temperature Range	55°C to +150°C
Junction Temperature (continuous)	150°C
Soldering Lead Temperature (10s max)	

- Note 1: Balancing switches disabled.
- Note 2: One balancing switch enabled, 60s (max).
- Note 3: Average power for time period T where T is the time constant (in µs) of the transient diode current during a hot-plug event. For, example, if τ is 330μs, the maximum average power is 0.793W. Peak current must never exceed 2A. Actual average power during hot-plug must be calculated from the diode current waveform for the application circuit and compared to the maximum rating.
- **Note 4:** Multilayer board. For $T_A > +70^{\circ}C$ derate 25mW/°C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{DCIN}$ = +48V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted, where T_{MIN} = -40°C and T_{MAX} =+125°C. Typical values are at T_A = +25°C. Operation is with the recommended application circuit.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER REQUIREMENTS						,
Supply Voltage	V _{DCIN}		9		65	V
	I _{DCSHDN}	V _{SHDNL} = 0V		0.1	3	μA
	I _{DCSTBY}	V _{SHDNL} > 1.8V, baud rate = 0 (100% idle), SCAN = 0, BALSWEN, CTSTEN = 0000h	1.5	2.0	2.7	mA
Supply Current (Note 6)	Ірссомм	Baud rate = 2Mb/s (0% idle time preambles mode), 200pF load on TXUP, 200pF on TXUN, TXL not active, SCAN = 0, BALSWEN, CTSTEN = 0000h	2.0		5	mA
	I _{DCMEAS}	MEASUREEN = 0FFFh, acquisition mode	3.5	5.4	8	mA
HV Measurement Current	I _{HVMEAS}	MEASUREEN = 0FFFh, acquisition mode, V _{HV} = V _{DCIN} + 5.5V	0.9	1.1	1.3	mA
Incremental HV Current for n Balancing Switches Enabled	I _{HVBAL}	V _{HV} = V _{DCIN} + 5.5V, cell-balancing mode	(n+1) x 5	(n+1) x 13.5	(n+1) x 26	μA
VOLTAGE INPUTS (Cn, for n	= 1 to 12 and	V _{BLKP})				
Differential Input Range,		Unipolar mode	0.2		4.8	V
V _{CELLn} = V _{Cn} - V _{Cn-1} (Note 7)	V_{CELLn}	Bipolar mode	-2.3		+2.3	V
Common-Mode Input Range	V _{CnCM}	SWn inputs not connected	0		65	V
Input Leakage Current	I _{LKGCn_L}	V _{HV} = 71V, Cn = 0V	-200	-10	+200	nA
Input Leakage Current	I _{LKGCn_H}	C0 = 5V, C1 to C5 = 28V, C6 to C12 = 65V; V _{HV} = 71V	-200	±10	+200	nA
V _{BLKP} Input Resistance (to AGND)	R _{VBLKP}	V _{BLKP} = V _{DCIN} = 57.6V	4.5	10	20	МΩ
HVMUX Switch Resistance	R _{MUX}	CTSTDAC[3:0] = Fh	1.7	2.5	6	kΩ
CELL-BALANCING INPUTS	(SWn for n = 1	to 12)				
Leakage Current	I _{LKG_SW}	V _{DCIN} = 60V, V _{SWn} = 5 x N, all SWn pins biased	-1		+1	μА
Resistance, SWn to SWn-1	R _{SWn}	BALSWENn = 1, I _{SWn} = 100mA	0.5	2	5	Ω
AUXILIARY INPUTS (AUXIN1, AUXIN2)						
Input Voltage Range	V _{AUXINn}		0		V_{THRM}	V
Input Leakage Current	I _{LKG_AUX}	ADC off; V _{AUXINn} = 1.65V	-400	10	+400	nA
THRM OUTPUT						
Switch Resistance, THRM to V _{AA}	R _{THRM}			25	100	Ω
THRM Leakage	I _{THRM}	V _{THRM} = 1.65V	-1		+1	μA

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MEASUREMENT ACCURAC	Υ					
Initial Total-Acquisition Error (HVMUX Inputs, ADC1 or ADC2)	V _{CELLn} ERRINIT	Unipolar mode, V _{CELLn} = 3.6V, DCIN = 43.2V, T _A = +25°C, VSAMPL[2:0] = 011b, filter coefficient, FC [2:0] = 010b	-2		+2	mV
		Unipolar mode, $0.2V \le V_{CELLn} \le 4.8V$, $5C < T_A < 40^{\circ}C$ OVSAMPL[2:0] = 011b, filter coefficient, FC [2:0] = 010b	-3.5		+3.5	
Initial-Acquisition Error (HVMUX Inputs, ADC1 or ADC2) (Note 8)	V _{CELLnERR}	Unipolar mode, $0.2V \le V_{CELLn} \le 4.8V$, OVSAMPL[2:0] = 011b, filter coefficient, FC[2:0]= 010b	-6	±0.75	+6	mV
		Bipolar mode, $-2.3\text{V} \le \text{V}_{\text{CELLn}} \le 2.3\text{V}$, OVSAMPL[2:0] = 011b, filter coefficient, FC[2:0] = 010b	-6		+6	
Initial-Acquisition Error (HVMUX Inputs, ADC1 or ADC2) (Note 9)		Unipolar mode, $0.2V \le V_{CELLn} \le 4.8V$, $0C < T_A < 40^{\circ}C$, $OVSAMPL[2:0] = 011b$, filter coefficient, FC[2:0]= 010b	-3.5		+3.5	mV
		Unipolar mode, $0.2V \le V_{CELLn} \le 4.8V$ $5C < T_A < 40^{\circ}C \text{ OVSAMPL}[2:0] = 011b$, filter coefficient, FC [2:0] = 010b	-3.5		+3.5	mV
Initial-Acquisition Error (ALTMUX Inputs, ADC1 or ADC2) (Note 8)	V _{SWnERR}	Unipolar mode, 0.2V ≤ V _{CELLn} ≤ 4.8V, OVSAMPL[2:0] = 011b, filter coefficient, FC[2:0] = 010b	-6		+6	
		Bipolar mode, -2.3V ≤ V _{CELLn} ≤ 2.3V, OVSAMPL[2:0] = 011b, filter coefficient, FC[2:0] = 010b	-6		+6	– mV
Total-Acquisition Noise (Note 9)	V _{CELLNOISE}	No oversampling		1.1		mVRMS
Total-Acquisition Error (V _{BLKP} Input)	V _{BLKERR}	$9V \le V_{BLKP} \le 57.6V V_{DCIN} = 57.6V$, OVSAMPL[2:0] = 011b, filter coefficient, FC[2:0] = 010b	-110		+110	mV
Offset Error for AUXIN Measurement	V _{OS_AUX}		-3		+3	mV
Gain Error for AUXIN Measurement	A _{V_AUX}		-0.3		+0.3	%
Total Error for Die- Temperature Measurement (Note 9)	T _{DIE_ERR}	T _J = -40°C to +105°C, no averaging	-5	±3	+5	°C
Differential Nonlinearity (Any Conversion)	DNL			±1.0		LSbs
ADC Resolution			12			bits

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Level-Shifting Amplifier Offset (Note 10)	V _{OS_LSAMP}	DIAGSEL[2:0] = 011b, OVSAMPL[2:0] = 011b	-200		+200	mV
V _{AA} Diagnostic ADC1 Measurement Accuracy	V _{DIAG} _ VAAERR1	DIAGSEL[2:0] = 010b, OVSAMPL[2:0] = 011b, ADCSELECT = 0	-20		+20	mV
V _{AA} Diagnostic ADC2 Measurement Accuracy	V _{DIAG} _ VAAERR2	DIAGSEL[2:0] = 010b, OVSAMPL[2:0] = 011b, ADCSELECT = 1	-30		+30	mV
SHDNL INPUT AND CHARG	E PUMP					•
Input Low Voltage	V _{IL_SHDNL}				0.55	V
Input High Voltage	V _{IH_SHDNL}		1.8			V
D		V _{DCIN} ≥ 12V	8	9.5	12	V
Regulated Voltage	V _{SHDNLIMIT}	V _{DCIN} = 9V		6.7		V
Pulldown Resistance	R _{FORCEPOR}	FORCEPOR = 1	2.5	4.7	8	kΩ
SHDNL Input Leakage Resistance	R _{SHDNL}		4.5		20.5	ΜΩ
Charge-Pump Current (Note 11)	I _{SHDNL}	V _{SHDNL} < V _{SHDNLIMIT} , baud rate = 2Mbps	15	117	350	μA
GENERAL-PURPOSE I/O (G	PIO0-GPIO3)					•
Input Low Voltage	V _{IL_GPIO}				0.8	V
Input High Voltage	V _{IH_GPIO}		2.4			V
Pulldown Resistance	R _{GPIO}	GPIO[15:12] = 0h (input)	0.5	2	7.5	ΜΩ
Output Low Voltage	V _{OL_GPIO}	I _{SINK} = 3mA			0.4	V
Output High Voltage	V _{OH_GPIO}	I _{SOURCE} = 3mA	V _{DDL1} - 0.	4		V
REGULATOR						•
Output Voltage	V _{AA}	0 ≤ I _{VAA} < 10mA	3.2	3.3	3.4	V
Short-Circuit Current	IAASC	V _{AA} shorted to AGND	10	20	70	mA
POR Threshold	V _{PORFALL}	V _{AA} falling	2.85	2.95	3.02	V
POR Illieshold	V _{PORRISE}	V _{AA} rising		3.0	3.1	V
POR Hysteresis	V _{PORHYS}			40		mV
Thermal-Shutdown Temperature (Note 9)	T _{SHDN}	Temperature rising		165		°C
Thermal-Shutdown Hysteresis (Note 9)	T _{HYS}			10		°C
HV CHARGE PUMP						
Output Voltage (V _{HV} -V _{DCIN})	V · ·	9V ≤ V _{DCIN} ≤ 12V, I _{LOAD} = 1.5mA	5	5.5	6	V
Outhor voirage (AHA-ADCIN)	V _{HV-DCIN}	12V ≤ V _{DCIN} ≤ 65V, I _{LOAD} = 3mA	5	5.5	6	v
Charge Pump Efficiency (Note 12)				38		%

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
HV Headroom	V _{HVHDRM}	ALRTHVHDRM = 0	4.7			V
OSCILLATORS						
32kHz Oscillator Frequency	f _{OSC_32K}		32.11	32.768	33.42	kHz
16MHz Oscillator Frequency	fosc_16M		15.68	16	16.32	MHz
DIAGNOSTIC TEST SOURC	ES					
		CTSTDAC[3:0] = 9h, V _{Cn} < V _{AA} - 1.4V, V _{AA} = 3.3V	50	62.5	75	
Cell-Test Source Current	ı	CTSTDAC[3:0] = 6h, V _{Cn} < V _{AA} - 1.4V, V _{AA} = 3.3V	36	45	54	
Cell-Test Source Current	I _{TSTCn}	CTSTDAC[3:0] = 6h, V _{Cn} > V _{AGND} + 1.4V	-54	-45	-36	μA
		CTSTDAC[3:0] = 9h, V _{Cn} > V _{AGND} + 1.4V	-75	-62.5	-50	
HVMUX Test-Source		CTSTDAC[3:0] = 9h, V _{Cn} < V _{HV} - 1.4V, V _{HV} = 53.5V	25	31.25	37.5	
Current	ITSTMUX	CTSTDAC[3:0] = 6h, V _{Cn} < V _{HV} - 1.4V, V _{HV} = 53.5V	18	22.5	.5 27	μA
		CTSTDAC[3:0] = 9h, V _{AUXINn} < V _{AA} - 1.4V, V _{AA} = 3.3V	50	62.5	75	μΑ
AUXIN Test-Source Current	Itstauxin	CTSTDAC[3:0] = 6h, V _{AUXINn} < V _{AA} - 1.4V, V _{AA} = 3.3V	36	45	54	
AUXIN Test-Source Current		CTSTDAC[3:0] = 6h, V _{AUXINn} > V _{AGND} + 1.4V	-54	-45	-36	
		CTSTDAC[3:0] = 9h, V _{AUXINn} > V _{AGND} + 1.4V	-75	-62.5	-50	
DIAGNOSTIC REFERENCES	3					
ALTREF Voltage (Note 10)	V _{ALTREF}	DIAGSEL[2:0] = 001b	1.23	1.242	1.254	V
ALTREF Temperature Coefficient ($\Delta V_{ALTREF}/\Delta T$) (Note 9)	A _{ALTREF}			±25		ppm/°C
PTAT Output Voltage (Note 9)	V _{PTAT}	T _J = +120°C		1.2		V
PTAT Temperature Coefficient (ΔV _{PTAT} /ΔT) (Note 9)	A _{V_PTAT}			3.07		mV/°C
PTAT Temperature Offset (Note 9)	T _{OS_PTAT}			0		°C
ALERTS			,			
ALRTVDDLn Threshold	V _{VDDL_OC}	V _{AA} = 3.3V	3	3.15	3.25	V
ALRTGNDLn Threshold	V _{GNDL} oc	AGND = 0V	0.05	0.15	0.3	V

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ALRTHVUV Threshold	V _{HVUV}	V _{HV} - V _{DCIN} falling	3.8	4.1	4.25	V
ALRTHVOV Threshold	V _{HVOV}	V _{HV} - V _{DCIN} rising	7	8.5	10	V
ALRTTEMP Threshold (Note 9)	T _{ALRTTEMP}		115	120	125	°C
ALRTTEMP Hysteresis (Note 9)	T _{ALRTTEMP} HYS			2		°C
UART OUTPUTS (TXLP, TXL	N, TXUP, TXUI	N)				•
Output Low Voltage	V _{OL}	I _{SINK} = 20mA			0.4	V
Output High Voltage (TXLP, TXLN)	V _{OH}	I _{SOURCE} = 20mA	V _{DDL2} - (0.4		V
Output High Voltage (TXUP, TXUN)	V _{OH}	I _{SOURCE} = 20mA	V _{DDL3} - (0.4		V
Leakage Current	I _{LKG_TX}	V _{TX} = 1.5V	-1		+1	μA
UART INPUTS (RXLP, RXLN	I, RXUP, RXUN)					
Input Voltage Range	V _{RX}		-25		+25	V
Receiver High Comparator Threshold (Notes 13, 17)	V _{CH}		V _{DDL} / 2 - 0.4	V _{DDL} /2	V _{DDL} / 2 + 0.4	V
Receiver Zero-Crossing Comparator Threshold (Note 13)	V _{ZC}		-0.4	0	+0.4	V
Receiver Low Comparator Threshold (Notes 13, 17)	V _{CL}		-V _{DDL} / 2 - 0.4	-V _{DDL} /2	-V _{DDL} / 2 + 0.4	V
Receiver Comparator Hysteresis (Note 13)	V _{HYS_RX}			75		mV
Receiver Common-Mode Voltage Bias (Notes 13, 17)	V _{CM}			V _{DDL} /3		V
Leakage Current	I _{LKG_RX}	V _{RX} = 1.5V		±1.0		μA
Input Capacitance (RXLP, RXLN)	C _{RXL}			4		pF
Input Capacitance (RXUP, RXUN)	C _{RXU}			2		pF
UART TIMING						
		Baud rate = 2Mb/s		8		
Bit Period (Note 14)	t _{BIT}	Baud rate = 1Mb/s		16		1/f _{OSC} _16M
		Baud rate = 0.5Mb/s		32		
Rx Idle to START Setup Time (Notes 9, 15)	t _{RXSTSU}		0		1	t _{BIT}
STOP Hold Time to Idle (Notes 9, 15)	t _{SPHD}				4	1/f _{OSC} _16M

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RX Minimum Idle Time (STOP bit to START bit) (Notes 9, 15)	t _{RXIDLESPST}		1			t _{BIT}
RX Fall Time (Notes 9, 16)	t _{FALL}				0.5	t _{BIT}
RX Rise Time (Notes 9, 16)	t _{RISE}				0.5	t _{BIT}
Propagation Delay (RX Port to TX port) (Note 9)	t _{PROP}			2.5	3	t _{BIT}
Startup Time from SHNDL High and V _{AA} = 0V to RXUP/RXUN Valid	tSTARTUP			1		ms

- Note 5: Unless otherwise noted, limits are 100% production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.
- Acquisition mode (ADC conversions) is entered when the SCAN bit is set and ends when SCANDONE is set. With the Note 6: typical acquisition duty-cycle very low, the average current (IDCIN) is much less than IDCMEAS. Total supply current during communication: I_{DCIN} = I_{DCCOMM} + I_{DCSTBY}.
- Range over which measurement settling time and accuracy is guaranteed.
- Note 8: $V_{CELLn} = V_{Cn-1}$, $V_{CELLn} = V_{CELLn-1}$, and $V_{DCIN} = 12 \text{ x } | V_{CELLn} |$ (9V min). Note 9: Guaranteed by design and not production tested.
- Note 10: As measured during specified diagnostic mode; 5V full-scale for unipolar mode measurements and 2.5V full-scale for bipolar measurements
- Note 11: I_{SHDNL} measured with V_{SHDNL} = 0.3V, STOP characters, zero idle time, V_{RX} PEAK = 3.3V.
- Note 12: Charge pump efficiency = ΔI_{LOAD}/ΔI_{SUPPLY}, where I_{LOAD} is applied from HV to AGND, ΔI_{LOAD} = 5mA, and ΔI_{SUPPLY} = I_{DCIN} (for $I_{LOAD} = 5mA$) - I_{DCIN} (for $I_{LOAD} = 0$).
- Note 13: Differential signal (V_{RXP} V_{RXN}) where V_{RXP} and V_{RXN} do not exceed a common-mode voltage range of ±25V.
- Note 14: In daisy-chain applications, the bit time of the second STOP bit may be less than specified to account for clock-rate variation and sampling error between devices.
- Note 15: Maximum limited by application circuit.
- Note 16: Fall time measured 90% to 10%; rise time measured 10% to 90%.
- **Note 17:** $V_{DDL} = V_{DDL2}$ for lower port; $V_{DDL} = V_{DDL3}$ for upper port.

Pin Configuration

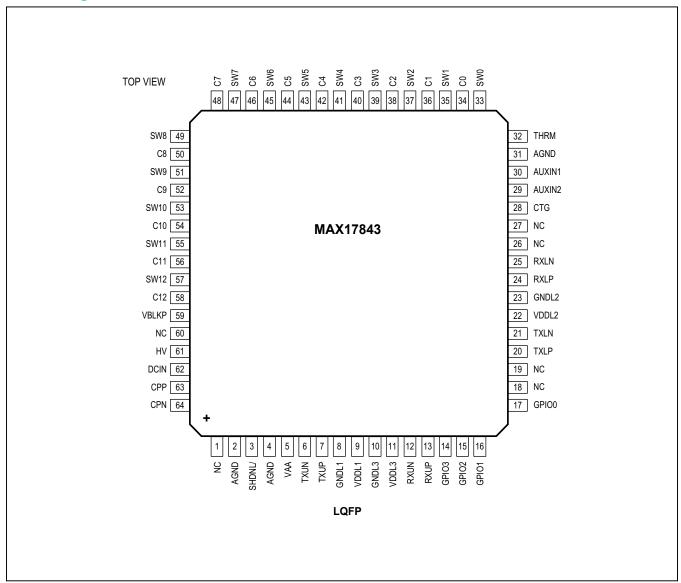


Figure 4. MAX17843 64-Pin LQFP Pin Configuration

Pin Description

PIN	NAME	TYPE	FUNCTION	
1, 18, 19, 26, 27, 60	N.C.	_	Not Connected. Connect to ground or leave unconnected.	
2, 4, 31	AGND	Ground	Analog Ground. Connect to negative terminal of cell 1 and ground plane.	
3	SHDNL	Input	Active-Low Shutdown Input. Drive > 1.8V to enable operation and drive < 0.6V to rese device and place in shutdown mode. +72V tolerant. If not driven externally, this input be controlled solely through UART communication and software control. Bypass with 1nF capacitor to AGND. For single-ended UART, SHDNL must be driven externally.	
5	V _{AA}	Power	$3.3 V$ Regulator Output Used to Supply $V_{DDL1}, V_{DDL2}, \mbox{and} V_{DDL3}.$ Bypass with a $1 \mu F$ capacitor to ground.	
6	TXUN	Output	Negative Output for Upper-Port Transmitter. Driven between V _{DDL3} and GNDL3.	
7	TXUP	Output	Positive Output for Upper-Port Transmitter. Driven between V _{DDL3} and GNDL3.	
8	GNDL1	Ground	Digital Ground. Connect to ground plane.	
9	V _{DDL1}	Power	3.3V Digital Supply. Connect externally to V_{AA} and bypass with 0.47 μF capacitor to GNDL1.	
10	GNDL3	Ground	Ground for Upper-Port Transmitter. Connect to ground plane.	
11	V _{DDL3}	Power	3.3V Supply for Upper-Port Transmitter. Connect externally to VAA and bypass with 0.47µF capacitor to GNDL3.	
12	RXUN	Input	Negative Input for Upper-Port Receiver. Tolerates ±30V.	
13	RXUP	Input	Positive Input for Upper-Port Receiver. Tolerates ±30V. Connect to ground for single-ended operation.	
14	GPIO3	I/O	General-Purpose I/O 3. Driven between V _{DDL1} and GNDL1. 2MΩ internal pulldown.	
15	GPIO2	I/O	General-Purpose I/O 2. Driven between V _{DDL1} and GNDL1. 2MΩ internal pulldown.	
16	GPIO1	I/O	General-Purpose I/O 1. Driven between V _{DDL1} and GNDL1. 2MΩ internal pulldown.	
17	GPIO0	I/O	General-Purpose I/O 0. Driven between V_{DDL1} and GNDL1. $2M\Omega$ internal pulldown.	
20	TXLP	Output	Positive Output for Lower-Port Transmitter. Driven between V _{DDL2} and GNDL2.	
21	TXLN	Output	Negative Output for Lower-Port Transmitter. Driven between V _{DDL2} and GNDL2.	
22	V _{DDL2}	Power	3.3V Supply for Lower-Port Transmitter. Connect externally to VAA and bypass with 0.47µF capacitor to GNDL2.	
23	GNDL2	Ground	Ground for Lower-Port Transmitter. Connect to ground plane.	
24	RXLP	Input	Positive Input for Lower-Port Receiver. Tolerates ±30V. Connect to ground for single-ended operation.	
25	RXLN	Input	Negative Input for Lower-Port Receiver. Tolerates ±30V.	
28	CTG	Input	Reserved for Factory use. Connect to ground.	
29	AUXIN2	Input	Auxiliary Voltage Input 2 to Measure External Temperature. Connect to a voltage-divider consisting of a $10k\Omega$ pullup to THRM and $10k\Omega$ NTC thermistor to ground. If not used, connect to the pullup only.	
30	AUXIN1	Input	Auxiliary Voltage Input 1 to Measure External Temperature. Connect to a voltage-divider consisting of a $10k\Omega$ pullup to THRM and a $10k\Omega$ NTC thermistor to ground. If not used, connect to the pullup only.	
32	THRM	Power	3.3V Switched Output. Used to supply the voltage-dividers for the auxiliary inputs. The output is enabled only during measurements, or as configured by THRMMODE[1:0]. This output can source up to 2mA.	

www.maximintegrated.com Maxim Integrated | 22

Pin Description (continued)

PIN	NAME	TYPE	FUNCTION	
33	SW0	Input	Balance Input for Cell 1 Negative.	
34	C0	Input	Voltage Input for Cell 1 Negative. Connect to AGND.	
35	SW1	Input	Balance Input for Cell 1 Positive (Cell 2 Negative)	
36	C1	Input	Voltage Input for Cell 1 Positive (Cell 2 Negative)	
37	SW2	Input	Balance Input for Cell 2 Positive (Cell 3 Negative)	
38	C2	Input	Voltage Input for Cell 2 Positive (Cell 3 Negative)	
39	SW3	Input	Balance Input for Cell 3 Positive (Cell 4 Negative)	
40	C3	Input	Voltage Input for Cell 3 Positive (Cell 4 Negative)	
41	SW4	Input	Balance Input for Cell 4 Positive (Cell 5 Negative)	
42	C4	Input	Voltage Input for Cell 4 Positive (Cell 5 Negative)	
43	SW5	Input	Balance Input for Cell 5 Positive (Cell 6 Negative)	
44	C5	Input	Voltage Input for Cell 5 Positive (Cell 6 Negative)	
45	SW6	Input	Balance Input for Cell 6 Positive (Cell 7 Negative)	
46	C6	Input	Voltage Input for Cell 6 Positive (Cell 7 Negative)	
47	SW7	Input	Balance Input for Cell 7 Positive (Cell 8 Negative)	
48	C7	Input	Voltage Input for Cell 7 Positive (Cell 8 Negative)	
49	SW8	Input	Balance Input for Cell 8 Positive (Cell 9 Negative)	
50	C8	Input	Voltage Input for Cell 8 Positive (Cell 9 Negative)	
51	SW9	Input	Balance Input for Cell 9 Positive (Cell 10 Negative)	
52	C9	Input	Voltage Input for Cell 9 Positive (Cell 10 Negative)	
53	SW10	Input	Balance Input for Cell 10 Positive (Cell 11 Negative)	
54	C10	Input	Voltage Input for Cell 10 Positive (Cell 11 Negative)	
55	SW11	Input	Balance Input for Cell 11 Positive (Cell 12 Negative)	
56	C11	Input	Voltage Input for Cell 11 Positive (Cell 12 Negative)	
57	SW12	Input	Balance Input for Cell 12 Positive	
58	C12	Input	Voltage Input for Cell 12 Positive	
59	V _{BLKP}	Input	Block Voltage Positive Input. Internal $10M\Omega$ pulldown during measurement.	
61	HV	Power	Decoupling Capacitor Connection for the HV Charge Pump. $V_{HV} = V_{DCIN} + 5.5V$ (typical). Bypass with a 50V, 4.7 μ F capacitor to DCIN.	
62	DCIN	Power	DC Supply for the Low-Voltage Regulator, HV Charge Pump, and SHDNL Charge Pump. Connect to a voltage source between 9V and 65V through a 100Ω series resistor. Bypass with a $100V$, $2.2\mu F$ capacitor to ground.	
63	CPP	Power	Positive Capacitor Connection for the HV Charge Pump. Connect a 100V, 0.1µF capacitor from CPP to CPN.	
64	CPN	Power	Negative Capacitor Connection for the HV Charge Pump	

Detailed Description

The data-acquisition system consists of the major blocks as described in Table 1.

Table 1. System Blocks

BLOCK	DESCRIPTION
ADC1	Primary analog-to-digital converter. Uses a 12-bit successive-approximation register (SAR), with a reference voltage of 2.307V and is supplied by V _{AA} . V _{AA} diagnostic result yields V _{AA} . This is the default ADC selected by the ADCSELECT bit in the SCANCTRL register.
ADC2	Secondary analog-to-digital converter. Uses a 12-bit successive-approximation register (SAR) with a reference voltage of 2.307V and is supplied by V_{AA} . This is the secondary ADC. V_{AA} diagnostic result yields $V_{AA}/2$. Writing the ADCSELECT bit to 1 selects this ADC for measurements.
HVMUX	12-channel, high-voltage (65V) differential multiplexer for Cn inputs.
HV CHARGE PUMP	High-voltage charge-pump supply (V _{DCIN} + 5.5V) for the HVMUX, ALTMUX, BALSW, and LSAMP circuits that must switch high-voltage signals. Supplied by DCIN.
LSAMP	Level-shifting amplifier with a gain of 6/13. The result is that a 5V differential signal is attenuated to 2.307V, which is the reference voltage for the ADC.
LVMUX	Multiplexes various low-voltage signals including the level-shifted signals and temperature signals to the ADC for subsequent A-to-D conversion.
ALTMUX	12-channel, high-voltage differential multiplexer for SWn inputs.
BALSW	Cell-balancing switches.
LINREG	3.3V (V _{AA}) linear regulator used to power the ADC and digital logic. Supplied by DCIN (9V to 65V).
REF	2.307V precision reference voltage for ADC and LINREG. Temperature-compensated.
ALTREF	1.242V precision reference voltage used for diagnostics.
16MHZ OSC	16MHz oscillator with 2% accuracy for clocking state-machines and UART timing.
32kHz OSC	32,768Hz oscillator for driving charge pumps and timers.
LOWER PORT	Differential UART for communication with host or downstack devices. Autodetects baud rates of 0.5, 1, or 2Mbps.
UPPER PORT	Differential UART for communication with upstack devices.
CONTROL AND STATUS	ALUs, control logic, and data registers.
DIE TEMP	A proportional-to-absolute-temperature (PTAT) voltage source used to measure the die temperature.

www.maximintegrated.com Maxim Integrated | 24

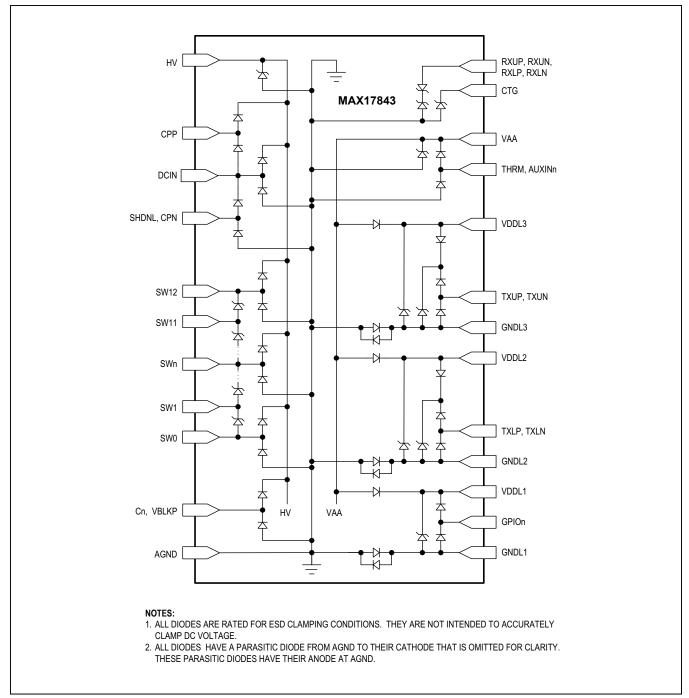


Figure 5. ESD Diode Diagram

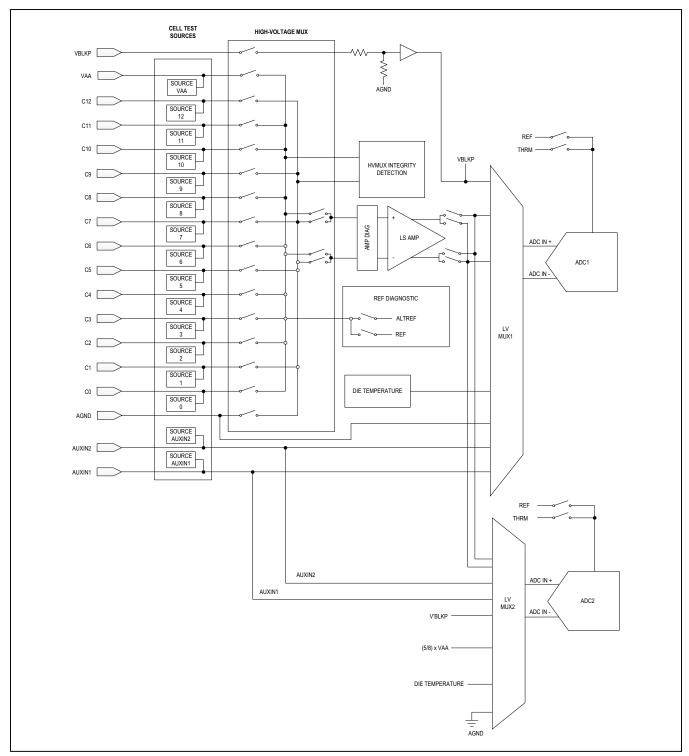


Figure 6. Analog Front-End (AFE Inputs)

Data Conventions

Representation of data follows the conventions shown in Table 2. All registers are 16-bit words.

Data Acquisition

Data acquisition is composed of the distinct processes defined in <u>Table 3</u>, and is controlled by various configuration registers described in this section. Configuration changes should be made prior to the acquisition in which the changes are to be effected.

Precision Internal Voltage References

The measurement system uses two precision, temperature-compensated voltage references. The references are completely internal to the device and do not require any external components. The primary voltage reference (REF) is used to derive the linear regulator output voltage and to supply the ADC reference. An alternate, independent reference(ALTREF) can be used to verify the primary reference voltage, as described in the *Diagnostics* section.

Measurement Calibration

The acquisition system is calibrated at the factory and cannot be changed afterwards. The calibration parameters are stored in a ROM consisting of 12 read-only registers, CAL0–CAL10 and CAL15. ROMCRC[8:0] is an 8-bit CRC value based on the calibration ROM and is stored in ID2[15:8] at the factory. ROMCRC[8:0] can be used to check the integrity of the calibration, as described in the *Diagnostics* section.

Cell Inputs

Up to 12 voltage measurements can be sampled differentially from the 13 cell inputs. The differential signal (V_{CELLn}) is defined as V_{Cn} - $V_{\text{Cn-1}}$ for n = 1–12.

Cells to be measured are selected by MEASUREEN[11:0]. During the scan, each selected signal is multiplexed into the level-shifting amplifier (LSAMP) as shown in Figure 6. Since the common-mode range of the input signals is 0 to 65V, the signal must be level-shifted to the common-mode range of the amplifier. The amplifier has a gain of 6/13, so a 5V differential signal is attenuated to 2.307V, which is the ADC reference voltage.

Table 2. Numeric Conventions

DESCRIPTION	CONVENTION	EXAMPLE
Binary number	0b prefix	0b01100001 = 61h
Hexadecimal address	0x prefix	0x61
Hexadecimal data	h suffix	61h
Register bit	Register name [x]	STATUS[15] = 1
Register field	Field name [x:y]	DA[4:0] = 0b01100 = 0Ch
Concatenated numbers	{xxxx, yyyy}	{DA[4:0], 0b001} = 61h

Table 3. Data-Acquisition Processes

PROCESS	DESCRIPTION
Conversion	The ADC samples a single input channel, converts it to a 12-bit binary value, and stores it in an ALU register.
Scan	The ADC sequentially performs conversions on all enabled cell input channels.
Measurement cycle or Sample	The ADC performs two scans for the purpose of minimizing errors. The conversions (two for each input channel) are averaged together to form a single 14-bit binary value called a measurement. Note: The auxiliary inputs are only scanned once to create the auxiliary measurements.
Acquisition or Acquisition mode	If oversampling is enabled, the ADC takes sequential measurements and averages them together to form one 14-bit binary value for each input channel sampled. If there is no oversampling, the acquisition is essentially a single-measurement cycle. Note: The auxiliary inputs are never oversampled and are stored as 12-bit values.

www.maximintegrated.com Maxim Integrated | 27

Once the signal is properly conditioned, the ADC can start the conversion. The 12-bit conversion is stored in an ALU register where it can be averaged with subsequent conversions. The ALU output is a 14-bit value and is ultimately stored in a 16-bit register with the two least-significant bits zero. Disabled channels result in a measurement value of 0000h. Unless stated otherwise, measurement values are assumed to be 14-bit values. The 16-bit register values can be converted to 14-bit values by dividing by 4 (and vice versa). To convert the measurement value in register CELLn to a voltage, convert the 14-bit hexadecimal value to a decimal value and then convert to voltage as follows:

 V_{CELLn} = CELLn[15:2] x 5V/16384 = CELLn[15:2] x 305.176 μ V.

Input Range

The input range in unipolar mode is nominally 0 to 5V; however, the ADC has reduced linearity at its range extents and so accuracy is specified for the input range 0.2V to 4.8V. Some applications may require specified accuracy below 0.2V, or even below 0V. To this end, the bipolar mode (POLARITY = 1) has a nominal input range of -2.5V to +2.5V, as shown in <u>Table 4</u>, with accuracy specified from -2.3V to +2.3V.

The input range can effectively be extended from -2.5V to +5V by taking one bipolar measurement and one unipolar measurement. Any bipolar measurements over 2.3V should be replaced with the unipolar measurement.

Note: Conversions for some diagnostic modes automatically use either bipolar or unipolar mode, regardless of the POLARITY bit value.

Block Voltage Input

The V_{BLKP} input (total module voltage) is selected for measurement by MEASUREEN14. The measurement is stored in the VBLOCK register with a full-scale value of 60V (3.662mV/bit). It can be compared to the sum of the cell voltages as a diagnostic. To precondition V_{BLKP} for conversion, it is voltage-divided by a factor of 26. The divider is disconnected by default to minimize power consumption. The divider is connected by setting MEASUREEN15 (BLKCONNECT = 1) with sufficient settling time prior to the acquisition. For high acquisition rates, BLKCONNECT can remain enabled to reduce cycle time.

Table 4. Input Range

CELL INPU	JT VOLTAGE	CELLN[15:2]	CELLN[15:2] (14 BITS)	
BIPOLAR MODE (V)	UNIPOLAR MODE (V)	HEXADECIMAL	DECIMAL	(16 BITS)
-2.5	0	0000h	0d	0000h
0	2.5	2000h	8192d	8000h
+2.5	5	3FFFh	16383d	FFFCh

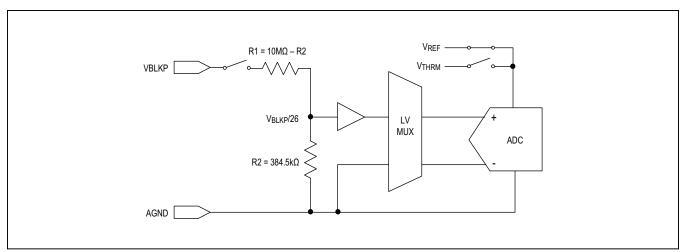


Figure 7. V_{BLKP} Measurement

Auxiliary Inputs

The AUXIN1 and AUXIN2 inputs can be used to measure external temperatures by enabling MEASUREEN[13:12]. These inputs have a common-mode input range of 0 to V_{AA} . For these measurements, the ADC reference voltage is V_{THRM} , which is switched from V_{AA} , as shown in Figure 8. The auxiliary inputs are not oversampled even

if oversampling is enabled; they are measured only once and stored as 12-bit values in the AIN1 and AIN2 registers.

To measure external temperature, the auxiliary input is connected to a voltage-divider consisting of a $10k\Omega$ pullup to THRM and a $10k\Omega$ NTC thermistor to ground, as shown in Figure 9.

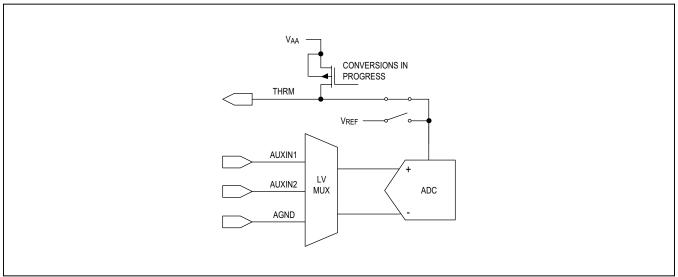


Figure 8. Auxiliary Measurement

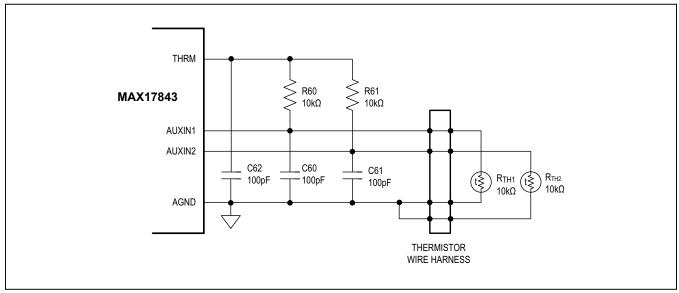


Figure 9. Auxiliary Application Circuit

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

THRM Output

The THRM output has two modes of operation, automatic and manual, as shown in Table 5.

The automatic mode minimizes power consumption, but after the THRM output is enabled, the AUXIN voltages must be allowed to settle before the conversion. Since the auxiliary inputs are the last inputs measured, the duration of the measurement cycle itself can provide sufficient settling time, depending on what measurements are enabled and the time constants for the auxiliary input circuit. Up to 384µs of additional settling time, if required, can be configured by ACQCFG[5:0] (see Table 6), or by utilizing the manual mode. The ability to configure the settling time allows for a range of time constants to be considered in designing the auxiliary application circuit.

Computing Temperature

In <u>Figure 9</u>, $V_{AUXINn} = V_{THRM} \times R_{TH}/(10K\Omega + R_{TH})$ and this measurement is stored in the AINn register. The thermistor resistance can then be solved for as follows:

 $R_{TH} = (V_{AUX} \ x \ 10 k\Omega)/(V_{THRM} - V_{AUXINn}),$ where $V_{THRM} = 3.3 V$ nominally.

The resistance of an NTC thermistor increases as the temperature decreases and is typically specified by its resistance R_0 at T_0 = 25°C = 298.15K and a material constant β (3400K typ). To the first order, the resistance R_{TH} is at a temperature T in Kelvin can be computed as follows:

$$R = R_0 e(\beta(1/T-1/T_0))$$

The temperature T of the thermistor (in °C) can then be calculated as follows:

T (in °C) =
$$(\beta/\ln((R_{TH}/10k\Omega) + (\beta/298.15K)) - 273.15K$$

Temperature Alerts

Auxiliary voltage measurements can be directly compared to precalculated voltages in the AINUT and AINOT registers that correspond to specific over/undertemperature thresholds. When a measurement exceeds the AINUT or AINOT threshold level, the ALRTCOLD or ALRTHOT bits, respectively, are set in the STATUS register. An alert is cleared only by a new measurement that is within threshold.

Table 5. THRM Output

MODE	ACQCFG[9:8]	DESCRIPTION
Automatic	00b	THRM output enabled at the beginning of the acquisition and disabled at the end
Automatic	01b	of the acquisition.
Manual	10b	THRM output is enabled
Manuai	11b	THRM output is disabled

Table 6. AINTIME

ACQCFG[5:0] (AINTIME)	ADDITIONAL SETTLING TIME PER ENABLED AUXILIARY CHANNEL = 6μs + (AINTIME x 6μs)
00h	6µs
01h	12µs
02h	18µs
1Fh	384 µs

Die Temperature Measurement

The die temperature measurement allows the host to compute the device temperature (T_{DIE}) as it relates to the acquisition accuracy, and allows the device to automatically shut itself down when $T_{DIE} > 145\,^{\circ}\text{C}$. The measurement employs a source whose voltage (V_{PTAT}) is proportional to absolute temperature (PTAT), as shown in Figure 10. The V_{PTAT} measurement is enabled by setting DIAGSEL[2:0] to 0b110 and the 14-bit measurement is stored in DIAG[15:2]. The die temperature measurement requires a settling time of 50µs from the start of the measurement cycle until the diagnostic conversion. As long as two or more cell measurements are enabled, there will be sufficient settling time for this measurement. See Figure 17 and Table 10 for a detailed view of this timing.

The PTAT voltage is computed as follows:

 $V_{PTAT} = (DIAG[15:2]/16384d) \times V_{REF}$

where V_{REF} = 2.307V. The measured voltage can be converted into °C as follows:

 T_{DIE} (in °C) = (V_{PTAT}/A_{V_PTAT}) + T_{OS_PTAT} - 273°C See the <u>Electrical Characteristics</u> table for A_{V_PTAT} and T_{OS_PTAT} values.

Die Temperature Alert

The ALRTTEMP bit is updated at the end of each measurement cycle for which DIAGSEL[2:0] = 0b110. If ALRTTEMP is set, it signifies that $T_{DIE} > T_{ALRTTEMP}$, or that the diagnostic measurement did not have sufficient settling time (< 50µs) and therefore can not be accurate. If ALRTTEMP is set, the host should consider the possibility that the acquisition does not meet the expected accuracy specification, or that the die temperature measurement itself may be inaccurate due to insufficient settling time (< 2 cell measurements enabled).

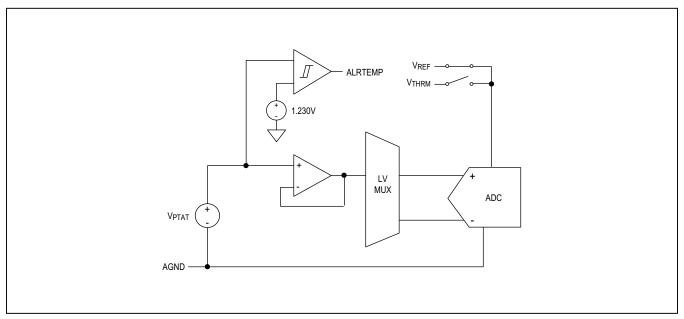


Figure 10. Die Temperature Measurement

Acquisition Mode

The host enters the acquisition mode by writing a logic-one to the SCAN bit in the SCANCTRL register. This write is actually an automatic strobe of the bit since SCAN always reads logic-zero. In daisy-chained devices, acquisitions in upstack devices are delayed by the propagation delay (tproprior) of the command packet through each device. The acquisition is complete when the device sets the SCANDONE bit. The basic acquisition process is outlined below with a detailed flowchart in Figure 8:

- 1) Disable HV charge pump.
- 2) VBLKP conversion, if enabled.
- 3) All enabled cell conversions (first):
 - a. Ascending order (1:12) if pyramid mode, or
 - b. Descending order (12:1) if top-down mode.
- 4) All enabled cell conversions (second):
 - a. Descending order (12:1).
- 5) V_{BI KP} conversion (second), if enabled.
- 6) Diagnostic conversion (first), if enabled.
- 7) Diagnostic conversion (second), if enabled.
- 8) Enable HV charge pump for recovery period unless: a. OVSAMP[2:0] = 0 (no oversampling), or
 - b. All oversample measurements are complete.
- 9) Repeat steps 1-8 until all oversamples are done.

- All enabled auxiliary conversions, in ascending order (AUXIN1, AUXIN2).
- 11) Set SCANDONE bit.

Oversampling

Oversampling mode performs multiple measurement cycles in a single acquisition, and averages the samples in the ALU to reduce the measurement noise and effectively increase the resolution of each measurement result. In oversampling mode, acquisition times are proportional to the number of oversamples, as shown in Table 8. The number of oversamples can be configured from 4 to 128 by OVSAMPL[2:0], as shown in Table 7. The AUXIN measurements are never oversampled, even in oversampling mode.

To add n bits of measurement resolution requires at least 2^{2n} oversamples. Since the ADC resolution is 12 bits, 13-bit resolution requires at least 4 oversamples and to achieve the maximum 14-bit resolution requires at least 16 oversamples; therefore, with no oversampling, only the higher 12 bits of the measurement are statistically significant and with 4 or 8 oversamples, only the higher 13 bits are statistically significant. Taking more than 16 oversamples further reduces the measurement variation.

Of course with no oversampling, measurements can be averaged externally to achieve increased resolution, but at a higher computational cost for the host.

Table 7. Oversampling

OVSAMPL[2:0]	OVERSAMPLES	THEORETICAL RESOLUTION	ACQUISITION WATCHDOG TIMEOUT
000b (default)	0	12 bits	1.10ms
001b	4	13 bits	2.08ms
010b	8	13 bits	3.36ms
011b	16	14 bits	5.92ms
100b	32	14 bits	10.99ms
101b	64	14 bits	21.18ms
110b	128	14 bits	41.56ms
111b	128	14 bits	41.56ms

Infinite Impulse Response Filtering (IIR Filter):

To augment the accuracy performance, an IIR filtering scheme is implemented where the results of the cell voltages are filtered after the oversampling. The IIR filter is implemented by the simple equation below:

$$Y(n) = FC \times X(n) + (1 - FC) \times Y(n-1)$$

where FC = filter coefficient, user-selectable 3 bits.

The default value is b'010, which has a weight of 3/8:

- X(n) = 3/8
- Y (n-1) = 5/8

The detailed filter coefficient settings are mentioned in the DEVCFG1 register. The filter can be turned off by setting the coefficient bits to b'111. The smaller that coefficient is, the more the history, represented by Y (n-1) outputs in

the equation, so it's a tradeoff between response times to change in input value versus the noise attenuation. Refer to the application note in detail for how the filter affects the accuracy performance of MAX17843.

Two new bits are added for the control of the data flow through the filter:

- 1) AMEND Filter (AMENDFILT) bit
- 2) Read Filter (RDFILT) bit

AMENDFILT is in SCANCTRL register 0x13.

This bit when set to '1' enables the automatic transfer of the new ADC conversion from the ALUn to CELLn registers through the IIR filter at the end of the scan. The default value is '0', which keeps the scan conversion data in the ALUn register as an unfiltered result.

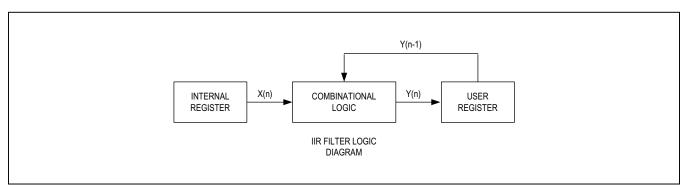


Figure 11. IIR Filter Block Diagram

Table 8. AMENDFILT Bit

AMENDFILT BIT	FUNCTIONALITY AND RECOMMENDED USAGE
0	No transfer of the ADC conversion result from ALUn to CELLn registers. Unfiltered data is stored in ALUn registers at the end of the scan. This bit should be set to '0' during any diagnostic conversion such as open-sense wire, or using balancing switches.
1	Automatic transfer of the ADC conversion result from ALUn to CELLn registers at the end of the scan through the IIR filter. Instantaneous unfiltered data is available in ALUn registers while the filtered data is stored in the CELLn registers. This bit should be set to '1' during normal cell-voltage measurements.

RDFILT Bit in SCANCTRL Register (0x13)

This bit chooses where the ADC scan data is read from. Writing this bit to '1' enables the read to occur from filtered CELLn registers. The default value is '0', wherein the read of the scanned data occurs from unfiltered ALUn registers.

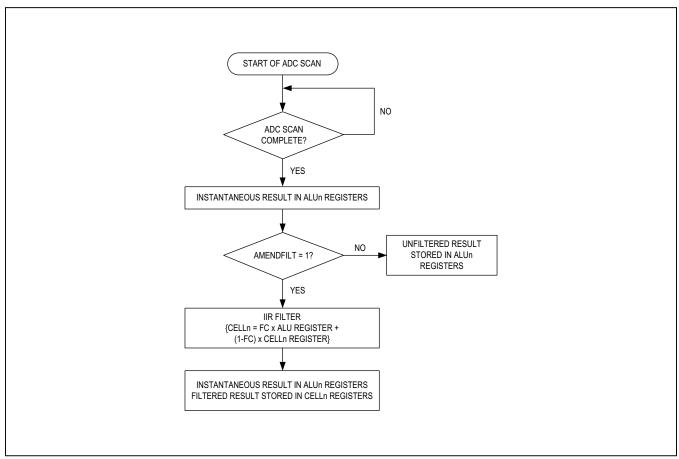


Figure 12. IIR Flowchart with Respect to the AMENDFILT Bit

Table 9. RDFILT Bit

RDFILT BIT	FUNCTIONALITY AND RECOMMENDED USAGE		
0	Reads UNFILTERED result from the ALUn registers. To read back the result of diagnostic conversion such as open sense wire stored in ALUn registers.		
1	Reads FILTERED result from the CELLn registers. To read back the cell-voltage measurement data.		

www.maximintegrated.com Maxim Integrated | 34

IIR filtering will be applicable for CELLn and $V_{\mbox{\footnotesize{BLKP}}}$ results of both the ADCs.

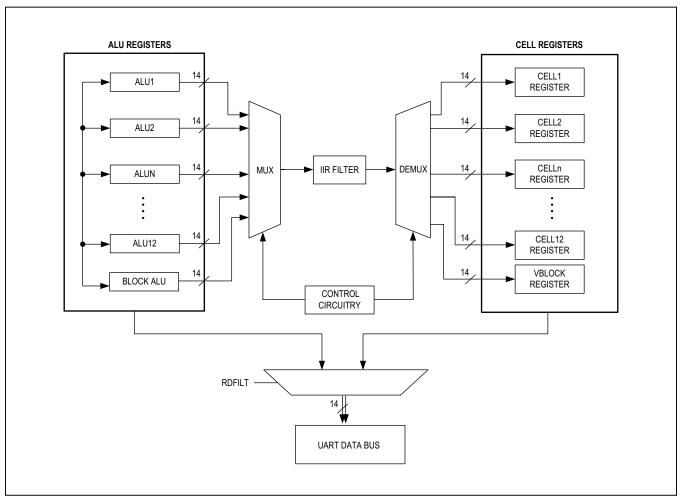


Figure 13. IIR Filter Diagram with Respect to RDFILT

AUTOBALSWDIS Feature

This feature enables the automatic disabling of the balancing switches during measurements. The main purpose of this feature is to phase out the additional voltage drop due to cell balancing in accuracy measurements. This ultimately allows the system to get more precise cell-voltage readings, which helps to calculate higher accuracy of state-of-charge (SoC). The AUTOBALSWDIS bit is the D11 bit in the DEVCFG1 register. This bit when set to '1' turns off the balancing switches. A delay in the AUTOBALSWDIS delay register (0x0C) is selected based on the DELAYSEL bit in the SCANTCTRL register (0x13), and the set wait time is added after the scan is enabled before the start of actual measurements. The AUTOBALSWDIS delay register has a minimum delay setting of 96µs, with maximum being up to 24.57ms.

It is divided into two 8-bit time-delay settings, with lower-byte register-delay setting for cell-recovery time, while upper byte of the register used for the delay setting of certain diagnostics such as sense-wire open. This delay should be set as appropriate by the customer according to their cell characteristics and properties and to enhance the maximum SoC of the battery available. Once the measurement is executed and the Scan done bit is set, the AUTOBALSWDIS bit should be cleared by the host.

Enabling the AUTOBALSWDIS bit adds a delay before the start of measurements, but after the scan is enabled; therefore, this feature can be used during normal cell measurements as well as during diagnostic measurements with two separate delay timers that can be independently set.

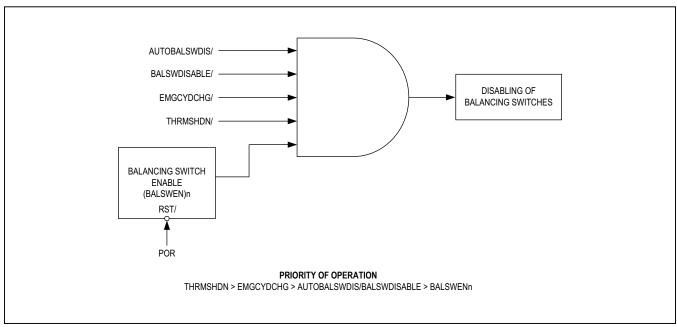


Figure 14. Logic Diagram when Balancing Switches Are Disabled

Acquisition Watchdog Timeout

If the acquisition does not finish within a predetermined time interval, the SCANTIMEOUT bit is set, the ADC logic is reset, the ALU registers are cleared, and the measurement data registers are also cleared. The acquisition watchdog-timeout interval depends on the oversampling configuration, as shown in Table 7.

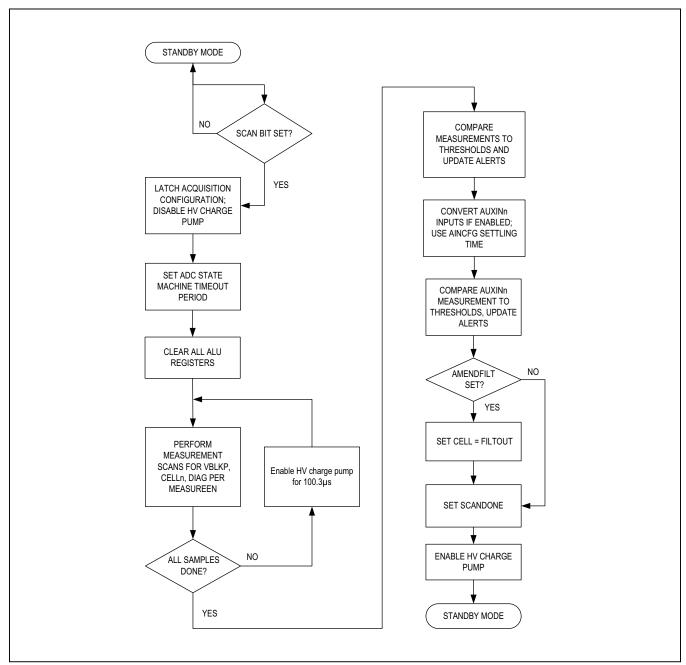


Figure 15. Acquisition Mode Flowchart

Scan Modes

The cell, block, and diagnostic-measurement cycle consists of two conversion phases. In each phase, the ADC scans through the enabled input channels. There are two scan modes configured by the SCANMODE bit. If SCANMODE = 0, the mode is pyramid mode, as shown in <u>Figure 16</u>. If SCANMODE = 1, the mode is top-down mode. In pyramid mode, the ADC scans first ascending and then descending. In top-down mode, the ADC scans descending in both phases. In the second scan, the amplifier inputs are inverted to effectively chop out any

offset and reference-induced errors. The two conversions are then offset corrected and averaged in the ALU.

After the cell and block scans are complete, the diagnostic conversions are made, if enabled, and finally, the auxiliary inputs, if enabled, are converted. The auxiliary inputs are measured using a single conversion and stored in the AIN1 and AIN2 registers. Any extra settling time, if configured by AINCFG[5:0], is implemented just before the conversion for each AUXIN channel, so if both inputs are enabled, the extra settling time occurs twice.

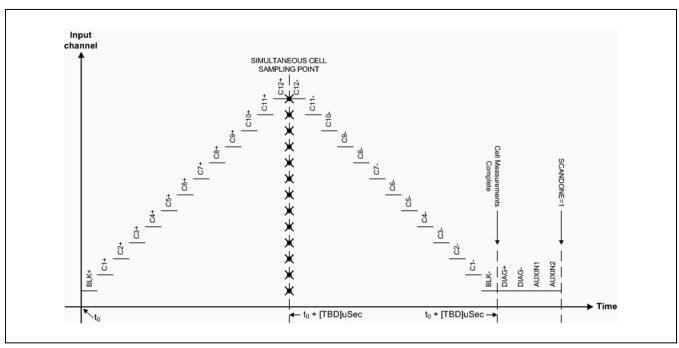


Figure 16. Acquisition, OVSAMP[2:0]=0h and SCANMODE=0

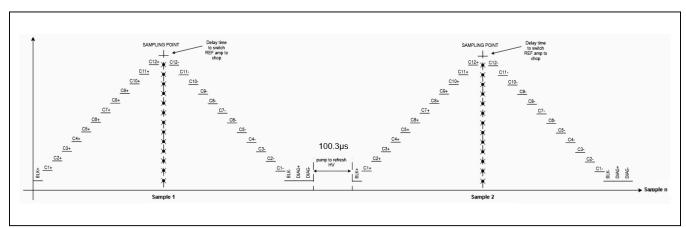


Figure 17. Acquisition, OVSAMP[2:0] > 0 and SCANMODE=0

Acquisition Time

The total acquisition time can be calculated by summing all the required processes, as shown in $\underline{\text{Table 10}}$ and $\underline{\text{Table 11}}$. There is one measurement cycle per oversample.

Table 10. Acquisition Time

PROCESS	TIME (µs)	CONDITION	FREQUENCY
Initialization	13	Always	Once per acquisition
V _{BLKP} measurement	27	If V _{BLKP} is enabled	
Call again action	12.5	If cell input(s) enabled and V _{BLKP} enabled	
Cell scan setup	20	If cell input(s) enabled and V _{BLKP} disabled	
Cell scans	9 x n	For n = Number of enabled cell inputs	
	11.4	If zero-scale ADC output diagnostic enabled	Every measurement cycle
Diagnostic	11.4	If full-scale ADC output diagnostic enabled	
measurement	86.2	If V _{ALTREF} diagnostic enabled	
(if enabled)	86.2	If die temperature diagnostic enabled	
	22.9	If any other diagnostic mode enabled	
	10	If AUXIN1 is enabled	
AUXIN measurement	6µs x AINCFG[5:0]	I AOXINT IS enabled	Once per cognicitien
(if enabled)	10	Once per acquisition	
	6µs x AINCFG[5:0]	If AUXIN2 is enabled	
HV recovery (if oversampling enabled)	100.3 x m	For m = Number of oversamples	After every measurement cycle except the last

Table 11. Acquisition Time Examples (with AINCFG[5:0] = 00h)

ENABLED MEASUREMENTS	NO OVERSAMPLING	FOUR OVERSAMPLES	EIGHT OVERSAMPLES
12 cells	141.0µs	825.9µs	1739.1µs
12 cells, V _{BLKP}	160.5µs	903.9µs	1895.1µs
12 cells, AUXIN1 and AUXIN2	161.0µs	845.9µs	1759.1µs
12 cells, V _{BLKP} , AUXIN1 and AUXIN2	180.5µs	923.9µs	1915.1µs
12 cells, V _{BLKP} , die temperature, AUXIN1 and AUXIN2	266.7µs	1268.7µs	2604.7µs

Measurement Alerts

After the measurement cycle, the ALU compares the enabled measurements to the various configured thresholds, as shown in <u>Table 12</u>, and sets the alert bits before the ALU data is transferred to the data registers. In oversampling mode, the alert status is updated after the last oversample. The alerts are updated whether or not the data is moved from the ALU registers to the data registers and are only updated for those measurements enabled in the MEASUREEN register.

Voltage Alerts

Use the ALRTOVEN and ALRTUVEN registers to enable voltage alerts for the cell and auxiliary inputs. If a cell-voltage alert is enabled, the cell input voltage is compared against the programmable overvoltage and undervoltage thresholds after every acquisition as shown in Figure 14. Separate thresholds for both setting and clearing the alert provide hysteresis. Configure the set thresholds for cell undervoltage (V_{UVTHSET}) and overvoltage (V_{OVTHSET}) using the UVTHSET and OVTHSET registers. Configure the clear thresholds for cell undervoltage (V_{UVTHCLR}) and cell overvoltage (V_{OVTHCLR}) using the UVTHCLR and OVTHCLR registers.

Alert flags in the ALRTOVCELL register are set, if enabled, when the acquired cell voltage is over V_{OVTHSET}. Alerts in the ALRTUVCELL register are set, if enabled, when the acquired cell voltage is under V_{UVTHSET}. The alerts are cleared when the cell voltage moves in the opposite direction and crosses the clear threshold. The voltage must cross the threshold; if it is equal to a threshold, the alert flag does not change. Therefore, setting the overvoltage

set threshold to full scale, or setting the undervoltage set threshold to zero scale, effectively disables voltage alerts.

The ALRTOV and ALRTUV bits in the STATUS register are set when any alert flag is set in the ALRTOVCELL or ALRTUVCELL registers, respectively. ALRTCELL[n] is the logical OR of ALROVCELL[n] and ALRTUVCELL[n].

Cell Mismatch

Enable the mismatch alert to signal when the minimum and maximum cell voltages differ by more than a specified voltage. The MSMTCH register sets the 14-bit threshold (V_{MSMTCH}) for the mismatch alert (ALRTMSMTCH). Whenever $V_{MAX} - V_{MIN} > V_{MSMTCH}$, then ALRTMSMTCH = 1. The alert bit is cleared when a new acquisition does not exceed the threshold condition. To disable the alert, write FFCH to the MSMTCH register (default value).

Cell Statistics

The cell numbers with the lowest and highest voltages are stored in the MINMAXCELL register. When multiple cells have the same minimum or same maximum voltage, only the highest cell position having that voltage is reported. The sum of all enabled cell voltages is stored in the TOTAL register as a 16-bit value. For acquisitions with no enabled cell inputs, the MINMAXCELL and TOTAL registers are not updated.

Temperature Alerts

Temperature alerts, if enabled, occur when the acquired AUXINx input voltages fall outside the thresholds configured by the AINOT and AINUT registers. Unlike the cell-voltage alerts, the temperature thresholds do not have the hysteresis afforded by separate set and clear thresholds.

Table 12. Measurement Alerts

DESCRIPTION	CONDITION OR RESULT	ALERT BIT	LOCATION
Cell overvoltage (OV)	V _{Cn} - V _{Cn-1} > V _{VOVTHSET}	ALRTOV, ALRTOVn	STATUS, ALRTOVCELL
Cell undervoltage (UV)	V _{Cn} - V _{Cn-1} < V _{UVTHSET}	ALRTUV, ALRTUVn	STATUS, ALRTUVCELL
Cell mismatch	V _{MAX} - V _{MIN} > V _{MSMTCH}	ALRTMSMTCH	STATUS
Cell with minimum voltage	n where V _{CELLn} = V _{MIN}	None	MINMAXCELL
Cell with maximum voltage	n where V _{CELLn} = V _{MAX}	None	MINMAXCELL
Total of all cell voltages	ΣV_{CELLn} where n = 1–12	None	TOTAL
AUXINx overvoltage (undertemperature)	V _{AUXINX} > V _{AINUT}	ALTRTCOLD, ALRTOVAINx	STATUS, ALRTOVCELL
AUXINx undervoltage (overtemperature)	V _{AUXINX} < V _{AINOT}	ALRTHOT, ALRTUVAINx	STATUS, ALRTUVCELL

Cell Balancing

Cell-Balancing Switches

Cell balancing can be performed using any of the 12 internal cell-balancing switches to discharge cells. The cell-balancing current is limited by the external balancing resistors and the internal balancing switch resistance (R_{SW}).

Enabling adjacent balancing switches simultaneously may increase the balancing current significantly, so care must be taken to not exceed the device's maximum operating conditions. Fault detection is described in the *Diagnostics* section.

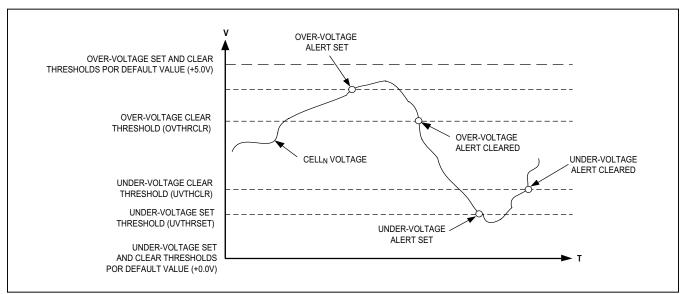


Figure 18. Cell Voltage-Alert Thresholds

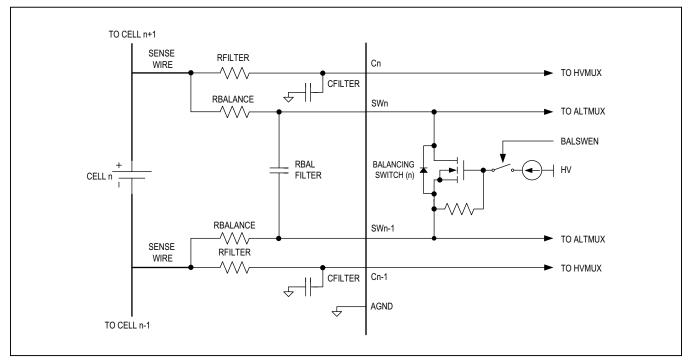


Figure 19. Internal Cell Balancing

Maximum Cell-Balancing Current

The maximum balancing current is limited by package power dissipation, average die temperature, average duty cycle of the switch, and the number of switches conducting current at any one time.

The power dissipation must not exceed the absolute maximum rating of the package, nor should the die temperature go outside the range specified for the desired level of measurement accuracy. Higher die temperatures and higher average duty cycles increase the probability of internal electromigration, so the maximum balancing current is lowered accordingly, as shown in <u>Table 13</u> for an assumed 10-year device lifetime.

Cell-Balancing Watchdog

Even if the host fails to disable the cell-balancing mode, the cell-balancing watchdog can automatically disable the cell-balancing switches regardless of the BALSWEN configuration. The cell-balancing watchdog does not modify the contents of the BALSWEN register. Use the WATCHDOG register to configure the timeout value from 1s to 3840s (64min), as shown in <u>Table 14</u>. The pre-divider configuration CBPDIV[2:0] effectively sets the rate at which the CBTIMER[3:0] counts down (see Figure 20).

Table 13. Maximum Allowed Balancing Current per Switch

AVERAGE LIFETIME DUTY CYCLE (10 YEARS)	T _{DIE} = 85°C	T _{DIE} = 105°C	T _{DIE} = 125°C
15%	> 320mA	> 320mA	215mA
20%	> 320mA	320mA	161mA
25%	> 320mA	256mA	129mA

Table 14. Cell-Balancing Watchdog Configuration

CBBDIVI2.01	TIMER LSb PERIOD	RANGE OF (CBTIMER[3:0]
CBPDIV[2:0]		MINIMUM	MAXIMUM
000b	Timer Disabled	Timer [Disabled
001b	1s	1s	15s
010b	4s	4s	60s
011b	16s	16s	240s
100b	64s	64s	960s
101b	128s	128s	1920s
110b	256s	256s	3840s

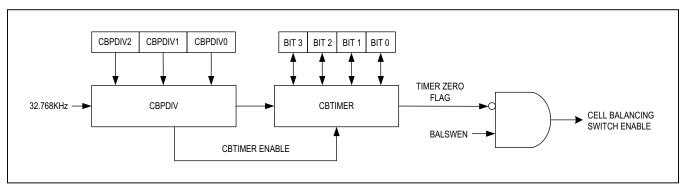


Figure 20. Cell-Balancing Watchdog

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

The host should periodically update CBTIMER to ensure that it does not count down to zero. If the countdown timer is allowed to reach zero, the cell-balancing switches are disabled until the timer is either disabled or refreshed by writing a nonzero value.

To allow timed balancing with no host interaction, the GPIO3 pin is configured to output a logic-high level while the timer is counting using the GPIO3TMR configuration bit of the GPIO register. An external diode is connected from GPIO3 to SHDNL to prevent shutdown while the timer is counting. Once the timer expires, the device shuts down. The host may intervene prior to the timer expiring to keep the device active and to reconfigure the device.

Emergency-Discharge Mode

The emergency-discharge mode performs cell-balancing in a controlled manner so the cells can be discharged to a safe level in the event of an emergency. The BALSWDCHG and DEVCFG1 registers provide control for this mode. A timeout value for the mode is configured by DISCHGTIME[7:0], as shown in Table 15.

The emergency-discharge mode is activated by setting the EMGCYDCHG bit with DCHGTIME[7:0] \neq 00h. In emergency-discharge mode, the following occurs:

- The CBTIMER[3:0] is cleared to prevent the cellbalancing watchdog from disabling the cell balancing.
- 2) Cell-balancing switches are controlled by BALSWDCHG, not BALSWEN.
- 3) The discharge timer starts to count down.

- 4) Read-only counter DCHGCNTR[3:0] increments at a 2Hz rate with periodic rollover at Fh. The host can read this counter periodically to confirm the mode is active.
- The GPIO3 pin is driven high while the countdown is active.

The emergency-discharge mode alternates between a 1-minute discharge cycle for odd cells and a 1-minute discharge cycle for even cells. There is a 62.5ms minimum off-time at the end of each discharge cycle to ensure no overlap between even and odd discharge cycles. The duty cycle of each discharge cycle can be configured by DCHGWIN[2:0], as shown in Table 15.

By clearing EMGCYDCHG, the emergency-discharge mode terminates and the following occurs:

- 1) The discharge timer is reset.
- Control of the cell-balancing switches reverts to the BALSWEN register.
- 3) Control of GPIO3 reverts to the GPIO register.

The emergency-discharge mode also terminates if DCHGTIME[7:0] = 0h or the discharge time has reached the configured timeout.

To prevent the emergency-discharge mode from terminating prematurely due to a device shutdown (which could occur due to an extended lapse in host communications), connect an external diode from GPIO3 to SHDNL to keep SHDNL high while the timer is counting.

Table 15. Emergency Discharge Mode

FUNCTION	REGISTER FIELD	CONFIGURATION	BEHAVIOR
		0h	Switches on for 7.5s, off for 52.5s
Duty ovolo	DCHGWIN[2:0]	1h	Switches on for 15s, off for 45s
Duty cycle	7.5s/bit		
		7h	Switches on for 59.94s, off for 62.5ms
		00h	Discharge mode disabled
	DOLLOTINETT OF	01h	Discharge mode disabled after 4 hours
Timeout	DCHGTIME[7:0] 2 hours/bit	02h	Discharge mode disabled after 6 hours
	Z Hours/Bit		
		FFh	Discharge mode disabled after 512 hours

Low-Voltage Regulator

An internal linear regulator supplies low-voltage power (V_{AA}) for the ADC and digital logic. The regulator is disabled when SHDNL is active-low or when the die temperature (T_{DIE}) exceeds 145°C. Once V_{AA} decays below 2.95V (typ), an internal power-on reset (POR) is gener-

ated (see <u>Figure 21</u>). This event can be detected with the ALRTRST bit, as shown in <u>Table 16</u>. After a thermal shutdown, the regulator is not enabled until $T_{DIE} < 130^{\circ}C$ due to hysteresis.

The low-voltage regulator is continuously monitored for undervoltage, as described in Table 17.

Table 16. Low-Voltage Regulator

INPUT:	DCIN
INPUT VOLTAGE:	9V to 65V
OUTPUT:	V _{AA}
OUTPUT VOLTAGE:	3.3V
DISABLE:	V _{SHNDL} < 0.6V or T _{DIE} > 145°C

Table 17. Low-Voltage Regulator Diagnostic

FAULT	CONDITION	ALERT	LOCATION
V _{AA} undervoltage	V _{AA} < 2.95V	ALRTRST	STATUS[15]

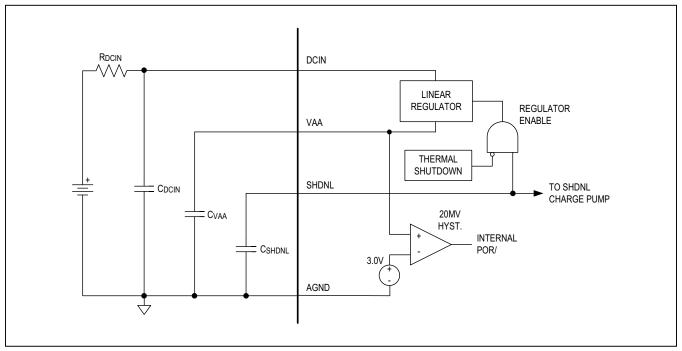


Figure 21. Low-Voltage Regulator

HV Charge Pump

The high-voltage multiplexers must be powered by a supply higher than any monitored voltage. To this end, an internal charge pump draws power from the DCIN input to provide a high-voltage supply (V_{HV}) that is regulated to V_{DCIN} + 5.5V (nominal). When the charge pump achieves regulation, charge pumping stops until the voltage drops by 20mV. The charge pump is automatically disabled during shutdown and during the measurement cycle to eliminate charge-pump noise. The charge pump can also be disabled manually by setting the HVCPDIS bit in the DEVCFG2 register.

If V_{HV} – V_{DCIN} drops below V_{HVUV} , the HV undervoltage flag (ALRTHVUV) is set. If V_{HV} drops too low relative to

the C12 input, there is insufficient headroom to guarantee that HVMUX switch resistance is sufficiently low for an accurate acquisition of the channel. To properly identify this fault condition, if $V_{HV}\!-\!V_{C12}$ is too low during the acquisition, the HV headroom-alert flag (ALRTHVHDRM) is set in the FMEA2 register. The HV undervoltage and HV headroom-alert functions can be verified by disabling the HV charge pump (HVCPDIS = 1) and allowing V_{HV} to decay while in acquisition mode. An overvoltage comparator disables the charge pump in the case where $V_{HV}\!-\!V_{DCIN}$ exceeds 8.5V. This condition is indicated by the ALRTHVOV bit in the FMEA2 register. The ALRTHVOV alert does not necessarily indicate a condition that affects measurement accuracy. HV charge-pump diagnostics are summarized in Table 18.

Table 18. HV Charge-Pump Diagnostics

FAULT	CONDITION	ALERT BIT	LOCATION
V _{HV} undervoltage	V _{HV} -V _{DCIN} < V _{HVUV}	ALRTHVUV	FMEA1[3]
V _{HV} overvoltage	V _{HV} -V _{DCIN} > V _{HVOV}	ALRTHVOV	FMEA2[0]
V _{HV} low headroom	V _{HV} -V _{C12} < V _{HVHDRM} (min.)	ALRTHVHDRM	FMEA2[2]

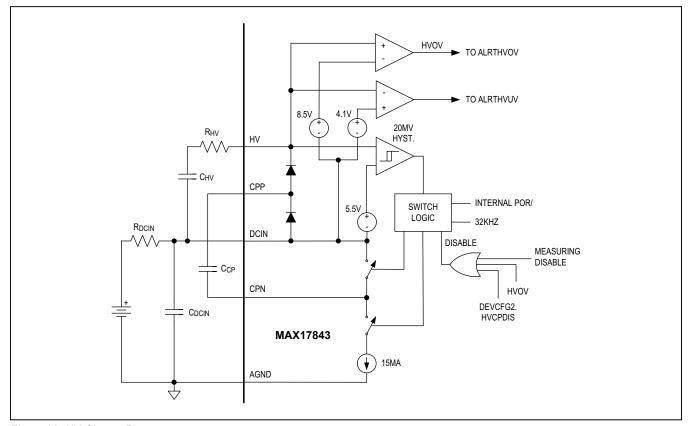


Figure 22. HV Charge Pump

Oscillators

Two factory-trimmed oscillators provide all timing requirements: a 16MHz oscillator for the UART and control logic, and a 32.768kHz oscillator for HV charge pump and timers. A special diagnostic counter clocked by the 16MHz signal is employed to check the 32kHz oscillator. Every two periods of the 32kHz clock, the counter is sampled. If the count varies more than 5% from the expected value, the ALRTOSC1 bit is set, as shown in Table 19. A redundant alert bit (ALRTOSC2) increases the integrity level. If the 16MHz oscillator varies by more than 5%, communication errors are indicated.

Device ID Number

The ID1[15:0] register, together with ID2[7:0], contain a 24-bit manufacturing identification number (DEVID[23:0]). The ID, combined with the manufacturing date, provides a means of uniquely identifying each device. A device ID of zero is invalid.

Power-On And Shutdown

Applications that remain connected continuously to the power source rely on the SHDNL input to shut down and reset the device. When $V_{SHDNL} < 0.6V$, the regulator is disabled, the POR signal asserted, and the device goes into an ultra-low-power-shutdown mode. When $V_{SHDNL} > 1.8V$, POR is deasserted, the regulator is enabled, and the device becomes fully operational in the standby mode.

Power-On Method

The SHNDL input can be driven externally, or can be controlled using UART communication only. In differential mode, the signaling on the lower-port receiver drives an internal charge pump that charges up the external 1nF capacitor connected to the SHDNL input (see Figure 23). VSHDNL reaches 1.8V in 200µs (typ). The charge pump then self-regulates to VSHDNLIMIT and can maintain VSHDNL at a logic-one even with the UART in idle 98% of the time.

Table 19. Oscillator Diagnostics

FAULT	CONDITION	ALERT BIT	LOCATION
32.768kHz oscillator	31.129kHz > f _{osc_32k} > 34.406kHz	ALRTOSC1	FMEA115
32.768kHz oscillator	31.129kHz > f _{osc_32k} > 34.406kHz	ALRTOSC2	FMEA114
16MHz oscillator	15MHz > f _{osc_32k} > 17MHz	ALRTMAN or ALRTPAR	STATUS4, or STATUS2

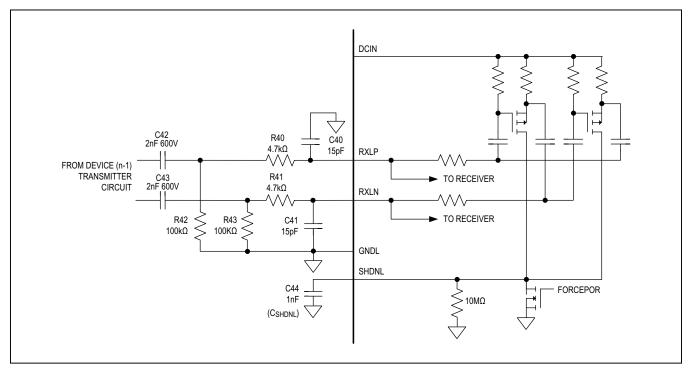


Figure 23. SHDNL Charge Pump

Power-On Sequence

Once $V_{SHNDL} > 1.8V$, the regulator is enabled. After V_{AA} reaches 3V (typ), the POR signal is deasserted, the oscillators enabled, and the HV charge pump enabled. Once the HV charge pump is stable, the logic is enabled. The

device is fully operational (standby mode) within 1ms from the time communication is first received in the shutdown mode. The power-on sequence is shown in Figure 24.

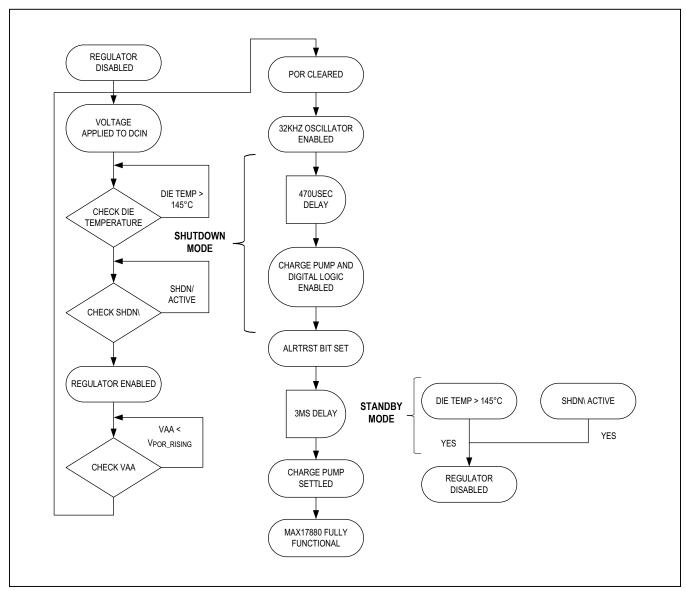


Figure 24. Power-On Sequence

Shutdown Mode

Shutdown is performed by bringing V_{SHDNL} < 0.6V. Table 20 summarizes the methods by which this can be achieved.

The quickest shutdown can be achieved by driving SHDNL externally with a driver pulldown impedance not exceeding $1k\Omega$. If SHDNL is not driven externally, the host can discharge C_{SHDNL} under software control by setting the FORCEPOR bit. This will enable a pulldown $(4.7k\Omega \text{ nominal})$ to discharge the capacitor with a $4.7\mu s$ time constant.

The slowest method is for the host to simply cease communication. With the UART idle, there is no charge pumping and the capacitor discharges through an internal $10M\Omega$ resistor, with a 10ms time constant. If shutdown faster than 10ms is desired when power is disconnected from the device, a $200k\Omega$ resistor can be connected externally from SHDNL to AGND to create a $200\mu s$ time constant.

If only a reset is required, the host can issue a soft-reset by setting the SPOR bit. This resets the device registers and disables high-voltage operation, but low-voltage operation remains enabled (the regulator is not disabled).

Note: For single-ended communication, SHDNL must be driven externally since the charge-pump operation requires a differential signal.

Shutdown Sequence

The shutdown sequence and timing is shown in Figure 25, Figure 26, and Figure 27. The ALRTSHDNL status bit is set and the low-voltage regulator disabled as soon as $V_{SHNDL} < 0.6V$. When the V_{AA} and V_{DDL} decoupling capacitors discharge below the POR threshold (2.95V typ), the device registers are reset and the HV charge pump disabled. The device is then in an ultra-low-power state until $V_{SHDNL} > 1.8V$.

Table 20. Shutdown Timing

SHUTDOWN METHOD	R _{PULL}	DOWN	C _{SHDNL}	RC
Host drives SHDNL pin low	1kΩ	External		1µs
2. Host sets FORCEPOR bit	5kΩ	Internal	4 □ □	5µs
3. Disconnect DCIN	200kΩ	External	1nF	200µs
4. Host places UART in idle mode	10ΜΩ	Internal		10,000µs

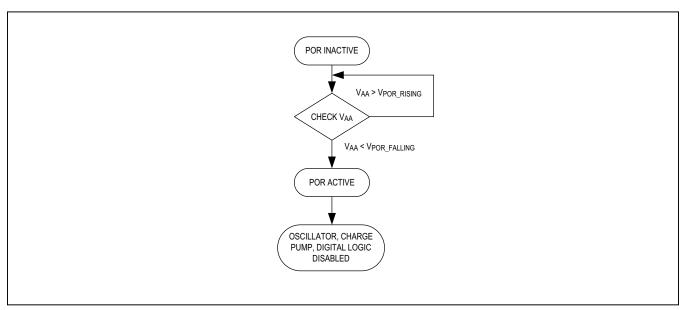


Figure 25. Shutdown Sequence

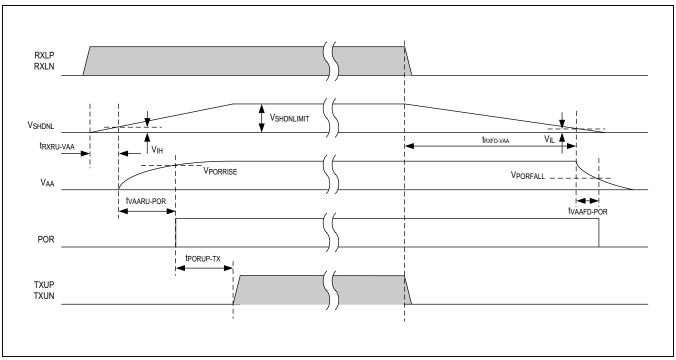


Figure 26. Power-On and Shutdown Timing (UART Control)

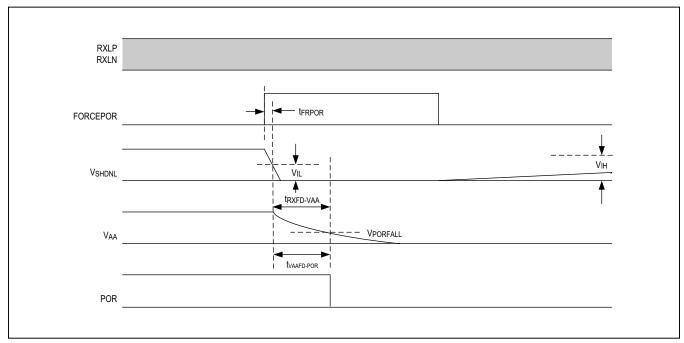


Figure 27. Shutdown Timing (Software Control)

UART Interface

The battery-management UART protocol allows up to 32 devices to be connected in daisy-chain fashion (see Figure 28). The host initiates all communication with the daisy-chain devices through a UART interface such as the MAX17841B. The data flow is always unidirectional from the host, up the daisy-chain (upstack) and then loops back down the daisy-chain (downstack) to the host.

Each device first receives data at its lower RX port and immediately retransmits data from its upper TX port to the lower RX port of the next upstack device. The last device transmits data from its upper TX port directly into its upper RX port and then immediately retransmits the data from its lower TX port to the upper RX port of the next downstack device. The protocol supports fixed baud rates of 2Mb/s, 1Mb/s, or 0.5Mb/s. The baud rate is set by the host and is automatically detected by the device.

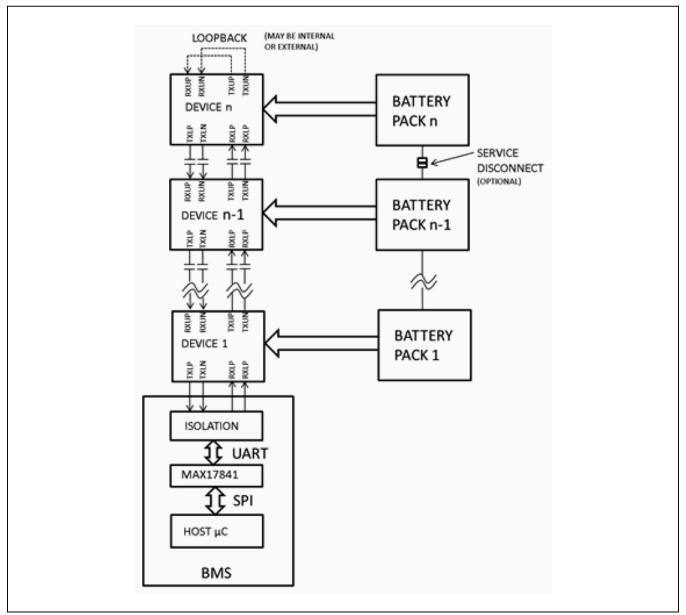


Figure 28. System Data Flow

UART Ports

Two UART ports are utilized, a lower port (RXL/TXL) and an upper port (RXU/TXU). Each port consists of a differential line driver and differential line receiver. DC-blocking capacitors or transformers can be used to isolate daisy-chain devices that are operating at different common-mode voltages. During communication, the character encoding provides a balanced signal (50% duty cycle) that ensures charge neutrality on the isolation capacitors.

UART Transmitter

When no data is being transmitted by the UART, the differential outputs must be driven to a common level to maintain a neutral charge difference between the AC-coupling capacitors or to avoid saturation of the isolation transformers. In the default idle mode (low-Z), the transmitter drives both outputs to a logic-low level to balance the charge on the capacitors; this also works well with transformer coupling. The high-Z idle mode (TXLHIZIDLE, TXUHIZIDLE = 1) places the TX pins in a high-Z state in idle mode, which may be desirable to minimize the effects of charging and discharging the isolation capacitors. The idle mode for the upper and lower ports can be controlled independently through the TXLHIZIDLE and TXUHIZIDLE configuration bits.

UART Receiver

The UART receiver has a wide common-mode input range to tolerate harsh EMC conditions, which can be operated in differential mode or single-ended mode per Table 21. By default, the UART receivers are configured for differential mode. In single-ended mode, the RXP input is grounded and the RXN input receives inverse data, as described in the *Applications Information* section. In single-ended mode, the receiver input threshold is negative so that a zero differential voltage (V_{RXP}, V_{RXN} = 0V) is considered to be a logic-one and a negative differential voltage (V_{RXN} high) is a logic-zero.

UART RX Modes

During the first preamble received after a reset, the receiver automatically detects if the received signal is single-ended and if so, places the receiver in single-ended mode; therefore, the device must be reset for any change in the RX-mode hardware configuration to be detected.

The receiver mode is indicated by the ALRTCOMMSEL bit (for lower port) and ALRTCOMMSEU bit (for upper port) of the FMEA1 register, as shown in <u>Table 21</u>. If the RXP input is open circuit, RX-mode detection places the UART in single-ended mode so the port can still operate, albeit with reduced noise immunity. The host can diagnose this condition by checking ALRTCOMMSEL and ALRTCOMMSEU after any POR event. Any other faults result in communication errors.

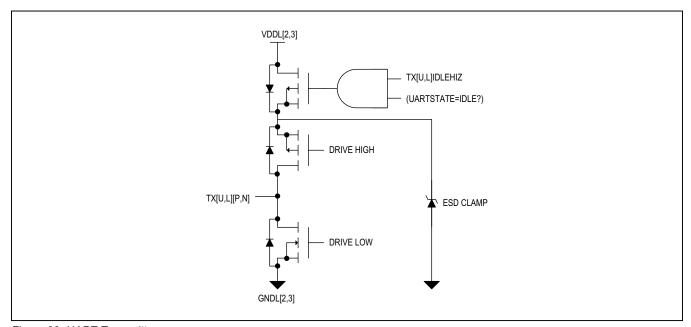


Figure 29. UART Transmitter

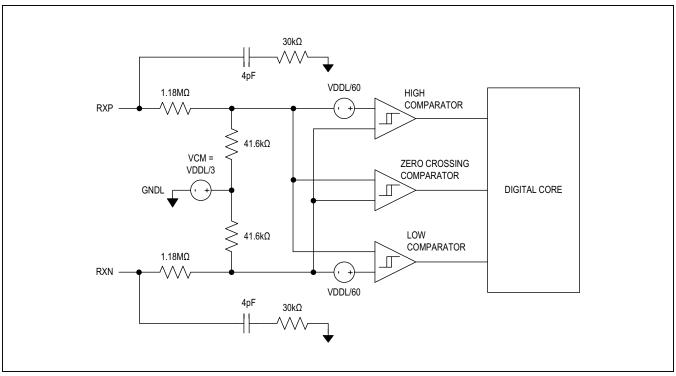


Figure 30. UART Receiver

Table 21. UART RX Modes

RXP	RXN	ALRTCOMMSEn	RX MODE
Connected to data	Connected to inverse data	0	Differential mode (normal)
Grounded	Connected to inverse data	1	Single-ended mode (normal)
Open circuit (fault)	Connected to inverse data	1	Single-ended mode (low noise immunity)
Connected to data	Open circuit (fault)	0	Differential mode (communication errors)

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

UART Loopback

For the last device in the stack, the data must be looped back from the upper transmitter to the upper receiver. This is known as loopback and can be configured externally (default) or internally.

External Loopback Mode

External loopback mode (default) uses a two-wire cable to connect the upper transmitter (TXU) to the upper receiver (RXU). The external loopback has two advantages:

- It is quicker to determine device count for applications where the host does not assume what the device count is.
- 2) It helps to match the supply current of the last device to that of the other daisy-chain devices (because the hardware configuration is identical).

Internal Loopback Mode

Internal-loopback mode (LASTLOOP = 1) routes the upper-port transmit data internally to the upper-port receiver. Any signal present on the upper-port receiver input pins is ignored in the internal loopback mode; therefore, when LASTLOOP is set, the write command that was forwarded to any upstack devices is interrupted in the downstack direction. The host should expect this and read the LASTLOOP bit to verify that the write was successful. If the MAX17841B interface is used, its receive buffer should be cleared before changing LASTLOOP, and cleared again after changing the loopback configuration because the communication was interrupted.

Internal-loopback mode is useful to diagnose the location of a daisy-chain signal break by enabling the internal-loopback mode on the first device, checking communication, then moving the loopback mode to the next device, and continuing up the stack until communication is lost.

Baud Rate Detection

The UART can operate at a baud rate of 2Mb/s (default), 1Mb/s, or 0.5Mb/s. The baud rate is controlled by the host and is automatically detected by the device when the first preamble character is received after reset. If the host changes the baud rate after reset, it must issue another reset, which can be done by setting the SPOR bit, and resend a minimum of 2 x n preambles (where n is the number of devices). The 2 x n preambles are necessary since the transmitter for the upper port will not transmit data until the lower-port receiver has detected the baud rate; likewise, the transmitter on the lower port will not transmit data until the upper-port receiver has detected

the baud rate. A simple way to do this is for the host to start transmitting preambles and stop when a preamble has been received back at the host RX port.

TX Adaptive Mode for Single-Ended Mode

To overcome the error tolerance limitation when connecting a MAX17843 to a conventional UART port, an adaptive transmit-timing feature has been added. The feature works by monitoring the location of the incoming Manchester transitions at the RXL port, with respect to the local clock, to calculate a correction factor. This correction factor is then applied to the TXL port so the outgoing downstack signal has similar timing characteristics to the incoming upstack signal. With this adaptive transmit timing, the interface between a conventional UART node and a Maxim proprietary battery-monitoring system node has a tolerance for baud-rate mismatch that is much higher than that of the conventional receiver port alone giving a high level of timing margin for direct connection applications. TX adaptive mode should be enabled only on the bottom device (device connected to BMS micro or Maxim SPI-to-UART bridge IC).

Battery-Management UART Protocol

The battery-management UART protocol uses the following features to maximize the integrity of the communications:

- All transmitted data bytes are Manchester-encoded, where each data bit is transmitted twice with the 2nd bit inverted (G.E. Thomas convention).
- Every transmitted character contains 12 bits that include a start bit, a parity bit, and two stop bits.
- Read/write packets contain a CRC-8 packet error checking (PEC) byte
- Each packet is framed by a preamble character and STOP character.
- Read packets contain a data-check byte for verifying the integrity of the transmission.

The protocol is also designed to minimize power-"consumption by allowing slave devices to shut down if the UART is idle for a specified period of time. The host must periodically transmit data to prevent shutdown, unless the SHDNL input is driven externally.

Command Packet

A command packet is defined as a sequence of UART characters originating at the host. Each packet starts with a preamble character, followed by data characters, and ending with a stop character (see <u>Figure 31</u>). After sending a packet, the host either goes into idle mode or sends another packet.

Preamble Character

The preamble is a framing character that signals the beginning of a command packet. It is transmitted as an unencoded 15h with a logic-one parity bit and a balanced duty cycle. If any bit(s) other than the stop bits deviate from the unique preamble sequence, the character is not interpreted as a valid preamble, but rather as a data character.

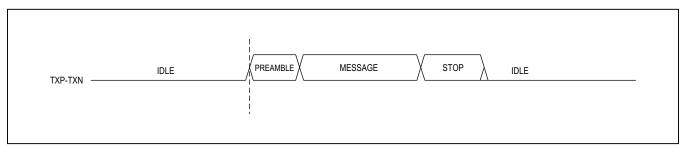


Figure 31. Command Packet

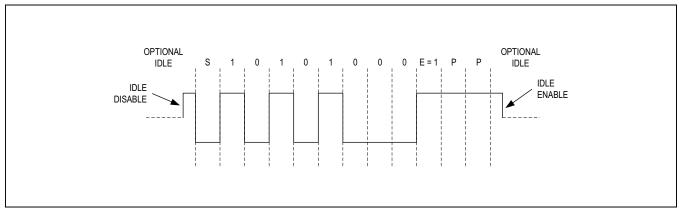


Figure 32. Preamble Character

Data Characters

Each data character contains a single-nibble (4-bit) payload, so two characters must be transmitted for each byte of data. All data is transmitted least-significant bit, least-significant nibble, and least-significant byte first. The data itself is Manchester encoded, which means that each data bit is followed by its complement. If the UART detects a Manchester-encoding error in any received data character, it will set the ALRTMAN bit in the STATUS register.

The parity is even, which means that the parity bit's value should always result in an even number of logic-one bits in the character. Given that the data is Manchester encoded and that there are two stop bits, the parity bit for data characters is always transmitted as a logic-zero. If the UART detects a parity error in any received data character it sets the ALRTPAR bit in the STATUS register.

See <u>Table 22</u> for a list of data characters and <u>Figure 33</u> for a graphical representation.

Tabl	22	Data	CL		4
iab	ie zz.	Data	G	iarac	ter

BIT	NAME	SYMBOL	DESCRIPTION
1	Start	S	First bit in character, always logic-zero
2	Data0	_	Least-significant bit of data nibble (true)
3	Data0/	_	Least-significant bit of data nibble (inverted)
4	Data1	_	Data bit 1 (true)
5	Data1/	_	Data bit 1 (inverted)
6	Data2	_	Data bit 2 (true)
7	Data2/	_	Data bit 2 (inverted)
8	Data3	_	Most-significant bit of data nibble (true)
9	Data3/	_	Most-significant bit of data nibble (inverted)
10	Parity	E	Always logic-zero (even parity)
11	Stop	Р	Always logic-one
12	Stop	Р	Last bit in character, always logic-one

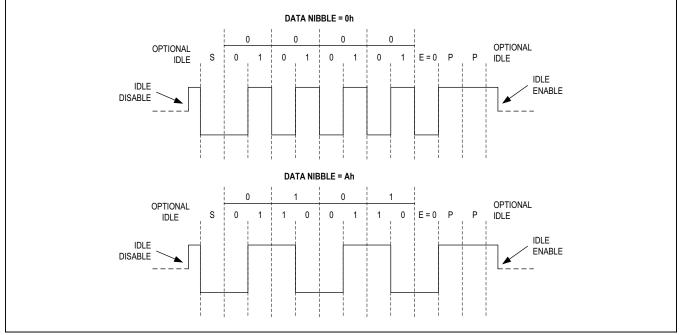


Figure 33. Data Characters

Stop Character

The stop character is a framing character that signals the end of a command packet. It is transmitted as an unencoded 54h with a logic-one parity bit and a balanced duty cycle (see Figure 34).

UART Idle Mode

In the low-Z (default) idle mode, the transmitter outputs are both driven to 0V (see <u>Figure 35</u>). In the high-Z idle mode, the transmitter outputs are not driven by the UART. The MAX17841B interface automatically places its transmitter in idle mode immediately after each command packet and remains in idle mode until either the next command

packet is sent or it goes into keep-alive mode, sending periodic stop characters to prevent the daisy-chain device(s) from going into shutdown.

UART Communication Mode

When transitioning from idle mode to communication mode, the TXnP pin must be pulled high (logic-one) prior to signaling the start bit (logic-zero) (see Figure 35). The duration of the logic-one is minimized to maintain a balanced duty-cycle while still meeting the timing specification. When transitioning from the stop bit back to idle mode, the delay, if any, is also minimized.

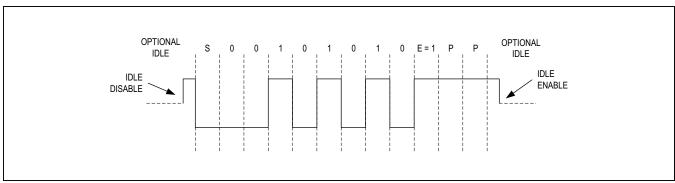


Figure 34. Stop Character

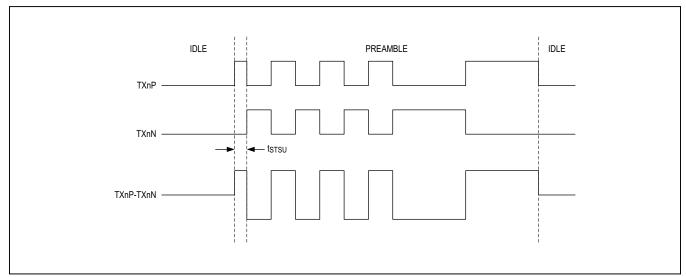


Figure 35. Communication Mode

Data Types

The battery-management UART protocol employs several different data types, as described in Table 23.

Command Bytes

The battery-management UART protocol supports six command types summarized in Table 24.

Command-Byte Encoding

Command bytes encoding is described in <u>Table 25</u>. For READDEVICE and WRITEDEVICE commands, the device address is encoded in the command byte.

The device ignores commands containing a device address other than its own.

Register Addresses

All register addresses are single-byte quantities and are defined in the <u>Register Map</u>. In general, if the register or device address in a received command is not a valid address for the device, the device ignores the read or write and simply passes through the packet to the next device.

Register Data

All registers are 16-bit words (two data bytes) and are defined in the *Register Map*.

Table 23. Battery-Management UART Protocol (Data Types)

DATA TYPE	DESCRIPTION
Command byte	A byte defining the command-packet type, generally either a read or a write.
Register address	A byte defining the register address to be read or written.
Register data	Register data bytes being read or written.
Data-check byte	An error and alert status byte sent and returned with all reads.
PEC byte	A packet-error-checking byte sent and returned with every packet except for HELLOALL.
Alive counter	A byte functioning as a device counter on all reads and writes, if ALIVECNTEN = 1.
Fill byte	Bytes transmitted in READALL command packets for clocking purposes only.

Table 24. Battery-Management UART Protocol (Command Packet Types)

COMMAND	DESCRIPTION	DATA CHECK	PEC	ALIVE- COUNTER	PACKET SIZE (CHARACTERS)
HELLOALL	Writes a unique device address to each device in the daisy-chain. Required for system initialization.	No	No	No	8
WRITEALL	Writes a specific register in all devices.	No	Yes	Yes	14
WRITEDEVICE	Writes a specific register in a single device.	No	Yes	Yes	14
READALL	Reads a specific register from all devices.	Yes	Yes	Yes	12 + (4z)
READDEVICE	Reads a specific register from a single device.	Yes	Yes	Yes	16
READBLOCK	Reads a set of registers from a single device.	Yes	Yes	Yes	14 + (4 x BS)

Notes: z = Total number of devices, ALIVECNTEN = 1, packet size includes framing characters. BS[4:0] = Block size[4:0] = 1-32, which is the number of registers read.

Table 25. Command-Byte Encoding

COMMAND	BYTE*	7	6	5	4	3	2	1	0
HELLOALL	57h	0	1	0	1	0	1	1	1
WRITEDEVICE	04h	DA4	DA3	DA2	DA1	DA0	1	0	0
WRITEALL	02h	0	0	0	0	0	0	1	0
READDEVICE	05h	DA4	DA3	DA2	DA1	DA0	1	0	1
READALL	03h	0	0	0	0	0	0	1	1
READBLOCK	06h	BS4	BS3	BS2	BS1	BS0	1	1	0

*Notes: Assumes DA[4:0] = 0x00 where DA[4:0] is the device address in the ADDRESS register. BS[4:0] = Block size (1–32).

Data-Check Byte

The host uses the returned data-check byte to promptly determine if any communication errors occurred during the packet transmission and to check if alert flags are set in any devices, as shown in <u>Table 26</u>. The data-check byte is returned by the READALL and READDEVICE commands. For READDEVICE, the data-check byte is updated only by the addressed device.

The data-check byte sent by the host is a seed value normally set to 00hN although nonzero values can be used as a diagnostic. Each device logically ORs the received data-check byte with its own status and transmits it to the next device. A PEC error detected by any device will set the ALRTPEC bit in the STATUS register and, by extension, the ALRTPEC and ALRTSTATUS bits in the data-check byte.

PEC Byte

The PEC byte is a CRC-8 packet-error check sent by the host with all read and write commands. If any device receives an invalid PEC byte, it sets the ALRTPEC bit in the STATUS register. During any write transaction, a device does not execute the write command internally unless the received PEC matches the expected calculated value. For read commands, the device must return its own calculated PEC byte based on the returned data. The host should verify that the received PEC byte matches the calculated value and if an error is indicated, the data should be discarded. See <u>Applications Information</u> section for details on the PEC calculation.

Alive-Counter Byte

The alive-counter byte is the last data byte of the command packets (except HELLOALL) if the ALIVECNTEN

bit is set in the DEVCFG1 register. The host typically transmits the alive-counter seed value as 00h, but any value is permitted. For WRITEALL or READALL commands, each device retransmits the alive counter, incremented by one. For WRITEDEVICE or READDEVICE commands, only the addressed device will increment it. The alive counter is not used in the HELLOALL command. If the alive counter reaches FFh, the next device increments it to 00h.

Since the alive counter comes after the PEC byte, an incorrect PEC value does not affect the incrementing of the alive-counter byte. Also, the PEC calculation does not include the alive-counter byte. The host should verify that the alive counter equals the original seed value + the number of devices, considering that if the alive-counter reaches FFh, the next device increments it to 00h.

Fill Bytes

In the READALL command, the host sends two fill bytes for each device in the daisy-chain. The fill bytes are the locations within the packet and are used by the device to place the read data. The fill-byte values transmitted by the MAX17841B interface alternate between C2h and D3h. As the command packet propagates through the device, the device overwrites the appropriate fill bytes with the register data. The device uses the ADDRESS register to determine which specific fill bytes in the packet are to be overwritten.

For a READDEVICE command, only two fill bytes are required since only one device responds (returning two data bytes). Also, fill bytes are not required for write commands because the data received is exactly the same as the data retransmitted.

Table 26. Data-Check Byte

BIT	NAME	DESCRIPTION
7	ALRTPEC	ALRTPEC is set.
6	ALRTFMEA	ALRTFMEA1 or ALRTFMEA2 is set.
5	ALRTSTATUS	STATUS bit other than ALRTFMEA1, ALRTFMEA2, ALRTOV, and ALRTUV is set.
4	CHECK	Check bit. Value received is forwarded.
3	CHECK	Check bit. Value received is forwarded.
2	ALRTOV	ALRTOV is set.
1	ALRTUV	ALRTUV is set.
0	CHECK	Check bit. Value received is forwarded.

Battery-Management UART Protocol Commands

HELLOALL Command

The purpose of the HELLOALL command is to initialize the device addresses of all daisy-chained devices. The device address is stored in the DA[4:0] bits of the ADDRESS register. The highest address possible is 0x1F, so a maximum of 32 devices can be addressed. The command must be issued after POR to reinitialize all device addresses.

When the HELLOALL command is first sent by the host, the address specified in the HELLOALL command is stored to the DA[4:0] bits of the ADDRESS register in the first daisy-chained device. The command is then forwarded to the next device in the chain, with the DA[4:0] bits of the address byte incremented by 1, as shown in Table 27. This continues in the upstack direction for each device. The downstack communication path does not increment the address. The advantage of the host choosing a first address of 0x00 is that it is not necessary to write the first address FA[4:0] to all the devices since the default value of FA[4:0] is 0x00. **Note:** The host should set the first address so that no assigned device address increments from 0x1F to 0x00 during the HELLOALL command.

The DA[4:0] value returned to the host is one greater than the address assigned to the last device. Once this

last address is known, the host can determine how many devices are in the daisy-chain, which is required for subsequent READALL commands. A READALL command should be used to verify the ADDRESS registers.

Special considerations exist if the host desires to use internal loopback instead of external loopback. The first HELLOALL command is not returned to the host because the internal loopback bit for the top device has not yet been written. If the number of devices is known to the host, the host can use a WRITEDEVICE to set the internal loopback bit on the last device and then verify with a READALL command. If the number of devices is unknown, the internal loopback bit must be set on the first device, verified, and then cleared. It can then be set on the second device and verified, and so on incrementally until there is no response (end of stack). With the number of devices known, the loopback bit can be reset on the last device and all ADDRESS registers verified.

When a device receives a valid HELLOALL command, it clears the ADDRUNLOCK bit of the DEVCFG1 register. When this bit is 0, HELLOALL commands are ignored to prevent inadvertently changing any device address. To reconfigure the device address, the ADDRUNLOCK bit must first be set to 1, or a POR event must occur. After configuring the device addresses, they should be verified using the READALL or ROLLCALL commands.

Table 27. HELLOALL Sequencing (z = Total Number of Devices)

HOST TX	DEVICE (n) RXL	DEVICE (n) TXU	HOST RX
Preamble	Preamble	Preamble	Preamble
57h	57h	57h	57h
00h	00h	00h	00h
{0b000,ADDR[4:0]}	{0b000,ADDR[4:0]+n-1}	{0b000,ADDR[4:0]+n}	{0b000,ADDR[4:0]+z}
Stop	Stop	Stop	Stop

WRITEALL Command

The WRITEALL command writes a 16-bit value to a specified register in all daisy-chained devices. Since most configuration information is common to all the devices, this command allows faster setup than writing to each device individually. If the register address is not valid for the device, the command is ignored. The command sequence is shown in Table 28.

The register value is written immediately after the valid PEC byte is received, or if NOPEC is set, after the last byte is received. If the received PEC byte does not match the internal calculation, the command is not executed, but is still forwarded to the next device. The PEC is calculated from the first four bytes of the command starting after the preamble. A PEC error will generate a PEC alert in the device STATUS register.

WRITEDEVICE Command

The WRITEDEVICE command writes a 16-bit value to the specified register in the addressed device only. If the register address is not valid for the device, the command is ignored. The command sequence is shown in <u>Table 29</u>.

The register value is written immediately after the valid PEC byte is received, or if NOPEC is set, after the last byte is received. If the received PEC byte does not match the internal calculation, the command is not executed, but is still forwarded to the next device. The PEC is calculated from the first four bytes of the command starting after the preamble. A PEC error sets the ALRTPEC bit in the STATUS register. A PEC error can only occur in the addressed device.

Table 28. WRITEALL Sequencing (Unchanged by Daisy-Chain)

HOST TX	DEVICE (n) RXL	DEVICE (n) TXU	HOST RX
Preamble	Preamble	Preamble	Preamble
02h	02h	02h	02h
[REG ADDR]	[REG ADDR]	[REG ADDR]	[REG ADDR]
[DATA LSB]	[DATA LSB]	[DATA LSB]	[DATA LSB]
[DATA MSB]	[DATA MSB]	[DATA MSB]	[DATA MSB]
[PEC]	[PEC]	[PEC]	[PEC]
[ALIVE]*	[ALIVE]*	[ALIVE]*	[ALIVE]*
Stop	Stop	Stop	Stop

^{*}If alive-counter mode is enabled.

Table 29. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain)

HOST TX	DEVICE (N) RXL	DEVICE (N) TXU	HOST RX
Preamble	Preamble	Preamble	Preamble
{(DA[4:0]),0b100}	{(DA[4:0]),0b100}	{(DA[4:0]),0b100}	{(DA[4:0]),0b100}
[REG ADDR]	[REG ADDR]	[REG ADDR]	[REG ADDR]
[DATA LSB]	[DATA LSB]	[DATA LSB]	[DATA LSB]
[DATA MSB]	[DATA MSB]	[DATA MSB]	[DATA MSB]
[PEC]	[PEC]	[PEC]	[PEC]
[ALIVE]*	[ALIVE]*	[ALIVE]*	[ALIVE]*
Stop	Stop	Stop	Stop

^{*}If alive-counter mode is enabled.

READALL Command

The READALL command returns register data from the specified register for all daisy-chain devices. The data for the first device (connected to host) is returned last. The command sequence is shown in <u>Table 30</u>. If the received PEC byte does not match the calculated value, the ALRTPEC bit of the data-check byte and ALRTPEC bit of the STATUS register are set, but the command proceeds. A Manchester error immediately switches the data propagation from read mode to write (pass-through) mode

ensuring that the Manchester error is propagated through the daisy-chain and back to the host.

The fill-byte values transmitted by the MAX17841B interface alternate between C2h and D3h as shown. As the packet propagates through the device, the device retransmits it in the order shown in the sequencing table (device TXU column). The device knows which bytes to overwrite since its ADDRESS register contains the first device address and its own device address and therefore knows where in the data stream it belongs.

Table 30. READALL Command Sequencing (z = Number of Devices)

HOST TX	DEVICE (n) RXL	DEVICE (n) TXU	HOST RX
Preamble	Preamble	Preamble	Preamble
03h	03h	03h	03h
[REG ADDR]	[REG ADDR]	[DATA ADDR]	[REG ADDR]
[DC] = 0x00	[DATA LSB(n-1)]	[DATA LSB(n)]	[DATA LSB(z)]
[PEC]	[DATA MSB(n-1)]	[DATA MSB(n)]	[DATA MSB(z)]
[ALIVE]*			[DATA LSB(z-1)]
[FD(1) C2h]			[DATA MSB(z-1)]
[FD(1) D3h]	[DATA LSB(1)]	[DATA LSB(1)]	
[FD(2) C2h]	[DATA MSB(1)]	[DATA MSB(1)]	
[FD(2) D3h]	[DC]	[DC]	
	[PEC]	[PEC]	
	[ALIVE]*	[ALIVE]*	
	[FD(1) C2h]	[FD(1) C2h]	
	[FD(1) D3h]	[FD(1) D3h]	[DATA LSB(1)]
			[DATA MSB(1)]
			[DC]
[FD(z) C2h]	[FD(z-n) C2h]	[FD(z-n-1) C2h]	[PEC]
[FD(z) D3h]	[FD(z-n) D3h]	[FD(z-n-1) D3h]	[ALIVE]*
Stop	Stop	Stop	Stop
12+(4 x z) characters			

^{*}If alive-counter mode is enabled.

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

READDEVICE Command

The READDEVICE command returns a 16-bit word read from the specified register in the addressed device only. If the register address is not valid for the device, the command is ignored. The command sequence is shown in Table 31.

The command packet is forwarded up the daisy-chain until it reaches the addressed device. The addressed device overwrites the received fill bytes with the two bytes of register data and forwards the packet to the next device. The alive-counter byte is only incremented by the addressed device. A Manchester error immediately switches the data propagation from read mode to write (pass-through) mode, ensuring that the Manchester error is propagated through the daisy-chain and back to the host.

Table 31. READDEVICE Sequencing

HOST TX	DEVICE RXL	DEVICE TXU	HOST RX
Preamble	Preamble	Preamble	Preamble
{DA[4:0], 0b101}	{DA[4:0], 0b101}	{DA[4:0], 0b101}	{DA[4:0], 0b101}
[REG ADDR]	[REG ADDR]	[REG ADDR]	[REG ADDR]
[DC]	[DC]	[DATA LSB]	[DATA LSB]
[PEC]	[PEC]	[DATA MSB]	[DATA MSB]
[ALIVE]*	[ALIVE]*	[DC]	[DC]
[FD(1) C2h]	[FD(1) C2h]	[PEC]	[PEC]
[FD(1) D3h]	[FD(1) D3h]	[ALIVE]*	[ALIVE]*
Stop	Stop	Stop	Stop
16 characters	16 characters	16 characters	16 characters

^{*}If alive-counter mode is enabled.

READBLOCK Command

The READBLOCK command returns an 18-byte read from the specified register for a block size of 1 in the addressed device only. If the register address is not valid for the device, it returns zero for any invalid addresses. If the device address is not valid, the command is ignored.

The command sequences for a block size of 1 and for a block size of 2 are shown in $\underline{\text{Table 32}}$ and $\underline{\text{Table 33}}$, respectively.

The command packet is forwarded up the daisy-chain until it reaches the addressed device. The addressed device overwrites the received fill bytes with the two bytes of register data (from a single device) and forwards the packet to the next device. The alive-counter byte is only incremented by the addressed device. A Manchester error immediately switches the data propagation from read mode to write (pass-through) mode, ensuring that the Manchester error is propagated through the daisy-chain and back to the host.

Table 32. READBLOCK Sequencing for Block Size = 1

HOST TX	DEVICE RXL	DEVICE TXU	HOST RX
Preamble	Preamble	Preamble	Preamble
{BS[4:0], 3b110}	{BS[4:0], 3b110}	{BS[4:0], 3b110}	{BS[4:0], 3b110}
[DEVICE ADDR]	[DEVICE ADDR]	[DEVICE ADDR]	[DEVICE ADDR]
[REG ADDR]	[REG ADDR]	[REG ADDR]	[REG ADDR]
[DC]	[DC]	[DATA LSB]	[DATA LSB]
[PEC]	[PEC]	[DATA MSB]	[DATA MSB]
[ALIVE]*	[ALIVE]*	[DC]	[DC]
[FD(1) C2h]	[FD(1) C2h]	[PEC]	[PEC]
[FD(1) D3h]	[FD(1) D3h]	[ALIVE]*	[ALIVE]*
Stop	Stop	Stop	Stop
18 characters	18 characters	18 characters	18 characters

^{*}If alive-counter mode is enabled.

Table 33. READBLOCK Sequencing for Block Size = 2

HOST TX	DEVICE RXL	DEVICE TXU	HOST RX
Preamble	Preamble	Preamble	Preamble
{BS[4:0], 3b110}	{BS[4:0], 3b110}	{BS[4:0], 3b110}	{BS[4:0], 3b110}
[DEVICE ADDR]	[DEVICE ADDR]	[DEVICE ADDR]	[DEVICE ADDR]
[REG ADDR]	[REG ADDR]	[REG ADDR]	[REG ADDR]
[DC]	[DC]	[DATA0 LSB]	[DATA0 LSB]
[PEC]	[PEC]	[DATA0 MSB]	[DATA0 MSB]
[ALIVE]*	[ALIVE]*	[DATA1 LSB]	[DATA1 LSB]
[FD(1) C2h]	[FD(1) C2h]	[DATA1 MSB]	[DATA1 MSB]
[FD(1) D3h]	[FD(1) D3h]	[DC]	[DC]
[FD(1) C2h]	[FD(1) C2h]	[PEC]	[PEC]
[FD(1) D3h]	[FD(1) D3h]	[ALIVE]*	[ALIVE]*
Stop	Stop	Stop	Stop
22 characters	22 characters	22 characters	22 characters

^{*}If alive-counter mode is enabled.

Diagnostics

Built-in diagnostics support ISO 26262 (ASIL) requirements by detecting specific fault conditions, as shown in <u>Table 34</u>. The device automatically performs some of the diagnostics while the host can perform others during initialization (e.g.,

at key-on), or periodically during operation, as required by the application. Diagnostics performed automatically by the device are previously described in the relevant functional sections. A description of the diagnostics requiring specific configurations are provided in this section.

Table 34. Summary of Built-In Diagnostics

2.7.13.1.00110	DIAGNOSTICS PERFORMED AUTOMATICALLY BY DEVICE, WITHOUT HOST INTERVENTION			
FAULT	DIAGNOSTIC PROCEDURE		OUTPUT	
V _{AA} undervoltage	Continuous voltage comparison		ALRTRST	
V _{HV} undervoltage	Continuous voltage comparison		ALRTHVUV	
V _{HV} overvoltage	Continuous voltage comparison		ALRTHVOV	
V _{HV} low headroom	Voltage comparison – updated during measurement		ALRTHVHDRM	
32kHz oscillator fault	Continuous frequency comparison		ALRTOSC1, ALRTOSC2	
16MHz oscillator fault	Communication error checking		ALRTMAN, ALRTPAR	
Communication fault	Communication error checking		ALRTPEC, ALRTMAN, ALRTPAR	
RX pin open/short	Verify RX mode after POR		ALRTCOMMSEUn/ALRTCOMMSELn	
VDDLx pin open/short	Continuous voltage comparison		ALRTVDDLx	
GNDLx pin open/short	Continuous voltage comparison		ALRTGNDLx	
Die over-temperature	temperature comparison – updated after measurement.		ALRTTEMP	
DIAGNOSTICS PER	FORMED DURING ACQUISITION	ON MODE, AS SELECT	ED BY DIAGSEL OR BALSWDIAG	
FAULT	DIAGNOSTIC PROCEDURE	DIAGSEL[2:0]	ОИТРИТ	
Reference voltage fault	ALTREF diagnostic	DIAGSEL = 1h	DIAG[15:0] (ALTREF voltage)	
\/\forall_n=f=!			3 /	
V _{AA} voltage fault	V _{AA} diagnostic ADC1	DIAGSEL = 2h	DIAG[15:0] (V _{AA} voltage)	
V _{AA} voltage fault V _{AA} voltage fault	V _{AA} diagnostic ADC1 V _{AA} diagnostic ADC2	DIAGSEL = 2h DIAGSEL = 2h		
			DIAG[15:0] (V _{AA} voltage)	
V _{AA} voltage fault	V _{AA} diagnostic ADC2	DIAGSEL = 2h	DIAG[15:0] (V _{AA} voltage) DIAG[15:0] (V _{AA} /2 voltage)	
V _{AA} voltage fault LSAMP Offset too high	V _{AA} diagnostic ADC2 LSAMP offset diagnostic	DIAGSEL = 2h DIAGSEL = 3h	DIAG[15:0] (V _{AA} voltage) DIAG[15:0] (V _{AA} /2 voltage) DIAG[15:0] (LSAMP offset voltage)	
V _{AA} voltage fault LSAMP Offset too high ADC bit stuck high	V _{AA} diagnostic ADC2 LSAMP offset diagnostic Zero-Scale ADC diagnostic	DIAGSEL = 2h DIAGSEL = 3h DIAGSEL = 4h	DIAG[15:0] (V _{AA} voltage) DIAG[15:0] (V _{AA} /2 voltage) DIAG[15:0] (LSAMP offset voltage) DIAG[15:0] (Zero-scale)	
V _{AA} voltage fault LSAMP Offset too high ADC bit stuck high ADC bit stuck low	V _{AA} diagnostic ADC2 LSAMP offset diagnostic Zero-Scale ADC diagnostic Full-Scale ADC diagnostic	DIAGSEL = 2h DIAGSEL = 3h DIAGSEL = 4h DIAGSEL = 5h	DIAG[15:0] (V _{AA} voltage) DIAG[15:0] (V _{AA} /2 voltage) DIAG[15:0] (LSAMP offset voltage) DIAG[15:0] (Zero-scale) DIAG[15:0] (Full-scale)	
V _{AA} voltage fault LSAMP Offset too high ADC bit stuck high ADC bit stuck low V _{PTAT} or ALRTTEMP fault	V _{AA} diagnostic ADC2 LSAMP offset diagnostic Zero-Scale ADC diagnostic Full-Scale ADC diagnostic Die Temperature diagnostic	DIAGSEL = 2h DIAGSEL = 3h DIAGSEL = 4h DIAGSEL = 5h DIAGSEL = 6h	DIAG[15:0] (V _{AA} voltage) DIAG[15:0] (V _{AA} /2 voltage) DIAG[15:0] (LSAMP offset voltage) DIAG[15:0] (Zero-scale) DIAG[15:0] (Full-scale) DIAG[15:0] (V _{PTAT} voltage), ALRTTEMP	
V _{AA} voltage fault LSAMP Offset too high ADC bit stuck high ADC bit stuck low V _{PTAT} or ALRTTEMP fault Balancing switch short	V _{AA} diagnostic ADC2 LSAMP offset diagnostic Zero-Scale ADC diagnostic Full-Scale ADC diagnostic Die Temperature diagnostic BALSW diagnostic mode	DIAGSEL = 2h DIAGSEL = 3h DIAGSEL = 4h DIAGSEL = 5h DIAGSEL = 6h BALSWDIAG = 1h	DIAG[15:0] (V _{AA} voltage) DIAG[15:0] (V _{AA} /2 voltage) DIAG[15:0] (LSAMP offset voltage) DIAG[15:0] (Zero-scale) DIAG[15:0] (Full-scale) DIAG[15:0] (V _{PTAT} voltage), ALRTTEMP ALRTBALSW	

Table 34. Summary of Built-In Diagnostics (continued)

PROCEDURAL DIAGNOSTICS			
FAULT	DIAGNOSTIC PROCEDURE	OUTPUT	
SHDNL stuck high	Idle mode	ALRTSHDNL	
HVMUX switch open	Acquisition with HVMUX test sources	ALRTOV, ALRTUV	
HVMUX switch short	ALTREF diagnostic	DIAG[15:0]	
HVMUX test sources	Acquisition with HVMUX test sources	CELLn	
Cn pin open	Acquisition with cell-test sources	ALRTOV, ALRTUV	
Cn short to SWn	Acquisition with balancing switches	CELLn	
Cn pin leakage	ALTMUX vs. HVMUX acquisition	CELLn	
Voltage comparator fault	ALTMUX acquisition with balancing switches	CELLn	
Voltage comparator fault	ALTMUX acquisition with balancing switches	CELLn	
ALRTHVUV comparator	Acquisition with HV charge pump disabled	ALRTHVUV	
HVMUX sequencer	Acquisition with cell-test sources	CELLn	
ALU Data Path	Acquisition with ADCTEST = 1	CELLn, VBLKP, DIAG, and AUXINn	
AUXINn Pin Open	Acquisition with AUXIN test sources	AUXINn	
Calibration corruption	Read CALx, IDx, perform CRC	ID2	

Note: Pin faults such as an open pin or adjacent pins shorted to each other must be detectable. Pin faults do not result in device damage, but have a specific device response such as a communication error, or are detectable through a built-in diagnostic. Analyzing the effect of pin faults is referred to as a pin FMEA. Contact Maxim Applications to obtain pin FMEA results.

ALTREF Diagnostic Measurement

The ALTREF diagnostic measurement (DIAGSEL[2:0] = 0b001) checks the primary voltage reference of the ADC by measuring the alternate reference voltage (V_{ALTREF}). The result is available in the DIAG register after a normal acquisition.

The ALTREF voltage is computed from the result in the DIAG register as follows:

 $V_{ALTREF} = (DIAG[15:2]/16384d) \times 5V$

Since $1.23V < V_{ALTREF} < 1.254V$ and $V_{ALTREF} = 1.242V$ nominally, the expected range for DIAG[15:2] is:

(1.23V/5V) x 16384d = 4030d to (1.254V/5V) x 16384 = 4109d. Therefore, 0FBEh \leq DIAG[15:2] \leq 100Dh. To use the 16-bit register value, the 14-bit values must be shifted or multiplied by four, so that 3EF8h \leq DIAG[15:0] \leq 4034h.

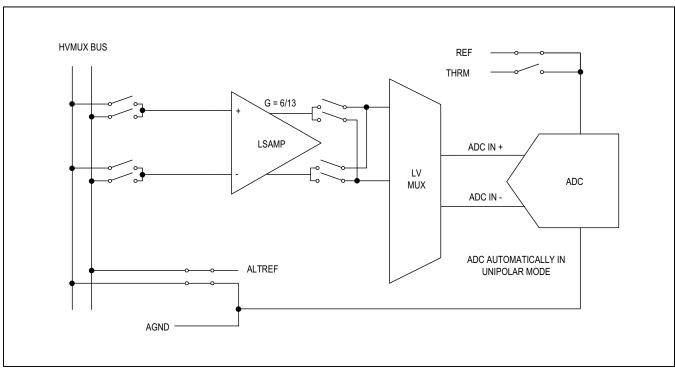


Figure 36. ALTREF Diagnostic

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

VAA Diagnostic Measurement

The V_{AA} diagnostic measurement (DIAGSEL[2:0] = 0b010) verifies that V_{AA} is within specification This diagnostic measures V_{REF} using REF as the ADC reference.

V_{AA} diagnostic for ADC1 is given by:

DIAG[15:2] =
$$(3.3/5) \times (16384d) = 10813d$$

 $V_{AA} = (DIAG[15:2]/16384d) \times 5V$
 V_{AA} (for ADC1) = 3.29V

The result for V_{AA} should fall within the range provided in the *Electrical Characteristics* table for V_{AA} .

 V_{AA} diagnostic for ADC2 is given by: DIAG[15:2] = (3.3 x (5/8)/2.307) x (16384d) = 14648d

 $V_{AA} = (DIAG[15:2] = (3.3 \times (5/8)/2.307) \times (16384d) = 146486$ $V_{AA} = (DIAG[15:2]/16384d) \times 5V$ V_{AA} (for ADC2) = 4.47V

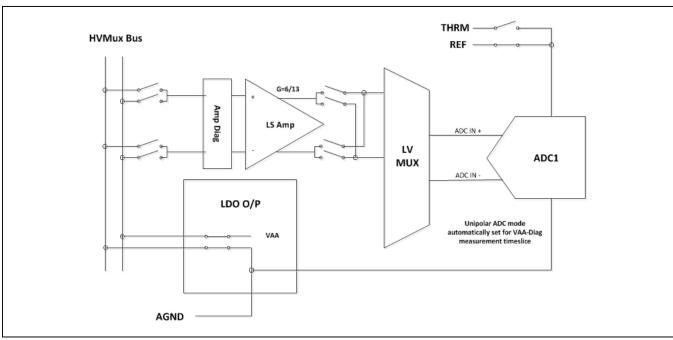


Figure 37. V_{AA} Diagnostic ADC1

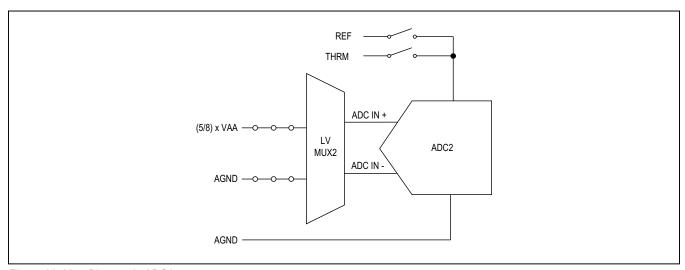


Figure 38. V_{AA} Diagnostic ADC2

LSAMP Offset Diagnostic Measurement

The LSAMP diagnostic measurement (DIAGSEL[2:0] = 0b011) measures the level-shift amplifier offset by shorting the LSAMP inputs during the diagnostic portion of the acquisition. The result is available in the DIAG register after a normal acquisition. For this measurement, the ADC polarity is automatically set to bipolar mode to allow accurate measurement of voltages near zero. This measurement eliminates the chopping phase to preserve the offset error. If the diagnostic measurement exceeds the valid range for VOS_LSAMP, as specified in the *Electrical Characteristics* table, the chopping function may not be able to cancel out all the offset error, and the acquisition accuracy could be degraded accordingly. See Figure 39 for LSAMP Offset Diagnostics

The LSAMP offset is computed from the result in the DIAG register, as follows:

LSAMP Offset = (| DIAG[15:2] - 2000h |/16384d) x 5V

The validity of measurements through LSAMP is further confirmed by the ALTREF and V_{AA} diagnostics, and comparison of the V_{BLKP} measurement to the sum of the cell measurements.

Zero-Scale ADC Diagnostic Measurement

Stuck ADC output bits can be verified with a combination of the zero-scale and full-scale diagnostics. The zero-scale ADC diagnostic measurement (DIAGSEL[2:0] = 0b100) verifies that the ADC conversion results in 000h when its input is at -V_{AA} in bipolar mode (since for an input \leq -2.5V, DIAG[15:0] = 0000h). For this measurement, the ADC is automatically set to bipolar mode (see Figure 40).

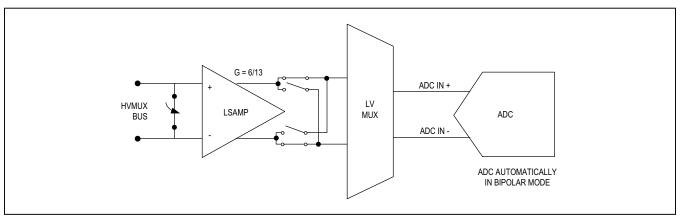


Figure 39. LSAMP Offset Diagnostic

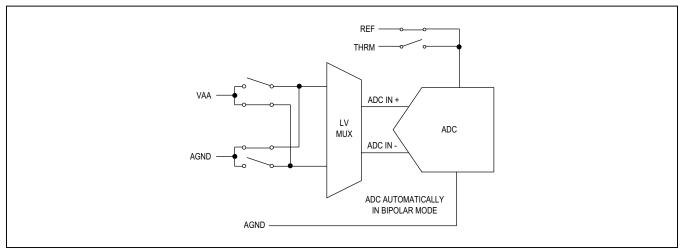


Figure 40. ADC Zero-Scale Diagnostic

Full-Scale ADC Diagnostic Measurement

Stuck ADC output bits can be verified with a combination of the zero-scale and full-scale diagnostics. The zeroscale ADC diagnostic measurement (DIAGSEL[2:0] = 0b101) verifies that the ADC conversion results in FFFh when its input is at VAA in bipolar mode (since for an input ≥ 2.5V, DIAG[15:0] = FFF0h). For this measurement, the ADC is automatically set to bipolar mode.

BALSW Diagnostics

Four balancing switch diagnostic modes are available to facilitate the following diagnostics:

- Balancing switch shorted (BALSWDIAG[2:0] = 0b001)
- Balancing switch open (BALSWDIAG[2:0] = 0b010)
- Odd sense wire open (BALSWDIAG[2:0] = 0b101)
- Even sense wire open (BALSWDIAG[2:0] = 0b110)

Enabling any of these modes automatically preconfigures the acquisition (e.g. enables the ALTMUX measurement path). The host must initiate the acquisition but the diagnostic mode automatically compares the measurements to the specific thresholds, and sets any corresponding alerts. The host presets the thresholds as determined by the minimum and maximum resistance of the switch (R_{SW}) specified in the Electrical Characteristics table and the intended cell-balancing current.

During any balancing switch diagnostic mode, ALRTOV, ALRTUV and ALRTMSMTCH comparisons are disabled. After BALSWDIAG[2:0] is cleared, the modified configurations automatically return to their prior setting. The same configurations and comparisons could be implemented manually but at the expense of more host operations.

BALSW Short Diagnostic

A short-circuit fault in the balancing path could be a short between SWn and SWn-1 (see Figure 42), or that the balancing FET is stuck in the conducting state. In the short circuit state, the voltage between SWn and SWn-1 (switch voltage) is less than the voltage between Cn and Cn-1 (cell voltage).

When enabled, the balancing switch short diagnostic mode (BALSWDIAG[2:0] = 0b001) functions as follows:

- Disables the balancing switches automatically
- Configures the acquisition using ALTMUX path automatically
- Host initiates the acquisition
- Compares the measurement to the threshold value **BALSHRTTHR** automatically
- If outside the threshold, sets the corresponding flag in ALRTBALSW automatically

For the best sensitivity to leakage current, set the threshold value based on the minimum cell voltage minus a small noise margin (100mV), then update the threshold value periodically or every time a measurement is taken, depending on how fast the cell voltages are expected to change.

Figure 41. ADC Full-Scale Diagnostic

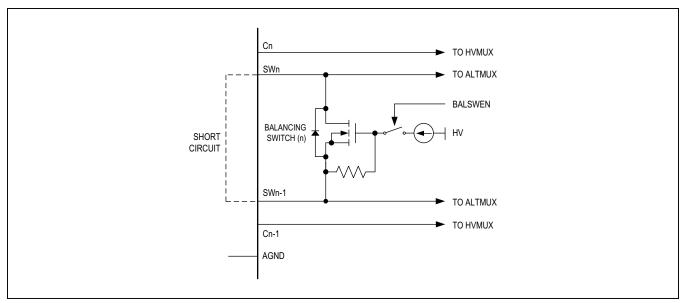


Figure 42. Balancing Switch Short

Figure 43. BALSW Short Diagnostic

BALSW Open Diagnostics

The BALSW open diagnostic (BALSWDIAG[2:0] = 0b010) verifies that each enabled balancing switch is conducting (not open) as follows:

- Configures acquisition for bipolar mode (for measuring voltages near zero) automatically
- Configures acquisition for ALTMUX path automatically
- Configures acquisition to measure switch voltages for those switches enabled by BALSWEN automatically
- · Host initiates acquisition
- Compares measurement to the threshold value BALLOWTHR and BALHIGHTHR (Table 36) automatically
- If outside the threshold, set the corresponding flag in ALRTBALSW automatically

Set the thresholds by taking into account the minimum and maximum R_{SW} of the switch itself as specified in the <u>Electrical Characteristics</u> table and the balancing current for the application.

See <u>Table 35</u> for BALSW Short-Diagnostic Autoconfiguration, <u>Table 36</u> for BALSW Diagnostics. See <u>Table 37</u> for BALSW Open-Diagnostic Autoconfiguration and Figure 44 for BALSW Open Diagnostics.

Even/Odd Sense Wire Open Diagnostics

If enabled, the sense-wire open diagnostic modes detect if a cell-sense wire is disconnected as follows:

- Closes nonadjacent switches (even or odd automatically)
- Configures acquisition to use ALTMUX path automatically
- Host waits 100µs for settling and then initiates the acquisition
- Compares the result to the BALHIGHTHR and BALLOWTHR registers automatically
- If outside thresholds, sets flags in ALRTBALSW automatically

See Figure 45 for Cell Sense-Wire Open Diagnostics.

Table 35. BALSW Short Diagnostic Autoconfigura
--

CONFIGURATION BITS	AUTOMATIC SETTING	PURPOSE
MEASUREEN[14:12]	0b000	Disable AUXIN and V _{BLKP} measurements
BALSWEN[11:0]	000h	Disable all balancing switches
DIAGCFG.ALTMUXSEL	1	Enable ALTMUX measurement path

Table 36. BALSW Diagnostics

BALSW	V _{SWn}	FAULT INDICATED?	POSSIBLE FAULT CONDITION
	> V(BALHIGHTHR)	Yes	Switch open circuit, or overcurrent
0.5	> V(BALLOWTHR)	No	None
On -	< V(BALHIGHTHR)		None
	< V(BALLOWTHR)	Yes	Path open circuit, or short circuit
Off	> V(BALSHRTTHR)	No	None
	< V(BALSHRTTHR)	Yes	Short circuit, or leakage current

Table 37. BALSW Open-Diagnostic Autoconfiguration

CONFIGURATION BITS	AUTOMATIC SETTING	PURPOSE
MEASUREEN[14:12]	0b000	Disable AUXINn and V _{BLKP} measurements
MEASUREEN[11:0]	BALSWEN[11:0]	Measure only active switch positions
DIAGCFG.ALTMUXSEL	1	Enable ALTMUX measurement path
SCANCTRL.POLARITY	1	Enable bipolar mode

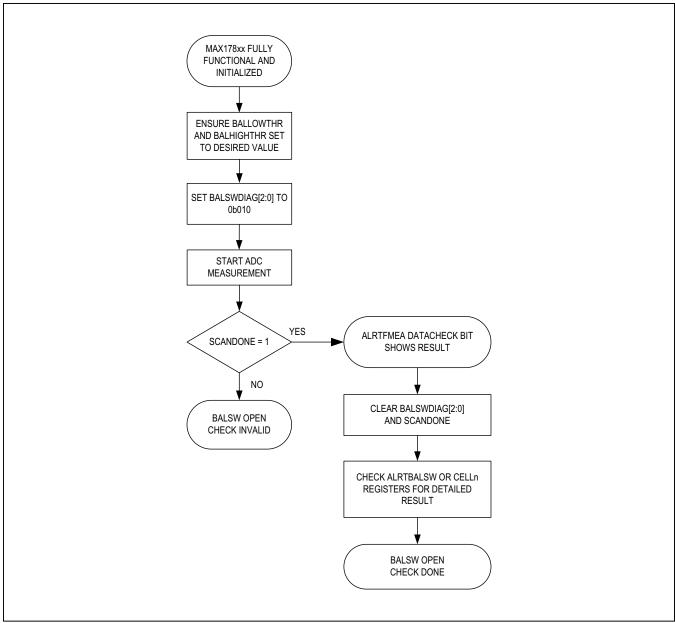


Figure 44. BALSW Open Diagnostics

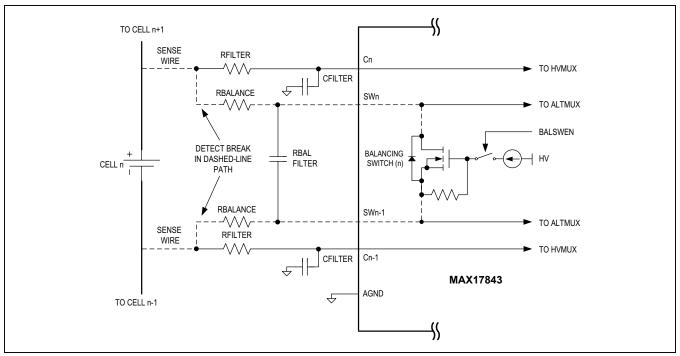


Figure 45. Cell Sense-Wire Open Diagnostics

Table 38. Odd Sense-Wire Open Measurement Result

			SENSE WIRE OPEN FAULT LOCATION											
		C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
	Cell1	0V	0V	NC	NC	NC	NC							
	Cell2	NC	cell1+ cell2	cell2+ cell3	NC	NC	NC	NC						
	Cell3	NC	NC	0V	0V	NC	NC	NC	NC	NC	NC	NC	NC	NC
CHANGE	Cell4	NC	NC	NC	cell3+ cell4	cell4+ cell5	NC	NC	NC	NC	NC	NC	NC	NC
1	Cell5	NC	NC	NC	NC	0V	0V	NC	NC	NC	NC	NC	NC	NC
MENT	Cell6	NC	NC	NC	NC	NC	cell5+ cell6	cell6+ cell7	NC	NC	NC	NC	NC	NC
1 25	Cell7	NC	NC	NC	NC	NC	NC	0V	0V	NC	NC	NC	NC	NC
MEASUREMENT	Cell8	NC	NC	NC	NC	NC	NC	NC	cell7+ cell8	cell8+ cell9	NC	NC	NC	NC
CELL	Cell9	NC	NC	NC	NC	NC	NC	NC	NC	0V	0V	NC	NC	NC
 	Cell10	NC	NC	NC	NC	NC	NC	NC	NC	NC	cell9+ cell10	cell10+ cell11	NC	NC
	Cell11	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0V	0V	NC
	Cell12	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	cell11+ cell12	UD

Note: NC = No Change; UD = Undefined; Maximum result is 5V.

Figure 46. Sense-Wire Open Diagnostic

Table 39. Sense-Wire Open-Diagnostic Configurations

CONFIGURATION BIT(S)	CONFIGURATION STATE	TASK
BALSWEN[11:0]	555h (BALSWDIAG = 0b101) or AAAh (BALSWDIAG = 0b110)	Enable odd switches Enable even switches
MEASUREEN[14:12]	0b000	Disable AUXINn and V _{BLKP} measurements
MEASUREEN[11:0]	BALSWEN[11:0]	Measure only active switch positions
DIAGCFG.ALTMUXSEL	1	Enable ALTMUX measurement path
SCANCTRL.POLARITY	1	Enable bipolar mode

Diagnostic Test Sources

Diagnostic test current sources (see Figure 47) can be enabled prior to the acquisition mode for detecting both internal and external hardware faults in the measurement path. One set of test sources are connected to the HVMUX input side and another set are connected to the HVMUX output side. See Table 40 for HVMUX output assignments. The basic premise in these diagnostics is that for a symmetrical measurement channel with no faults, the test currents can be applied symmetrically to the differential channel and there should be almost no change in the channel measurement. On the other hand, if an asymmetric fault exists on the channel, the resulting change will indicate the nature of the fault (e.g., an open or shorted pin).

For the 15 test current sources on the input channels (13 Cn and two AUXINn):

- The test currents individually enabled per CTSTEN[12:0] and AUXINTSTEN[2:1].
- The test current ranges from 6.25μA up to 100μA per

CTSTDAC[3:0] (applies to all enabled sources).

 Test current sources from V_{AA} or sinks to AGND per the CTSTSRC bit, except for C0 (applies to all enabled sources). The test current sources from V_{AA} only for CTST0.

For the two test current sources on the HVMUX output side:

- The test currents are enabled by the MUXDIAGEN bit.
- The test current always sources from the HV supply.
- The test current ranges from 3.125μA up to 50μA per CTSTDAC[3:0] (applies to all enabled sources).
- The test current, by default, is applied to both HVMUX outputs (even and odd outputs). However, if MUXDIAGPAIR is set, the test current is applied to only one of the output lines per MUXDIAGBUS. This mode is used to test the test sources themselves.

See Figure 47 for test current sources diagram.

Table 40. HVMUX Output Assignment

INPUT SIGNAL	HVMUX OUTPUT			
C12	Even bus			
C11	Odd bus			
C10	Even bus			
C9	Odd bus			
C8	Even bus			
C7	Odd bus			
C6	Even bus			
C5	Odd bus			
C4	Even bus			
C3	Odd bus			
C2	Even bus			
C1	Odd bus			
C0	Even bus			
REF	Odd bus			
ALTREF	Odd bus			
AGND	Even bus			

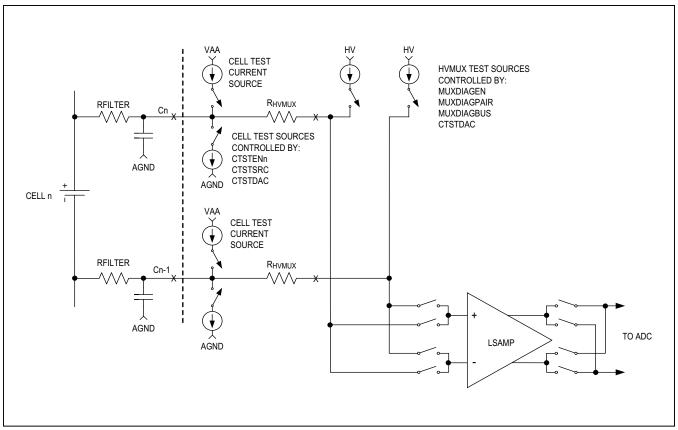


Figure 47. Test Current Sources

Shutdown Diagnostic

The shutdown diagnostic verifies that no hardware fault is preventing the device from shutting down, such as the SHDNL input being stuck at logic-one. To perform the diagnostic, the host attempts a shutdown. The timing shown in Figure 48 is for a UART idle mode shutdown. Once V_{SHNDL} < 0.6V, the ALRTSHDNL bit is set in the STATUS register and the regulator is disabled (see Table 41); however, the STATUS register can still be read as long as VAA has not decayed below 2.95V (typ), which takes about 1ms. The host should verify that ALRTSHDNL is set. By reading the bit, the charge pump will drive V_{SHDNL} > 1.8V in about 200 μ s and enable the regulator. The host must clear the ALRTSHDNL bit to complete the diagnostic. The ALRTSHDNLRT bit is a real-time version of ALRTSHDNL that automatically clears when V_{SHDNL} > 1.8V.

HVMUX Switch Open Diagnostic

Since an open HVMUX switch causes the measured voltage to go to either zero or full-scale, it is possible to execute the test by looking for an overvoltage or undervoltage alert following the diagnostic measurement without analyzing the measurement data. It is possible to read all voltage measurements and let the host compare the results by splitting the test into several segments.

The procedure in Figure 49 is quick and efficient. For higher sensitivity to faults, each cell voltage measurement in the diagnostic mode can be compared to a threshold of 100mV by the host to determine if the HVMUX path is working correctly. The threshold is derived from the worst case HVMUX resistance mismatch and the worst-case diagnostic current source value variation.

Table 41. Shutdown Diagnostic

FAULT	COMPARISON	ALERT BIT	LOCATION
SHDNL input stuck	V _{SHDNL} < 0.6V?	ALRTSHDNL	STATUS[12]
SHDNL input stuck	V _{SHDNL} < 0.6V?	ALRTSHNDRT	STATUS[11]

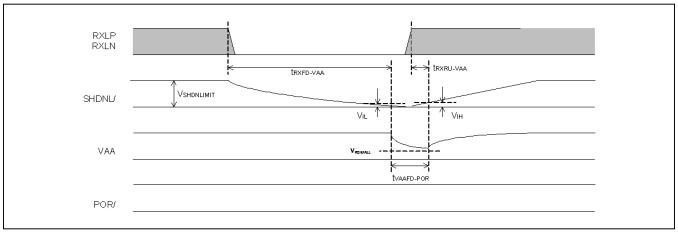


Figure 48. Shutdown Diagnostic Timing

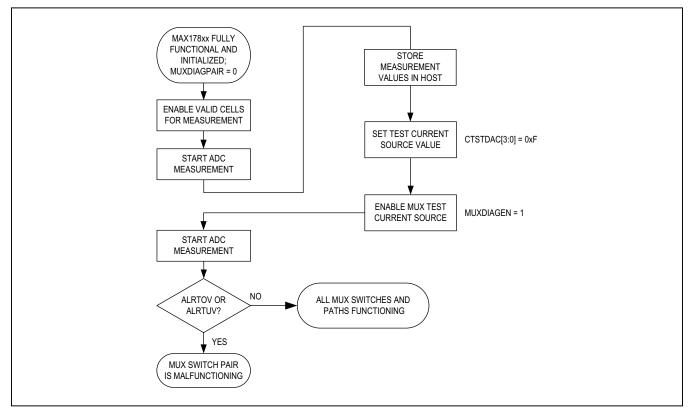


Figure 49. HVMUX Switch Open Diagnostic

HVMUX Switch Shorted Diagnostic

A shorted mux switch is detectable in two ways based on corrupted measurement values. First, the ALTREF diagnostic reports a large error. Also, during normal cell measurements, a shorted HVMUX switch causes the LSAMP to saturate, which is also easily detectable

HVMUX Test Source Diagnostic

The two current sources attached to the HVMUX even bus and the HVMUX odd bus can be enabled indepen-

dently instead of as a pair setting the MUXDIAGPAIR bit. MUXDIAGBUS controls which source is enabled (MUXDIAGBUS = 1 for odd bus source). This causes every measurement to have a definable change as the sources are enabled and disabled. By taking measurements while alternating which current source is enabled, it is possible to verify that each current source is working.

See <u>Table 42</u> for HVMUX switch open diagnstics and <u>Table</u> 43 for HVMUX test-source diagnostic.

Table 42. HVMUX Switch Open Diagnostic

					ı	HVMUX	SWITCH	OPEN F	AULT LO	CATION	1			
		C0	C1	C2	С3	C4	C5	C6	C7	C8	C9	C10	C11	C12
	Cell1	0V	5V	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Cell2	NC	0V	5V	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
۱ ـ	Cell3	NC	NC	0V	5V	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Cell4	NC	NC	NC	0V	5V	NC	NC	NC	NC	NC	NC	NC	NC
MEASUREMENT	Cell5	NC	NC	NC	NC	0V	5V	NC	NC	NC	NC	NC	NC	NC
SUR	Cell6	NC	NC	NC	NC	NC	0V	5V	NC	NC	NC	NC	NC	NC
EĄ	Cell7	NC	NC	NC	NC	NC	NC	0V	5V	NC	NC	NC	NC	NC
 	Cell8	NC	NC	NC	NC	NC	NC	NC	0V	5V	NC	NC	NC	NC
CELL	Cell9	NC	NC	NC	NC	NC	NC	NC	NC	0V	5V	NC	NC	NC
	Cell10	NC	NC	NC	NC	NC	NC	NC	NC	NC	0V	5V	NC	NC
	Cell11	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0V	5V	NC
	Cell12	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0V	5V

Note: NC = No change.

Table 43. HVMUX Test-Source Diagnostic

	/MUX TEST- URCE FAULT	EVEN TEST SOURCE SHORTED TO HV	EVEN TEST SOURCE OPEN CIRCUIT	ODD TEST SOURCE SHORTED TO HV	ODD TEST SOURCE OPEN CIRCUIT
	Cell1:	0V	-l x R	5V	IxR
Щ	Cell2:	5V	IxR	0V	-l x R
CHANGE	Cell3:	0V	-l x R	5V	IxR
l ₹	Cell4:	5V	I x R	0V	-l x R
F	Cell5:	0V	-l x R	5V	IxR
I ₩	Cell6:	5V	IxR	0V	-I x R
CELL-MEASUREMENT	Cell7:	0V	-I x R	5V	IxR
ASI	Cell8:	5V	I x R	0V	-I x R
¥	Cell9:	0V	-l x R	5V	IxR
	Cell10:	5V	IxR	0V	-l x R
ਂ	Cell11:	0V	-l x R	5V	IxR
	Cell12:	5V	I x R	0V	-l x R

Note: I = Test source current, R = HVMUX resistance.

Cn Open Diagnostic

If the cell is disconnected from the input, the corresponding cell-test source (sinking to AGND) pulls the cell input voltage toward 0V (except for C0, where source to V_{AA} current source will pull the cell input voltage to V_{AA}). A new measurement is taken with the current sources enabled, and a change in measurement value is detected. If no open circuit exists, then the measurement value changes by only the value of the test current across the application circuit series resistor to the Cn pin (see Table 44).

Cn Shorted to SWn Diagnostic

Short circuits between the SWn pins and the cell input pins are detectable. A shorted SWn pin can be detected by an acquisition with the relevant cell-balancing switch off and then again with it on. If the SWn pin is not shorted to an adjacent cell input pin, no change in the measured value should be observed for the two cases. If the SWn pin is shorted to the Cn pin, then the measured value will change by approximately 40% to 50% when the balancing switch is turned on based on the values of RBALANCE, and the balancing switch resistance. A short circuit from SWn to Cn-1 produces the same effect. By comparing both the VCELLn measurement value along with the VCELLn+1 and VCELLn-1 values, it is possible to determine exactly where the short circuit is located.

Table 44. Cn Pin Open Diagnostic

			Cn PIN OPEN FAULT LOCATION											
		C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
	Cell1	Cell1- 3.3V	0V	NC	NC	NC	NC							
	Cell2	NC	Cell2+ Cell1	0V	NC	NC	NC	NC						
	Cell3	NC	NC	Cell3+ Cell2	0V	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Cell4	NC	NC	NC	Cell4+ Cell3	0V	NC	NC	NC	NC	NC	NC	NC	NC
ÆNT	Cell5	NC	NC	NC	NC	Cell5+ Cell4	0V	NC	NC	NC	NC	NC	NC	NC
CELL MEASUREMENT	Cell6	NC	NC	NC	NC	NC	Cell6+ Cell5	0V	NC	NC	NC	NC	NC	NC
MEA!	Cell7	NC	NC	NC	NC	NC	NC	Cell7+ Cell6	0V	NC	NC	NC	NC	NC
CELL	Cell8	NC	NC	NC	NC	NC	NC	NC	Cell8+ Cell7	0V	NC	NC	NC	NC
	Cell9	NC	NC	NC	NC	NC	NC	NC	NC	Cell9+ Cell8	0V	NC	NC	NC
	Cell10	NC	NC	NC	NC	NC	NC	NC	NC	NC	Cell10+ Cell9	0V	NC	NC
	Cell11	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	Cell11+ Cell10	0V	NC
	Cell12	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	Cell12+ Cell11	0V

Note: I = Test source current, R = HVMUX resistance.

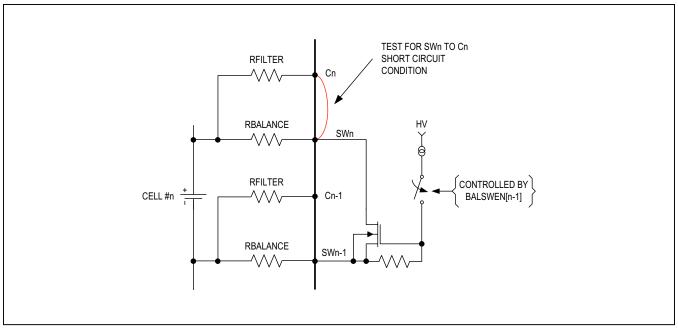


Figure 50. SWn to Cn Short

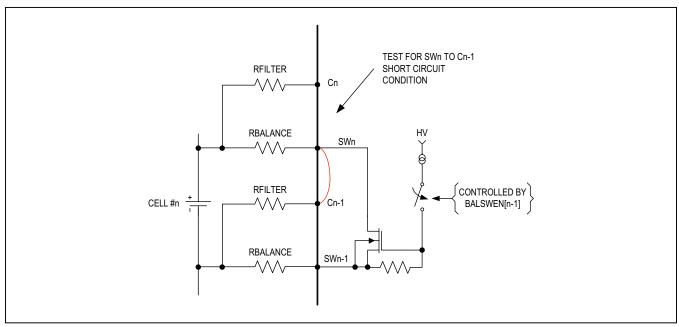


Figure 51. SWn-1 to Cn Short

Cn Leakage Diagnostic

Leakage at the Cn inputs can cause the voltage seen by the ADC to be different than that at the voltage source due to the resistance of the external filter circuit. By utilizing an alternate measurement path, any voltage errors as a result of Cn pin leakage can be detected. The SWn pins are connected to the cell sources through an alternate path. Implementing an HVMUX connection from the SWn pins to the LSAMP completes the redundant measurement path. This alternate measurement path for the cell measurements can be enabled by setting the ALTMUXSEL bit of the DIAGCFG register. When this bit is set and a measurement cycle started, all cell measurements are taken using the alternate path instead of the Cn pin HVMUX connections. Measurements taken with the normal and alternate paths can be compared and should be nearly identical for a system with no faults. Since the SWn pins typically have a smaller external filter time constant than the Cn pins, increasing the oversampling setting for this diagnostic measurement may be beneficial for reducing measurement noise when the measurement is taken while the cells are exposed to transient loads.

Cell Overvoltage Diagnostic

Enabling balancing switches can be used to generate a voltage up to 2 x V_{CELL} at the ALTMUX inputs to test the input-range capability, assuming the cell is sufficiently charged.

A cell-position input voltage is elevated by approximately 1.5 x V_{CELLn} turning on either BALSWn+1 or BALSWn-1. When the adjacent switch is turned on, the SWn pin shared with the switch is moved by 0.5 x V_{CELL}, which causes V_{CELLn} to increase by that amount when measured with the ALTMUX path. For the topmost cell position, BALSWn-1 must be used, and for the bottom cell position, BALSWn+1 must be used. By turning on two adjacent switches instead of one, such as BALSWn+1 and BALSWn+2, the measured voltage is approximately 2 x V_{CELL}, assuming all cells are at approximately the same voltage. This technique can create an input voltage that exceeds the overvoltage threshold to verify the higher end of the input range and the overvoltage alert function.

Input range can also be verified by using the cell-test sources to induce a higher cell-channel voltage. If the change is as expected, it shows that the system can measure voltages above the present nominal input voltage.

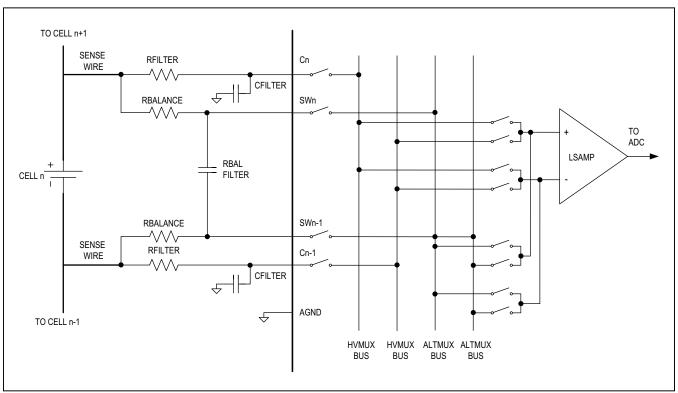


Figure 52. Redundant HVMUX Paths

Cell Undervoltage Diagnostic

Turning on the balancing switch can be used to generate a near-zero voltage at any input channel to the ALTMUX path. By successfully measuring this near-zero voltage, the diagnostic verifies the lower-end of the input range and the undervoltage alert function.

Input range can also be verified by using the cell-test sources to induce a lower cell-channel voltage. If the change is as expected, it shows that the system can measure voltages below the present nominal input voltage.

ALRTHVUV Comparator Diagnostic

The ALRTHVUV comparator functionality can be verified by setting the CPEN bit (to disable the HV charge pump) and then discharging the external HV capacitor by performing an acquisition for 5ms (such as 12 cells, 32 oversamples), or by enabling using one or more of the cell-test current sources for an appropriate amount of time. The ALRTHVUV bit should be set after the voltage has decayed.

HVMUX Sequencer Diagnostic

The HVMUX control sequence can be checked using the sources attached to the Cn pins. The sources are controlled by the CTSTEN bits of the CTSTCFG register. The basic test method is as follows:

- 1) Perform an acquisition
- 2) Turn on a cell-test source
- 3) Wait for sufficient settling time
- 4) Perform an acquisition
- 5) Check that the cell(s) sharing the pin whose current source was turned on had the expected measurement change and other cells had no changes.
- 6) Repeat steps 1–5 for other pins to confirm there are no logic errors in the HVMUX control sequencer.

The cell-test sources can be turned on for individual pins to create a detectable measurement variation that is determined by the current-source value and the series resistance of the cell input-filter circuit. The settling time needed for a certain change in measurement value depends on the size of the external filter capacitors and the amplitude of the test-current source. A longer settling time gives the full voltage change, while a shorter settling time saves test time and should still produce an easily detectable voltage difference. By detecting the expected measurement variation for a given cell input pair and running a sequence of tests to cover all cases, the HVMUX sequencer operation is verified.

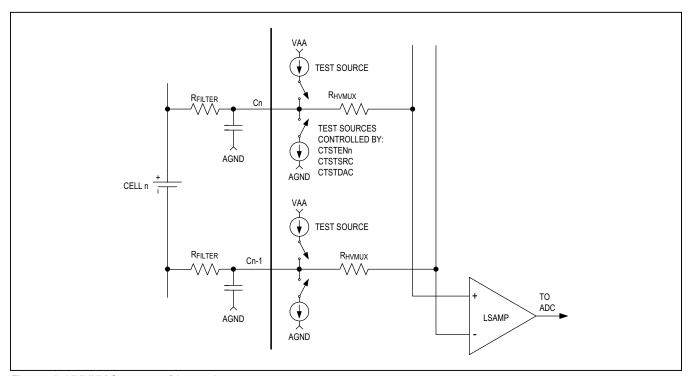


Figure 53. HVMUX Sequencer Diagnostic

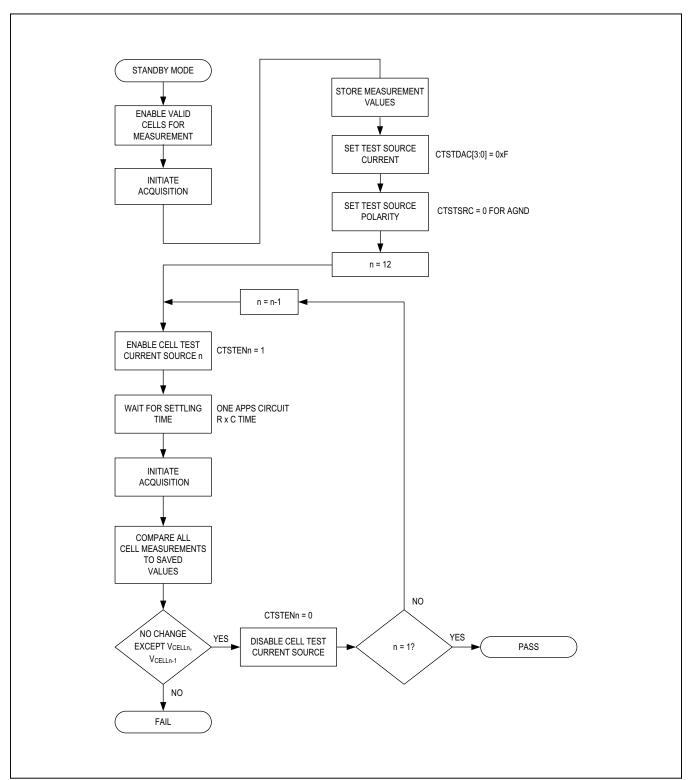


Figure 54. HVMUX Sequencer Diagnostic

ALU Diagnostic

The ALU diagnostic utilizes the ADC test mode (ADCTSTEN = 1) to feed data from specific test registers directly into the ALU instead of from the ADC conversion. The host can write different data combinations to the test registers in this mode to provide test coverage for all ALU and data registers (CELLn, VBLKP, DIAG, and AUXINn), as well as all alerts that are based on the measurement data and the corresponding thresholds (e.g., overvoltage alerts).

The ADCTEST1n registers are used for all odd-numbered samples in oversampling mode, as well as in single-sample acquisitions. The ADCTEST2n registers are used for all even-numbered samples (in oversampling mode). The A registers are used in lieu of the first conversion of each measurement and the B registers are used in lieu of the second conversion. After the acquisition, the host can read the measurement data registers and the alert registers and compare the data to expected values to verify the ALU functionality.

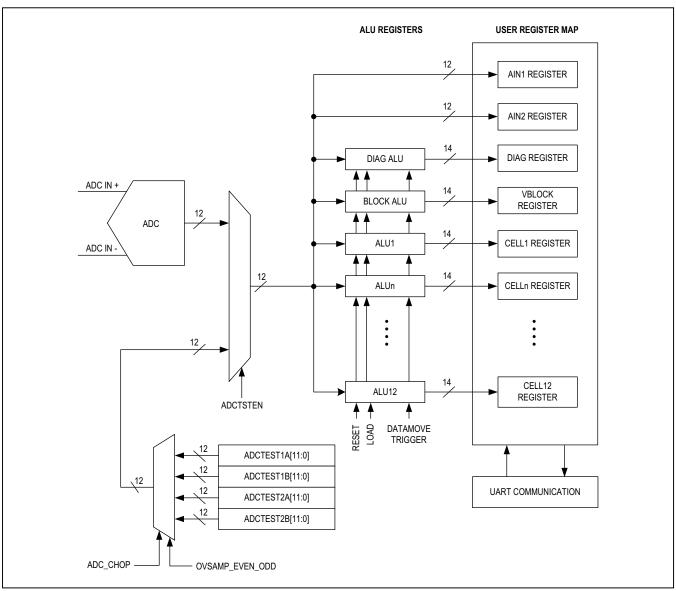


Figure 55. ALU Diagnostic

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

For MAX17843, Maxim design team added a digital offset trim to improve ADC accuracy. Because it is calculated after the ADCTST data insertion, it will show up as an offset to any ADCTST diagnostic. The offset value will be constant for a given part, but varies from part to part.

<u>Table 45</u> gives the mapping of expected read from the diagnostic and block register.

AUXINn Open Diagnostic

The AUXINn open diagnostic can be used to detect if the AUXINn pin is open circuit. The diagnostic procedure is shown in Figure 56 and Figure 57.

Table 45. Expected ALU Diagnostic and Block Register Results

ALU DIAGNOSTIC RESULT WHEN ADCTSTST = 1, DIAGSEL = 6							
OS SETTING OVERSAMPLING DIAGNOSTIC DATA ALU							
000	000 1 ADCTST1A x 4						
001–111	001–111 4–128 [ADCTST1A + ADCTST2A] x 2						

ALU DIAGNOSTIC RESULT WHEN ADCTSTST = 1, DIAGSEL = 4, 5						
OS SETTING OVERSAMPLING DIAGNOSTIC DATA ALU						
000	1	ADCTST1B x 4				
001–111	4–128	4–128 [ADCTST1B + ADCTST2B] x 2				

ALU DIAGNOSTIC RESULT WHEN ADCTSTST = 1, DIAGSEL = 1, 2, 3							
OS SETTING OVERSAMPLING DIAGNOSTIC DATA ALU							
000	000 1 [ADCTST1A + ADCTST1B] x 2						
001–111	001–111 4–128 [ADCTST1A + ADCTST1B ADCTST2A + ADCTST2B]						

ALU BLOCK RESULT WHEN ADCTSTST = 1						
OS SETTING OVERSAMPLING DIAGNOSTIC DATA ALU						
000	1	[ADCTST1A + ADCTST1B] x 2				
001–111 4–128 [ADCTST1A + ADCTST1B ADCTST2A + ADCTST2B]						

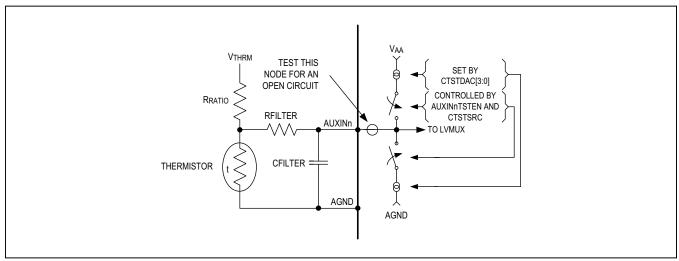


Figure 56. AUXINn Open Diagnostic

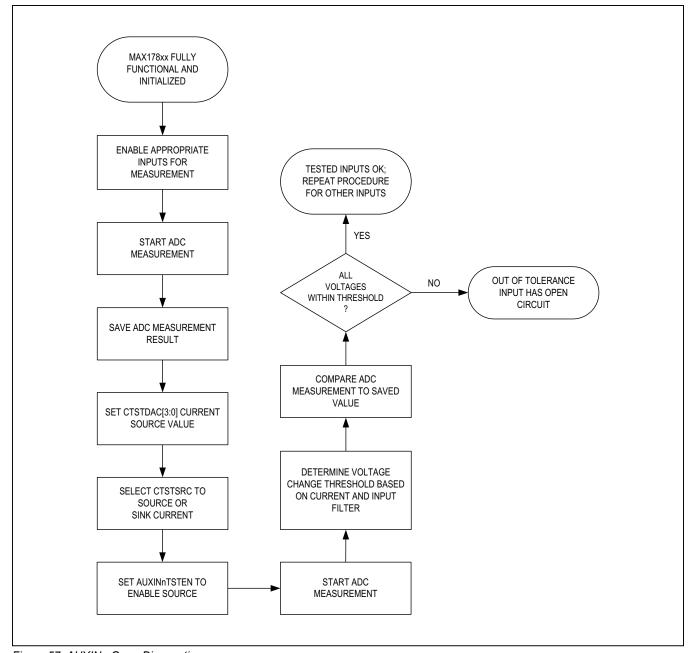


Figure 57. AUXINn Open Diagnostic

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

Calibration ROM Diagnostic

The CRC for the calibration ROM can be independently computed by the host. Any mismatch between the calculated CRC and the factory CRC indicates that the measurement accuracy may be compromised. The factory CRC, ROMCRC[7:0], is stored in the ID2 register.

The CRC for the calibration ROM uses the same polynomial as the CRC-8 PEC byte and is performed on addresses C0h to CAh, CFh, and D0 to D4h. ID2 is processed in the order shown in <u>Table 46</u>, least-significant bit first. Registers CAL11, CAL12, CAL13, and CAL14 are excluded from the calculation. Also, certain ROM bits must be zeroed prior to performing the calculation using the bit-wise AND masks in Table 46.

Table 46. CRC Bit Mask

ORDER	ADDRESS	NAME	BIT-WISE AND MASK
1	0xC0	CAL0	0x003F
2	0xC1	CAL1	0x007F
3	0xC2	CAL2	0x001F
4	0xC3	CAL3	0x0FFF
5	0xC4	CAL4	0xFFFF
6	0xC5	CAL5	0x3F00
7	0xC7	CAL7	0x3F3F
8	0xC8	CAL8	0x003F
9	0xC9	CAL9	0x3FFF
10	0xCA	CAL10	0x000F
11	0xCF	CAL15	0x007F
12	0xD0	CAL16	0x3FFF
13	0xD1	CAL17	0x00FF
14	0xD2	CAL18	0x3F00
15	0xD3	CAL19	0x3F3F
16	0xD4	CAL20	0x003F
17	0x0E	ID2	0x0001

Applications Information

Vehicle Applications

Battery cells can use various chemistries such as NiMH, Li-ion, SuperCap, or Lead-Acid. SuperCap cells are used in fast-charge applications such as energy storage for regenerative braking. An electric vehicle system may require a high-voltage battery pack containing up to 200 Li-ion cells, or up to 500 NiMH cells.

A battery module is a number of cells connected in series that can be connected with other modules to build a high-voltage battery pack (see Figure 58). The modularity allows for economy, configurability, quick assembly, and serviceability. The minimum number of cells connected to any one device is limited by the device's minimum operating voltage. The 9V minimum for V_{DCIN} usually requires at least two Li-ion, six NiMH or six SuperCap cells per module.

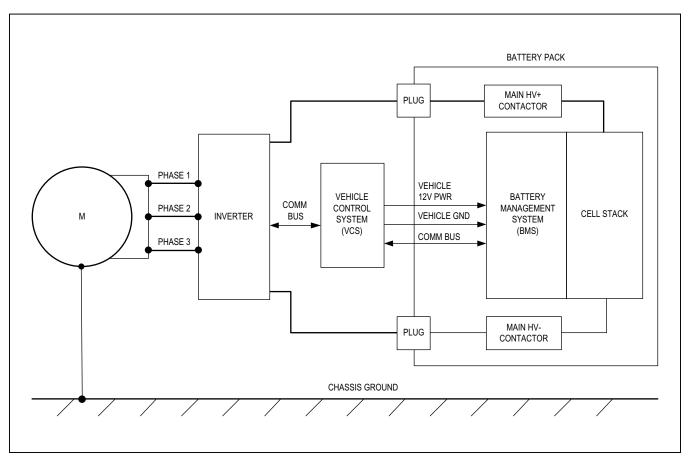


Figure 58. Electric Vehicle System

Battery-Management Systems

Daisy-Chain System

A daisy-chain system (Figure 59) employs a single data link between the host and all the battery modules. The daisy-chain method reduces cost and requires only a single isolator between the lowest module and the host.

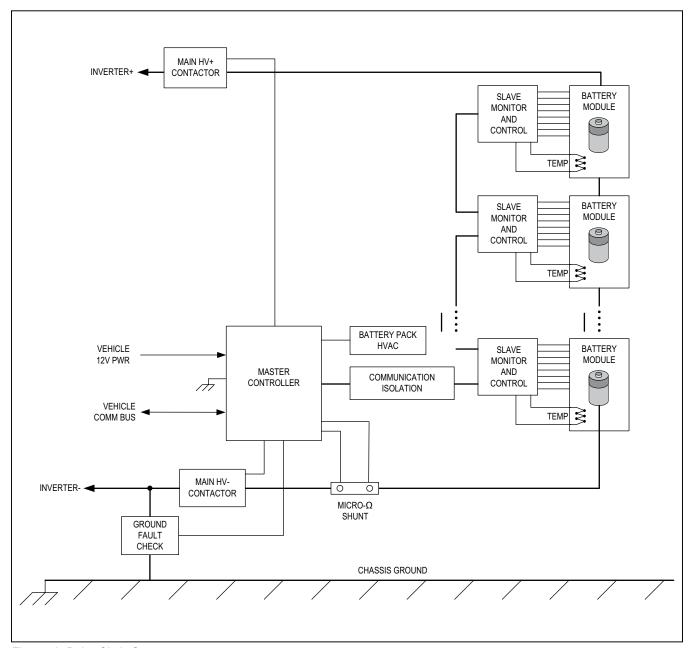


Figure 59. Daisy-Chain System

Distributed-Module Communication

A distributed-module system employs a separate data link and isolator between each battery module and the host, with an associated increase in cost. Maxim battery-management ICs support the daisy-chain system (see Figure 60).

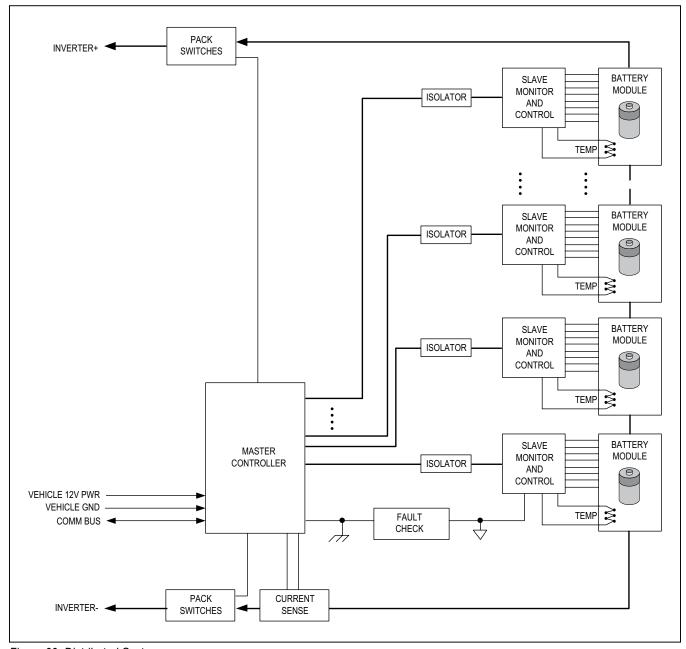


Figure 60. Distributed System

External Cell Balancing Using BJT Switches

An application circuit for cell balancing that employs BJT switches is shown in Figure 61. QBALANCE is selected for power dissipation based on the I_B drive current available and the cell-balancing current. DBASE protects QBALANCE from negative VGS during hot-plug events. RBASE protects the device by limiting the hot-pluginrush current. The cell-balancing current is limited by RBALANCE. See Table 47 for BJT balancing components.

External Cell-Balancing Short-Circuit Detection

A short-circuit fault in the external balancing path results in continuous current flow through $R_{BALANCE}$ and $Q_{BALANCE}$. To detect this fault, the voltage drop across the sense-wire parasitic resistance must be measurable. A very small series resistor can added for this purpose.

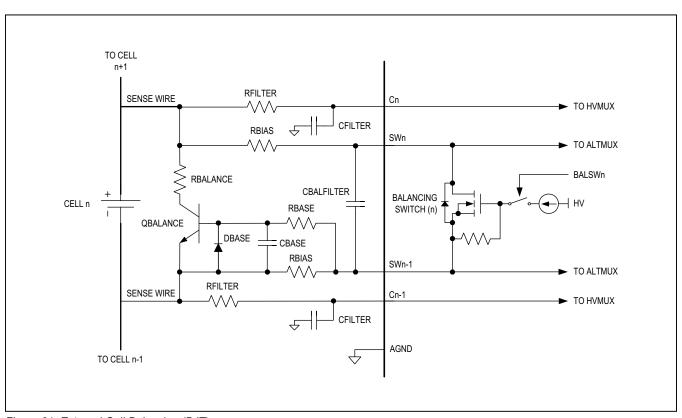


Figure 61. External Cell Balancing (BJT)

Table 47. BJT Balancing Components

COMPONENT NAME	TYPICAL VALUE OR PART	FUNCTION
R _{BIAS}	22Ω	Voltage-divider for transistor bias
R _{BASE}	15Ω	Hot-plug current-limiting resistor
D _{BASE}	S1B	Reverse emitter-base voltage protection
C _{BASE}	1nF	Transient V _{BE} suppression
R _{BALANCE}	Per balancing-current requirements	Balancing current-limiting resistor
Q _{BALANCE}	NST489AMT1	External switch

UART Interface

The UART pins also employ both internal and external circuits to protect against noise. The recommended external filters are shown in <u>Figure 62</u>. ESD protection is shown in Figure 64 and Figure 65.

High-Z Idle Mode

The high-Z idle mode lowers radiated emissions from wire harnesses by minimizing the charging and discharging of the AC-coupling capacitors when entering and exiting the idle mode. The application circuit shown in Figure 63 uses a weak resistor-divider to bias the TX lines to V_{DDL} during the high-Z idle period and pnp transistor clamps to limit the maximum voltage at the TX pins during high noise injection. The resistor-divider and pnp clamps are not needed for applications utilizing only the low-Z mode. The low-Z and high-Z idle modes both exhibit a similar immunity to noise injection. Low-Z mode may be preferred for ports driving inductive loads to minimize ringing.

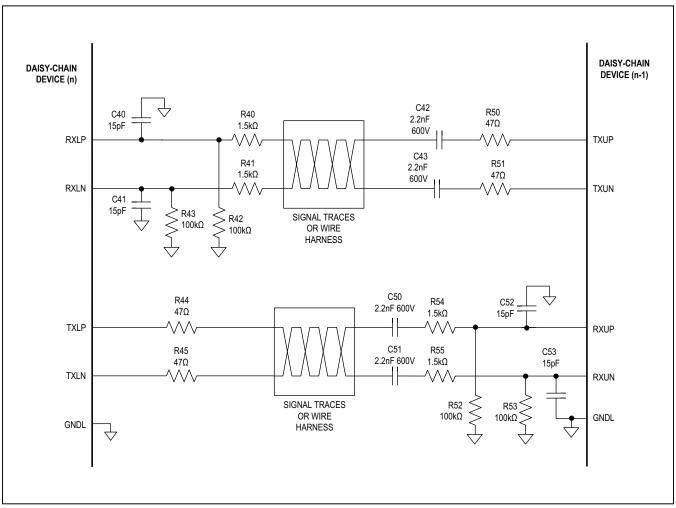


Figure 62. UART Connection

UART Supplemental ESD Protection

The UART ports may require supplemental protection to meet IEC 61000-4-2 requirements for contact discharge.

The recommended circuits to meet ±8kV protection levels are shown in <u>Figure 64</u> and <u>Figure 65</u>. The protection components should be placed as near as possible to the signal's entry point on the PCB.

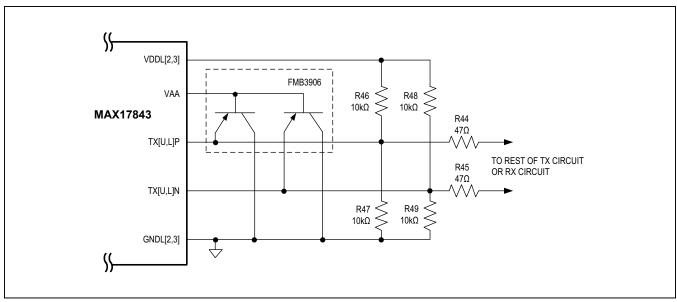


Figure 63. High-Z Idle Mode Application Circuit

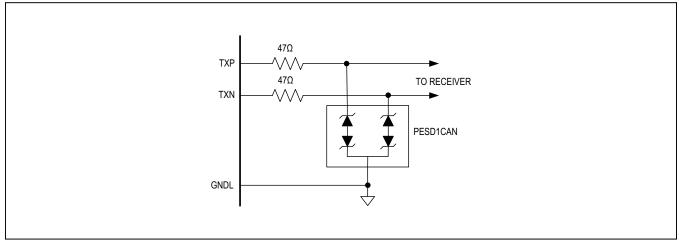


Figure 64. External ESD Protection for UART TX Ports

UART Supplemental ESD Protection

The UART ports may require supplemental protection to meet IEC 61000-4-2 requirements for contact discharge. The recommended circuits to meet ±8kV protection levels are shown in Figures 64 and 65. The protection components should be placed as near as possible to the signal's entry point on the PCB.

Single-Ended RX Mode

To configure the lower port for single-ended RX mode, the RXLP input is connected to digital ground and the RXLN input receives the inverted signal, just as it does for differential mode. If the host cannot transmit inverted data then the signal must be inverted as shown in Figure 66.

Transmitter operation is not affected. If the upstack device is single-ended, so only the TXUN signal is required. **Note:** in single-ended mode, SHDNL must be driven externally; leave TXLP unconnected.

UART Isolation

The UART is expected to communicate reliably in noisy high-power battery environments, where both high dV/dt supply noise and common-mode current injection induced by electromagnetic fields are prevalent. Common-mode currents can also be induced by parasitic coupling of the system to a reference node such as a battery or vehicle chassis. The daisy-chain physical layer is designed for maximum noise immunity.

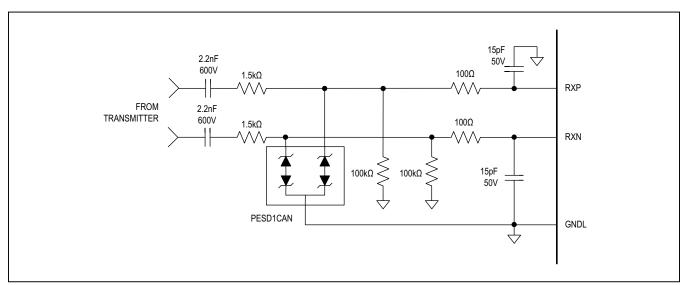


Figure 65. External ESD Protection for UART RX Ports

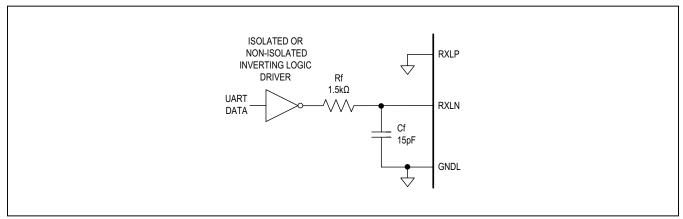


Figure 66. Application Circuit for Single-Ended Mode

The AC-coupled differential communication architecture has a ±30V common-mode range and +6V differential swing. This range is in addition to the static commonmode voltage across the AC-coupling capacitors between modules. Transmitter drivers have low internal impedance and are source-terminated by the application circuit so that impedances are well-matched in the high- and lowdriver states. This architecture minimizes differential noise induced by common-mode current injection. The receiver inputs are filtered above the fundamental communication frequency to prevent high-frequency noise from entering the device. The system is designed for use with isolation transformers or optocouplers to provide an even higher degree of common-mode noise rejection in circuit locations where extremely large common-mode noise is present, such as between vehicle chassis and high-voltage batterypack terminals.

Since a mid-pack service-disconnect safety switch is present in many battery packs, the device is designed to communicate with the entire daisy-chain, regardless of whether the service-disconnect switch is engaged or open. This is possible with daisy-chains that employ capacitor isolation.

UART Transformer Isolation

The UART ports can be transformer-coupled because of their DC-balanced differential design (see Figure 67). Transformer coupling between the MAX17841B interface and the MAX17843 provides excellent isolation and common-mode noise rejection. The center tap of a signal transformer can be used to enhance common-mode rejection by AC-coupling the node to local ground. Common-mode currents that are able to pass through the parasitic coupling of the primary and secondary are shunted to ground to make a very effective common-mode noise filter.

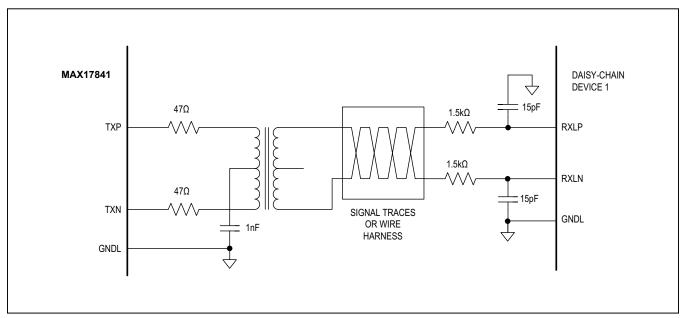


Figure 67. UART Transformer Isolation

UART Optical Isolation

The daisy-chain may use optical isolation instead of transformer or capacitor isolation (see Figure 68).

Device Initialization Sequence

Immediately after reset, all device addresses are set to 0x00 and the UART baud rate and receive modes have not been autodetected; therefore, the following initialization sequence is recommended after every reset or after any change to the hardware configuration for differential mode:

After the daisy-chain is initialized, each device should be configured for operation as follows:

Perform a READALL of the status registers:

The ALRTRST bit should be set in all devices to signify a reset occurred.

Check for other unexpected alerts.

- Clear the ALRTRST bit on each device so that future unintended resets can be detected.
- 3) Change configuration registers as necessary with WRITEALL commands:

Configure the alert enables and alert thresholds required by the application.

Configure the acquisition mode.

- 4) Perform all necessary key-on diagnostics.
- 5) Start the acquisition cycle.
- 6) Continuously monitor diagnostic and alert status bits.
- Periodically perform additional diagnostics, as required by the application.

Error Checking

Data integrity is provided by Manchester encoding, parity, character framing, and packet-error checking (PEC). The combination of these features verify stage-to-stage communication both in the write and read directions, with a hamming distance (HD) value of 6 for commands with a length up to 247 bits (counted prior to Manchesterencoding and character framing. This is equivalent to the longest possible command packet for a daisy-chain of up to 13 devices. The data-check byte is present in the READALL and READDEVICE commands to verify that the entire command propagated without errors. Using the data-check and PEC bytes, complete transaction integrity for READALL and READDEVICE command packets can be verified.

PEC Errors

If the device receiver receives an invalid PEC byte, the ALRTPEC bit is set in the STATUS register. A device does not execute any write command unless the received PEC matches the calculated PEC so to verify the write command execution, the host should perform a READALL to verify the contents of the written register.

For returned read packets, the host should store the received data, perform the PEC calculation, and compare the results to the received PEC byte before considering the data to be valid. To support PEC, the host must implement an 8-bit cyclic redundancy check (CRC-8) encoding and decoding algorithm based on the following polynomial:

$$P(x) = x^8 + x^6 + x^3 + x^2 + 1$$

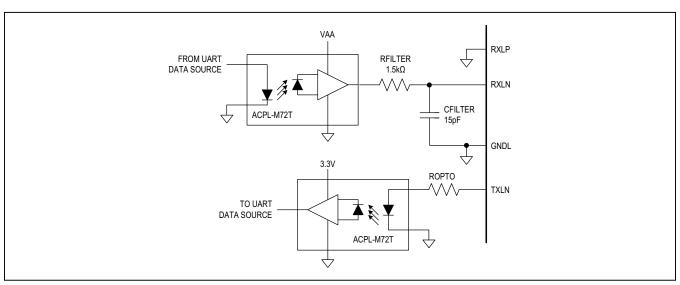


Figure 68. UART Optical Isolation

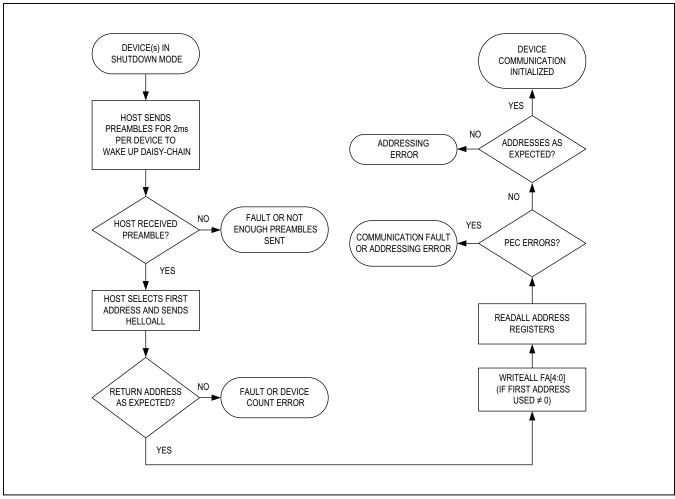


Figure 69. Device Initialization Sequence in Differential Mode

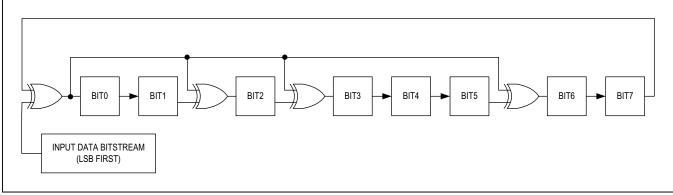


Figure 70. CRC Calculation

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

The host uses the algorithm to process all bytes received in the command packet prior to the PEC byte itself. Neither the PEC nor the alive-counter bytes are part of the calculation. The bits are processed in the order they are received, LSB first. A byte-wise pseudo-code algorithm is shown in Figure 71, but lookup table solutions are also possible to reduce host calculation time.

For commonly issued command packets, the host can pre-calculate (hard-code) the PEC byte. For commonly used partial packets, the CRC value of a partial calculation can be used as the initial value for a subsequent run-time calculation.

```
Function PEC_Calculation(ByteList(), NumberOfBytes, CRCByte)
  // CRCByte is initialized to 0 for each ByteList in this implementation, where
  // ByteList contains all bytes of a single command. It is passed into the
  // function in case a partial ByteList calculation is needed.
  // Data is transmitted and calculated in LSb first format
  // Polynomial = x^8+x^6+x^3+x^2+1
  POLY = &HB2 // 10110010b for LSb first
  //Loop once for each byte in the ByteList
  For ByteCounter = 0 to (NumberOfBytes -1)
    //Bitwise XOR the current CRC value with the ByteList byte
    CRCByte = CRCByte XOR ByteList(Counter1)
    //Process each of the 8 CRCByte remainder bits
    For BitCounter = 1 To 8
       // The LSb should be shifted toward the highest order polynomial
       // coefficient. This is a right shift for data stored LSb to the right
       // and POLY having high order coefficients stored to the right.
       // Determine if LSb = 1 prior to right shift
       If (CRCByte AND &H01) = 1 Then
         // When LSb = 1, right shift and XOR CRCByte value with 8 LSbs
         // of the polynomial coefficient constant. "/ 2" must be a true right
          // shift in the target CPU to avoid rounding problems.
          CRCByte = ((CRCByte / 2) XOR POLY)
          //When LSb = 0, right shift by 1 bit. "/ 2" must be a true right
          // shift in the target CPU to avoid rounding problems.
          CRCByte = (CRCByte / 2)
       End If
       //Truncate the CRC value to 8 bits if necessary
       CRCByte = CRCByte AND &HFF
       //Proceed to the next bit
       Next BitCounter
    //Operate on the next data byte in the ByteList
    Next ByteCounter
  // All calculations done; CRCByte value is the CRC byte for ByteList() and
  // the initial CRCByte value
  Return CRCByte
```

Figure 71. PEC Calculation Pseudocode

Register Map

ADDRESS	POR	NAME	DESCRIPTION
0x00	xxxxh	VERSION	Device model and version
0x01	0000h	ADDRESS	Device addresses
0x02	8000h	STATUS	Status flags
0x03	0000h	FMEA1	Failure mode flags 1
0x04	0000h	ALRTCELL	Voltage-fault alert flags
0x05	0000h	ALRTOVCELL	Overvoltage alert flags
0x07	0000h	ALRTUVCELL	Undervoltage alert flags
80x0	0000h	ALRTBALSW	Balancing switch alert flags
0x0A	0F0Fh	MINMAXCELL	Cell number for the highest and lowest voltages measured
0x0B	0000h	FMEA2	Failure mode flags 2
0x0C	0000h	ADR	AUTOBALSWDIS Delay Register
0x0D	XXXXh	ID1	Device ID 1
0x0E	XXXXh	ID2	Device ID 2
0x10	1002h	DEVCFG1	Device configuration 1
0x11	0000h	GPIO	GPIO status and configuration
0x12	0000h	MEASUREEN	Measurement enables
0x13	0000h	SCANCTRL	Acquisition control and status
0x14	0000h	ALRTOVEN	Overvoltage alert enables
0x15	0000h	ALRTUVEN	Undervoltage alert enables
0x18	0000h	TIMERCFG	Timer configuration
0x19	0000h	ACQCFG	Acquisition configuration
0x1A	0000h	BALSWEN	Balancing switch enables
0x1B	0000h	DEVCFG2	Device configuration 2
0x1C	0000h	BALDIAGCFG	Balancing diagnostic configuration
0x1D	0000h	BALSWDCHG	Balancing switch discharge configuration
0x1E	000Ch	TOPCELL	Top cell configuration
0x20	0000h	CELL1	Cell 1 measurement result
0x21	0000h	CELL2	Cell 2 measurement result
0x22	0000h	CELL3	Cell 3 measurement result
0x23	0000h	CELL4	Cell 4 measurement result
0x24	0000h	CELL5	Cell 5 measurement result
0x25	0000h	CELL6	Cell 6 measurement result
0x26	0000h	CELL7	Cell 7 measurement result
0x27	0000h	CELL8	Cell 8 measurement result
0x28	0000h	CELL9	Cell 9 measurement result
0x29	0000h	CELL10	Cell 10 measurement result
0x2A	0000h	CELL11	Cell 11 measurement result
0x2B	0000h	CELL12	Cell 12 measurement result
0x2C	0000h	BLOCK	Block measurement result

Register Map (continued)

ADDRESS	POR	NAME	DESCRIPTION
0x2D	0000h		AUXIN1 measurement result
0x2E	0000h	AIN2	AUXIN2 measurement result
0x2F	0000h	TOTAL	Sum of all cell measurements
0x40	FFFCh	OVTHCLR	Cell overvoltage clear threshold
0x42	FFFCh	OVTHSET	Cell overvoltage set threshold
0x44	0000h	UVTHCLR	Cell undervoltage clear threshold
0x46	0000h	UVTHSET	Cell undervoltage set threshold
0x48	FFFCh	мѕмтсн	Cell mismatch threshold
0x49	0000h	AINOT	AUXIN overtemperature threshold
0x4A	FFF0h	AINUT	AUXIN undertemperature threshold
0x4B	0000h	BALSHRTTHR	Balancing switch diagnostic, short-circuit threshold
0x4C	0000h	BALLOWTHR	Balancing switch diagnostic, on-state low threshold
0x4D	0000h	BALHIGHTHR	Balancing switch diagnostic, on-state high threshold
0x50	0000h	DIAG	Diagnostic measurement result
0x51	0000h	DIAGCFG	Diagnostic configuration
0x52	0000h	CTSTCFG	Test source configuration
0x57	0000h	ADCTEST1A	User-specified data for ALU diagnostic
0x58	0000h	ADCTEST1B	User-specified data for ALU diagnostic
0x59	0000h	ADCTEST2A	User-specified data for ALU diagnostic
0x5A	0000h	ADCTEST2B	User-specified data for ALU diagnostic

VERSION Register (address 0x00)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10	0426	MOD[44:0]	Madal number Alugua reada 042h
D9	843h	MOD[11:0]	Model number. Always reads 843h.
D8			
D7			
D6			
D5			
D4			
D3			
D2	1h	VER[3:0]	Die version as below:
D1	'''	VER[3.0]	MAX17843 = 1h
D0			

ADDRESS Register (address 0x01)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	Reserved	Always reads logic-zero.
D13			
D12			
D11			Address of the device connected to the host (first address). If the host uses a first address other than 0x00 in the HELLOALL command, then the host must write that first address
D10	0 FA[4:0] to all device	to all devices in the daisy-chain with a WRITEALL command. READALL commands	
D9			require that FA[4:0] and DA[4:0] be correct in order for the data-check and PEC features to function as intended.
D8			Tallodon do intoridod.
D7			
D6	0	Reserved	Always reads logic-zero.
D5			
D4			
D3			Device address written by the HELLOALL command as it propagates up the daisy-chain and is automatically incremented for each device. The host must choose a first address
D2	0	0 DA[4:0]	so that the last device address does not exceed the maximum address of 0x1F during the
D1			HELLOALL command. Writing has no effect except with a HELLOALL command while ADDRUNLOCK = 1.
D0			, as to the second of the seco

STATUS Register (address 0x02)

BIT	POR	NAME	DESCRIPTION
D15	1	ALRTRST	Indicates a power-on reset (POR) event occurred. Clear after power-on and after a successful HELLOALL to detect future resets. Writing to a logic-one has no effect.
D14	0	ALRTOV	Bit-wise logical OR of ALRTOVCELL[15:0]. Read-only.
D13	0	ALRTUV	Bit-wise logical OR of ALRTUVCELL[15:0]. Read-only.
D12	0	ALRTSHDNL	Indicates $V_{SHDNL} < V_{IL}$. Read during shutdown diagnostic when $V_{AA} > V_{PORFALL}$. Cleared by writing to logic-zero or POR. Writing to a logic-one has no effect.
D11	0	ALRTSHDNLRT	Indicates V_{SHDNL} < V_{IL} . Read during shutdown diagnostic when V_{AA} > $V_{PORFALL}$. Read-only.
D10	0	ALRTMSMTCH	Indicates V _{MAX} - V _{MIN} > V _{MSMTCH} . Cleared at next acquisition if the condition is false. Read-only.
D9	0	ALRTTCOLD	Logical OR of ALRTOVAIN0 and ALRTOVAIN1. Read-only.
D8	0	ALRTTHOT	Logical OR of ALRTUVAIN0 and ALRTUVAIN1. Read-only.
D7	0	ALRTPEC	Indicates a received character contained a PEC error. Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D6 D5	0	Reserved	Always reads logic-zero.
D4	0	ALRTMAN	Indicates that a character received by the lower UART contained a Manchester error. Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D3	0	0	Write ignored, Read back '0'.
D2	0	ALRTPAR	Indicates that a character received by the lower UART contained a parity error. Cleared only by writing to logic-zero. Writing to logic-one has no effect.
D1	0	ALRTFMEA2	Bit-wise logical OR of FMEA2 [15:0]. Read-only.
D0	0	ALRTFMEA1	Bit-wise logical OR of FMEA1 [15:0]. Read-only.

FMEA1 Register (address 0x03)

BIT	POR	NAME	DESCRIPTION
D15	0	ALRTOSC1	Indicates that the 32kHz oscillator frequency is not within ±5% of its expected value. The status is updated every two cycles (32kHz). Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D14	0	ALRTOSC2	Same as ALRTOSC1 (redundant alert). Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D13	0	0	Always reads logic-zero.
D12	0	ALRTCOMMSEU1	Indicates that the UART has placed the upper-port receiver in single-ended mode based on the first preamble received after POR. This bit is not set until the ALRTRST bit is cleared. Read-only.
D11	0	ALRTCOMMSEL1	Indicates that the UART has placed the lower-port receiver in single-ended mode based on the first preamble received after POR. This bit is not set until the ALRTRST bit is cleared. Read-only.
D10	0	ALRTCOMMSEU2	Same as ALRTCOMMSEU1 (redundant alert) except that it sets before ALRTRST is cleared. Read-only.
D9	0	ALRTCOMMSEL2	Same as ALRTCOMMSEL2 (redundant alert) except that it sets before ALRTRST is cleared. Read-only.
D8	0	ALRTVDDL3	Indicates V _{DDL3} < V _{VDDL OC} . This bit is not set until the ALRTRST bit is cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D7	0	ALRTVDDL2	Indicates V _{DDL2} < V _{VDDL OC} . This bit is not set until the ALRTRST bit is cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D6	0	ALRTGNDL2	Indicates an open circuit on the GNDL2 pin. This bit is not set until the ALRTRST bit is cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D5	0	ALRTBALSW	Bit-wise logical OR of ALRTBALSW[15:0]. Cleared automatically if the fault is cleared, or by writing it to logic-zero.
D4	0	ALRTTEMP	Indicates that $T_{DIE} > 115^{\circ}C$ (120°C typ) or that the diagnostic measurement did not have sufficient settling time (< 50µs) and therefore may not be accurate. Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D3	0	ALRTHVUV	Indicates $V_{HV} < V_{HVUV}$. This bit is not set until the ALRTRST bit is cleared, and cleared only by writing to logic-zero. Writing to logic-one has no effect.
D2	0	ALRTGNDL3	Indicates an open circuit on the GNDL3 pin. This bit is not set until the ALRTRST bit is cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D1	0	ALRTVDDL1	Indicates V _{DDL1} < V _{VDDL OC} . This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D0	0	ALRTGNDL1	Indicates an open circuit on the GNDL1 pin. This bit is not set until the ALRTRST bit is cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.

ALRTCELL Register (address 0x04)

BIT	POR	NAME	DESCRIPTION		
D15	0	D	Alvenia reada laria zara		
D14		Reserved	Always reads logic-zero.		
D13	0	ALRTAIN1	Logical OR of ALRTOVAIN1 and ALRTUVAIN1. Read-only.		
D12	0	ALRTAIN0	Logical OR of ALRTOVAIN0 and ALRTUVAIN0. Read-only.		
D11					
D10					
D9					
D8					
D7					
D6	0	ALRTCELL[12:1]	ALDTCELL[n] is the legical OB of ALDOVCELL[n] and ALDTLIVCELL[n]. Dood Only		
D5		ALKTOELL[12.1]	ALRTCELL[n] is the logical OR of ALROVCELL[n] and ALRTUVCELL[n]. Read-Only.		
D4					
D3					
D2					
D1					
D0					

ALRTOVCELL Register (address 0x05)

BIT	POR	NAME	DESCRIPTION
D15	0	Reserved	Always reads logic-zero.
D14	U	Reserved	Always reads logic-zero.
D13	0	ALRTOVAIN1	Indicates V _{AIN1} > AINUT (cold). Cleared at next acquisition if the condition is false. Read-only.
D12	0	ALRTOVAIN0	Indicates V _{AIN0} > AINUT (cold). Cleared at next acquisition if the condition is false. Read-only.
D11			
D10			
D9			
D8			
D7			
D6	0	ALRTOV[12:1]	ALRTOV[n] indicates V _{CELLn} > V _{OV} (OVTHRSET threshold) if ALRTOVEN[n] = 1 . Cleared
D5	U	ALITIOV[12.1]	at next acquisition if the condition is false. Read-only.
D4			
D3			
D2			
D1			
D0			

ALRTUVCELL Register (address 0x07)

BIT	POR	NAME	DESCRIPTION
D15	0	Reserved	Alwaya raada lagia zara
D14	U	Reserved	Always reads logic-zero.
D13	0	ALRTUVAIN1	Indicates V _{AIN1} < AINOT (hot). Cleared at next acquisition if the condition is false. Read-only.
D12	0	ALRTUVAIN0	Indicates V _{AINO} < AINOT (hot). Cleared at next acquisition if the condition is false. Read-only.
D11			
D10			
D9			
D8			
D7			
D6	0	ALRTUV[12:1]	ALRTUV[n] indicates V _{CELLn} < V _{UV} (UVTHRSET threshold) if ALRTUVEN[n] = 1 . Cleared
D5	U	ALKTOV[12.1]	at next acquisition if the condition is false. Read-only.
D4			
D3			
D2			
D1			
D0			

ALRTBALSW Register (address 0x08)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	Reserved	Alwaya raada lagia zara
D13		Reserved	Always reads logic-zero.
D12			
D11			
D10			
D9			
D8			
D7			
D6	0	ALRTBALSW[11:0]	ALRTBALSW[n] indicates the corresponding measurement result exceeds the threshold specified by BALSWDIAG[2:0]. Cleared at next acquisition if the condition is false.
D5		ALITIDALOW[11.0]	Read-only.
D4			
D3			
D2			
D1			
D0			

MINMAXCELL Register (address 0x0A)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	Reserved	Alwaya raada lagia zara
D13		Reserved	Always reads logic-zero.
D12			
D11			
D10	Fh	MAYCELL (2:01	Cell number of the maximum cell voltage currently in the measurement registers. If
D9] ["	MAXCELL[3:0]	multiple cells have the same maximum value, this field contains the highest cell number with that measurement. Read-only.
D8			
D7			
D6	0	Reserved	Alwaya raada lagia zara
D5		Reserved	Always reads logic-zero.
D4			
D3			
D2	Fh	MINIOTILITO	Cell number of the minimum cell voltage currently in the measurement registers. If multiple
D1		MINCELL[3:0]	cells have the same minimum value, this field contains the highest cell number with that measurement. Read-only.
D0			

FMEA2 Register (address 0x0B)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9	0	Reserved	Always reads logic-zero.
D8			
D7			
D6			
D5			
D4			
D3			
D2	0	ALRTHVHDRM	Indicates that V _{HV} - V _{C12} was too low during the acquisition for an accurate measurement. Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D1	0	Reserved	Always reads logic-zero.
D0	0	ALRTHVOV	Indicates that V _{HV} > V _{HVOV} . This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect.

AUTOBALSWDIS Delay Register (address 0x0C)

BIT	POR	NAME	DESCRIPTION	
D15			Time delay for cell recovery after diagnostic configuration. Default time is 96µs, with maximum time of 24.576ms.	
D14			DIAGNOSTIC RECOVERY TIME[7:0]	DELAY TIME IN μs
D13			00000000	96
D12	0	Diagnostic Recovery Time[7:0]	0000001	192
D11			00000010	288
D10			00000011	384
			00000100	480
D9				
			11111110	24480
D8			1111111	24576
D7			Time delay for cell recovery from cell-balanci maximum time of 24.576ms.	ing voltage drop. Default time is 100μs, with
D6			CELL RECOVERY TIME[7:0]	DELAY TIME IN μs
D5	0	Cell Recovery Time[7:0]	00000000	96
D4			0000001	192
D3			00000010	288
D2			00000011	384
D1			00000100	480
D0			11111110	24480
			1111111	24576

ID1 Register (address 0x0D)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	vaaade.	DEV/ID[45.0]	The two least-significant bytes of the 24-bit factory-programmed device ID. A valid device
D7	xxxxh	DEVID[15:0]	ID has two or more bits set to logic-one. Read-only.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

ID2 Register (address 0x0E)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12	- xxh	ROMCRC[7:0]	8-bit CRC value computed from the on-board read-only memory. Read-only.
D11			
D10			
D9			
D8			
D7			
D6			
D5	xxh	DEVID[23:16]	Most-significant byte of the 24-bit factory-programmed device ID. ID1[0] always reads logic-one. A valid device ID has two or more bits set to logic-one. Read-only.
D4			
D3			
D2			
D1			
D0			

DEVCFG1 Register (address 0x10)

		NAME	DESCRIPTION	
D15	0	POLARITY	Enables bipolar mode for ADC (input range is -2.5V to 2.5V). Default is unipolar mode (input range is 0V to 5V). The ADC logic latches the value of this bit at the start of the measurement cycle. The DIAG measurement timeslot is controlled by the internal logic. Changing the value of this bit takes effect at the next measurement cycle start.	
		ADCSELECT	Configures which ADC is selected for measurements. Default is the ADC1 which is the primary ADC. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next measurement cycle start.	
D14	0		ADCSELECT	SELECTED ADC
			0	1 (Primary)
			1	2 (Secondary)
D13	a weight of 3/8. Setting these bits to 111		IIR filter coefficient bits. User-selectable filter of a weight of 3/8. Setting these bits to 111 would transferred from ALU to CELLn registers as is	d turn the filter off. The ADC scan data is then
			FILTER COEFFICIENT[2:0]	WEIGHT OF THE COEFFICIENT
			000	1/8
D12		FC[2:0]	001	2/8
	010		010	3/8, Default value
			011	1/2
			100	5/8
D11			101	.6/8
			110	7/8
			111	1, Filter Off
D10	0	EMGCYDCHG	Set to enable emergency cell-discharge mode (configured by BALSWDCHG).	
D9	0	HVCPDIS	Disables the HV charge pump. Used for ALRTHVUV diagnostic. If the HV charge pump is disabled in normal operation, measurement errors will result due to V _{HV} undervoltage.	
D8	0	Reserved	Reserved for future use.	
D7	0	FORCEPOR	Enables hard POR by pulling down SHDNL internally. If cleared before the POR occurs, it disables the active pulldown on SHDNL.	
D6	0	ALIVECNTEN	Enables inclusion of alive-counter byte at end of all write and read packets.	
D5	0	ADCTSTEN	Enables the ALU test mode. This mode feeds 12-bit data from the ADCTEST registers directly into the ALU, instead of from the ADC conversion.	
D4	0	SCANTODIS	Disables the acquisition watchdog but does not clear the SCANTIMEOUT flag in the SCANCTRL register if it is set.	
D3	0	BALSWDISABLE	Disables all the balancing switches conducting between SWn and Swn-1. This allows disabling all the balancing switches without actually clearing the BALSWEN register.	
D2	0	NOPEC	Disables packet-error checking (PEC).	
D1	1	ADDRUNLOCK	Disables write-protection of device address DA[4:0]. Cleared only by HELLOALL command (write protected).	
D0	0	SPOR	Enables soft POR. Writing to a logic-zero has no effect. Always reads logic-zero.	

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

GPIO Register (address 0x11)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	DIDIS:01	Setting DIRn enables GPIOn as an output. Default state is high-impedance input.
D13	U	DIR[3:0]	Setting DINIT enables GP1011 as an output. Delauit state is high-impedance input.
D12			
D11			
D10	0	RD[3:0]	Indicates the current logic state of each GPIOn pin input buffer. The logic state is sampled at the end of the parity bit of the register address byte during a read of this register. Read-
D9		KD[3.0]	only.
D8			
D7	0	GPIO3TMR	Enables the GPIO3 timer mode. This mode overrides DIR3 and DRV3 and drives GPIO3 to logic-one when the timer is counting, and drives to logic-zero when the timer times out. Emergency cell-discharge mode (EMGCYDCHG = 1) automatically enables the GPIO3 timer mode.
D6			
D5	0	Reserved	Always reads logic-zero.
D4			
D3			
D2	0	DRV[3:0]	Setting DRVn sets GPIOn to logic-one if DIRn is set.
D1		DI (V[0.0]	Solaring Diversions of Form to logic-one in Direct to Solar
D0			

MEASUREEN Register (address 0x12)

BIT	POR	NAME	DESCRIPTION
D15	0	BLKCONNECT	Connects the voltage-divider to the V _{BLKP} pin. Must be enabled prior to the VBLOCK measurement. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next measurement cycle start.
D14	0	BLOCKEN	Enables measurement of the V _{BLKP} input in the acquisition mode. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next measurement cycle start.
D13	0	AIN2EN	Enables measurement of the AUXIN2 input in the acquisition mode. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next measurement cycle start.
D12	0	AIN1EN	Enables measurement of the AUXIN1 input in the acquisition mode. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next measurement cycle start.
D11			
D10			
D9			
D8			
D7			Enables measurement of the respective cell in the acquisition mode. Disabled channels
D6	0	CELLEN[12:1]	result in a measurement value of 0000h. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next
D5			measurement cycle start.
D4 D3			
D3			
D2			
D0			
טט			

SCANCTRL Register (address 0x13)

BIT	POR	NAME	DESCR	RIPTION		
D15	0	SCANDONE	Indicates the acquisition has completed. Clea completion of the next acquisition. Writing to I commence if this bit is set.	red only by writing it to logic-zero to detect ogic 1 has no effect. A new acquisition will not		
D14	0	SCANTIMEOUT	Indicates the acquisition did not complete in the expected period of time. The timeout depends on the oversampling configuration. Cleared only by writing it to logic-zero to allow detection of future timeout events. The watchdog can be disabled by setting SCANTODIS in the DEVCFG register.			
D13	0	DATARDY	the data registers and can now be read. Data TOTAL is transferred at the same time. Cleare	Indicates the measurement data from the acquisition has been transferred from the ALU to the data registers and can now be read. Data for all measurement registers and MIN/MAX/TOTAL is transferred at the same time. Cleared by writing it to logic-zero to allow detection of the next data transfer. Writing to logic-one has no effect.		
D12	0	DELAYSEL	The delay after the start of the scan before the measurement is enabled only if the AUTOBALSWDIS bit is set to 1. Sets the delay based on the setting in the AUTOBALSWDIS Delay register (0x0C). The default bit setting is 0 which selects the delay associated with cell recovery time in register 0x0C. Setting this bit to 1 selects the delay setting of "Diagnostic Recovery time." See <u>AUTOBALSWDIS Delay Register (address 0x0C)</u> table for details on delay timings.			
D11	0	AUTOBALSWDIS	Automatic disable of balancing switches during measurements. The delay for cell recovery settling time and for the diagnostic recovery is set based on the AUTOBALSWDIS Delay register (0x0C). Set this bit to zero for normal balancing switch operation.			
D10			Configures the cell-balancing switch diagnostic modes per table below. When selected, these modes effectively override the BALSWEN, MEASUREEN, ALTMUXSEL, and POLARITY configurations during the acquisition mode and update the ALRTBALSW register per the BALHIGHTHR and BALLOWTHR thresholds. See the <u>Diagnostics</u> section for details.			
D9			BALSWDIAG[2:0]	DIAGNOSTIC TEST		
			000	None		
	0	BALSWDIAG[2:0]	001	Balancing switch short		
			010	Balancing switch open		
D8			011	None		
D0			100	None		
			101	Cell sense open odds		
			110	Cell sense open evens		
			111	None		
D7	0	RDFILT	This bit chooses where the ADC scan data is read to occur from filtered CELLn registers. T scanned data occurs from unfiltered ALU regi	he default value is '0' wherein the read of the		

SCANCTRL Register (address 0x13) (continued)

BIT	POR	NAME	DESCR	RIPTION
D6			Configures for the number of oversamples in	the acquisition, per table below:
			OVSAMPL[2:0]	OVERSAMPLES
			000	1
			001	4
D5	0	OV6 VMDI 13:01	010	8
טט	U	OVSAMPL[2:0]	011	16
			100	32
			101	64
			110	128
D4			111	128
D3	0	AMENDFILT	This bit when set to '1' enables the automatic transfer of the new ADC conversion from the ALU to CELLn registers through the IIR filter at the end of the scan. The scan result is available in the ALU as well as the CELLn registers. The default value is '0', which keeps the scan conversion data in the ALU register as an unfiltered result.	
D2	0	SCANMODE	Enables top-down scan mode. Default is pyra	mid scan mode.
D1	0	FILTDONE	Indicates the user register has been updated with the new ADC conversion values based on filter coefficient bits when AMENDFILT = 1. Cleared only by writing it to logic-zero to detect update of the user registers for the next acquisition. Writing to logic-one has no effect.	
D0	0	SCAN	Enables the acquisition mode and (if in double-buffer mode) transfers previous acquisition data from ALU to data registers. Acts as a strobe bit and therefore does not need to be cleared. Always reads logic-zero. Ignored in acquisition mode.	

ALRTOVEN Register (address 0x14)

BIT	POR	NAME	DESCRIPTION
D15	0	December	Aluman and I aris and
D14	0	Reserved	Always reads logic-zero.
D13	0	AINOVALRTEN1	Enables the AIN1 overvoltage alert.
D12	0	AINOVALRTEN0	Enables the AIN0 overvoltage alert.
D11			
D10			
D9			
D8			
D7			
D6	0	OVALRTEN[12:1]	Enables the overvoltage alert for the respective cell. Clearing also clears the associated
D5	U	OVALKTEN[12.1]	cell alert.
D4			
D3			
D2			
D1			
D0			

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

ALRTUVEN Register (address 0x15)

BIT	POR	NAME	DESCRIPTION
D15	0	Reserved	Alwaye reads logic zoro
D14	U	Reserved	Always reads logic-zero.
D13	0	AINUVALRTEN1	Enables the AIN1 undervoltage alert.
D12	0	AINUVALRTEN0	Enables the AIN0 undervoltage alert.
D11			
D10			
D9			
D8			
D7			
D6	0	LIVAL DTENI(10:41	Enables the undervoltage alert for the respective cell. Clearing also clears the associated
D5	U	UVALRTEN[12:1]	cell alert.
D4			
D3			
D2			
D1			
D0			

WATCHDOG Register (address 0x18)

BIT	POR	NAME		DESCRIPTION		
D15	0	Reserved	Always reads logic-zero.			
D14			Sets the step size of the cell-b	Sets the step size of the cell-balancing timer LSB per table below:		
D13			CBPDIV[2:0]	STEP SIZE	TIMEOUT RANGE	
			000	Disabled	No timeout	
			001	1s	1–15s	
	0	CBPDIV[2:0]	010	4s	4–60s	
D12	U	CBPDIV[2.0]	011	16s	16–240s	
012			100	64s	64–960s	
			101	128s	128–1920s	
			110	256s	256–3840s	
			111	256s	256-3840s	
D11			Watchdog timer for the cell-balancing switches. The timer counts down at a rate set by			
D.10				ches '0', all cell-balancing switce enable bits. The timer should be		
D10	0	CBTIMER[3:0]	timeout value to keep the cell-	balancing switches enabled. Wh	hen the timer value is read,	
D9		OBTIME (G.G)		uring the stop bit time following mand. If the GPIO3TMR configu		
D8			pin is driven high, while CBTIN	MER[3:0] is nonzero and is driven is reset to zero when EMGCYD	en low when the timer value is	
			zero. The cell-balancing timer	IS TESEL TO ZETO WHEN EMIGG FD	опо – 1.	
D7						
D6						
D5						
D4	0	Reserved	Always reads logic-zero.			
D3		110001104	7 imayo roado logio zoro.			
D2						
D1						
D0						

ACQCFG Register (address 0x19)

BIT	POR	NAME	DESC	RIPTION		
D15						
D14			Reserved Always reads logic-zero.			
D13	0	Peserved				
D12	U	Reserved				
D11						
D10						
D9			Configures the THRM mode based on the table below:			
			THRMMODE[1:0]	OPERATION		
	0	THRMMODE[1:0]	00	Auto mode (on in acquisition mode)		
D8	U		01	Auto mode (on in acquisition mode)		
			10	Manual mode, THRM switch off		
			11	Manual mode, THRM switch on		
D7	0	Reserved	Always reads logic-zero.			
D6	0	rteserved	Always reads logic-zero.			
D5						
D4						
D3	0	AINITIME(5:0)	Configures the conversion time for each ena	abled AUXINn input from 6µs (default) up to g time if the application circuit requires it since		
D2	0 AINTIME[5:0] 384µs (6µs/bit). This is to a the THRM voltage is not d		the THRM voltage is not driven out until the	start of the acquisition (in auto mode).		
D1			, (
D0						

BALSWEN Register (address 0x1A)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	D	
D13	0	Reserved	Always reads logic-zero.
D12			
D11			
D10			
D9			
D8			
D7			
D6	0	BALSWEN[11:0]	BALSWEN[n-1] enables the balancing switch (conducting) between SWn and SWn-1
D5	U	BALSWEN[11.0]	BALSWEN[II-1] enables the balancing switch (conducting) between SWII and SWII-1
D4			
D3			
D2			
D1			
D0			

DEVCFG2 Register (address 0x1B)

BIT	POR	NAME	DESCRIPTION
D15	0	LASTLOOP	Enables UART loopback mode, which internally connects upper-port transmitter to upper-port receiver. The loopback mode allows the host to locate a break in daisy-chain communication whether or not the last daisy-chain device uses an external wire loopback wire or the internal loopback.
D14	0	TXADPEN	Enables TX adaptive mode. Leave in default state for normal operation.
D13	0	Reserved	Alwaya raada lagia zara
D12		Reserved	Always reads logic-zero.
D11	0	TXLIDLEHIZ	Enables high-Z idle mode, which causes the TX drivers of the lower UART to idle in the high-Z state instead of idling in the logic-zero state (default mode). Leave in default state for normal operation.
D10	0	TXUIDLEHIZ	Enables high-Z idle mode, which causes the TX drivers of the upper UART to idle in the high-Z state instead of idling in the logic-zero state (default mode). Leave in default state for normal operation.
D9	0	RESERVED	Reserved for future use. Reads the written value.
D8			
D7			
D6			
D5			
D4	0	Reserved	Always reads logic-zero.
D3			
D2			
D1			
D0			

MAX17843

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

BALDIAGCFG1 Register (address 0x1C)

BIT	POR	NAME	DESCRIPTION
D15	0	Reserved	Always reads logic-zero.
D14	U	Reserved	Always reads logic-zero.
D13	0	ALTMUXSEL_M	Mirror for ALTMUXSEL bit.
D12	0	POLARITY_M	Mirror for POLARITY bit. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next measurement-cycle start.
D11			
D10			
D9			
D8			
D7			
D6	0	CELLEN M[12:1]	Mirror for CELLEN[12:1] in the MEASUREEN register. Writing to this field also updates
D5	0	CELLEIN_W[12.1]	CELLEN[12:1]. Reading this field reflects CELLEN[12:1].
D4			
D3			
D2			
D1			
D0			

BALSWDCHG Register (address 0x1D)

BIT	POR	NAME	DESCF	RIPTION	
D15			Configuration for emergency cell-discharge r cycle for each discharge cycle (even or odd)		
D14			DCHGWIN[2:0] (LSb = 7.5s)	BEHAVIOR	
	0	DCHGWIN[2:0]	0h	Switches on for 7.5s, off for 52.5s	
D13			1h	Switches on for 15s, off for 45s	
013					
			7h	Switches on for 59.94s, off for 62.5ms	
D12	0	Reserved	Always reads logic-zero.		
D11			Discharge counter, which can be read to veri	fy appration of the amarganey call discharge	
D10	0	DCHGCNTR[3:0]		scharge mode, the discharge counter counts	
D9	U		at 2Hz rolling over at Fh to 0h and continuing	until the cell-discharge mode terminates.	
D8				Read-only.	Read-only.
D7			Write to get the timeout value of the emerger	pov cell discharge mode (EMCCVDCHC = 1)	
D6			Write to set the timeout value of the emergency cell-discharge mode (EMGCYD per the table below. Writing to 00h disables the timer and terminates the emergency cell-discharge mode (EMGCYD)		
D5				discharge mode. The timer starts when EMG	
D4			and stops when it reaches the timeout. The t	imer is reset when EMGCYDCHG = 0.	
D3	0	DCHGTIME[7:0]	DCHGTIME[7:0] (LSb = 2 HOURS)	TIMEOUT	
D2	U		00h	Discharge mode disabled	
D1			01h	Discharge mode disabled after 4 hours	
			02h	Discharge mode disabled after 6 hours	
D0					
			FFh	Discharge mode disabled after 512 hours	

TOPCELL Register (address 0x1E)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10	0	Decembed	Alwaya waada lawia waxa
D9	0	Reserved	Always reads logic-zero.
D8			
D7			
D6			
D5			
D4			
D3			
D2	Ch	TODOELL 13:01	Configures the top cell position if less than 12 channels are used. This is to properly
D1	Cii	TOPCELL[3:0]	mask the ALRTBALSW diagnostic alerts. TOPCELL[3:0] = 0h is not a valid configuration. TOPCELL[3:0]= Dh, Eh, or Fh is identical to Ch (12d).
D0			

CELLn Register (addresses 0x20 to 0x2B)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	CELLn[15:0]	CELLn[15:2] contains the 14-bit measurement result for CELLn. CELLn[1:0] always reads
D7	U	CELLII[15.0]	logic-zero. Read-only.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

VBLOCK Register (address 0x2C)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	VBLOCK[15:0]	VBLOCK[15:2] contains the 14-bit measurement result for V _{BLKP} . VBLOCK[1:0] always reads logic-zero. Read-only.
D7	U	VBLOCK[13.0]	logic-zero. Read-only.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

AIN1 Register (address 0x2D)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	AIN1[15:0]	AIN1[15:4] contains the 12-bit measurement result for AUXIN1. AIN1[3:0] always reads logic-
D7	U	Allvi[15.0]	zero. Read-only.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

AIN2 Register (address 0x2E)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	AIN2[15:0]	AIN2[15:4] contains the 12-bit measurement result for AUXIN2. AIN2[3:0] always reads logic-
D7	U	AIN2[15.0]	zero. Read-only.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

TOTAL Register (address 0x2F)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	SLIM[15:0]	 16-bit sum of all cell voltages CELLn[15:4] that are enabled by MEASUREEN. Read-only.
D7	U	SUM[15:0]	10-bit sum of all cell voltages CELLII[15.4] that are enabled by MEASOREEN. Read-only.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

OVTHCLR Register (address 0x40)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	FFFCh	OVTHCLR[15:0]	14 bit everyeltere clear threshold LIV/THCL P[4:0] abusin reads logic zero
D7	FFFCII	OVTHCLK[15.0]	14-bit overvoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

OVTHSET Register (address 0x42)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	FFFCh	OVTHSET[15:0]	14-bit overvoltage-set threshold. OVTHSET[1:0] always reads logic-zero.
D7	FFFCII	OVTH3ET[13.0]	14-bit overvoitage-set tilleshold. Ov 1 HSE 1[1.0] always reads logic-zero.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

UVTHCLR Register (address 0x44)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	UVTHCLR[15:0]	 14-bit undervoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero.
D7	U	OVINCER[15.0]	14-bit undervoltage-clear tilleshold. OVTHCLR[1.0] always reads logic-zero.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

UVTHSET Register (address 0x46)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	UVTHSET[15:0]	14 bit undervoltege oot threshold LIV/THSET[1/0] shugye roade legie zere
D7	0	0V1H3E1[15.0]	14-bit undervoltage set threshold. UVTHSET[1:0] always reads logic-zero.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

MSMTCH Register (address 0x48)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8		MONTOLII4E.01	14 hit valtage threehold for ALDTMCMTCLL MCMTCLIft (0) elverys reade legic zero
D7	FFFCh	MSMTCH[15:0]	14-bit voltage threshold for ALRTMSMTCH. MSMTCH[1:0] always reads logic-zero.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

AINOT Register (address 0x49)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	AINOT[15:0]	12-bit undervoltage (over-temperature) threshold for AUXINn alerts. AINOT[3:0] always
D7	U	AINOT[15.0]	reads logic-zero.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

AINUT Register (address 0x4A)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	FFF0h	AINUT[15:0]	12-bit overvoltage (undertemperature) threshold for AUXINn alerts. AINUT[3:0] always reads
D7	FFFOII	AINO 1[15.0]	logic-zero
D6			
D5			
D4			
D3			
D2			
D1			
D0			

BALSHRTTHR Register (address 0x4B)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			14-bit voltage threshold for the balancing-switch short-circuit diagnostic test. The ADC
D8	0	DALCUDTTUDIAE.01	results in this test mode are compared against the threshold. If any result is below the
D7	0	BALSHRTTHR[15:0]	threshold, it is flagged as a balancing-switch alert. Results above the threshold are considered normal. The threshold should be set by the system controller prior to making
D6			a diagnostic measurement. BALSHRTTHR[1:0] always reads logic-zero.
D5			
D4			
D3			
D2			
D1			
D0			

BALLOWTHR Register (address 0x4C)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			14-bit low-voltage threshold for the balancing-switch conducting and cell sense-wire
D8	0	BALLOWTHR[15:0]	diagnostic tests. The ADC results in this test mode are compared against the threshold. If any result is below the threshold, it is flagged as a balancing-switch alert. Results
D7		BALLOW I FIR [13.0]	above the threshold are considered normal. The threshold should be set by the system controller prior to making a diagnostic measurement. BALLOWTHR[1:0] always reads
D6			logic-zero.
D5			
D4			
D3			
D2			
D1			
D0			

BALHIGHTHR Register (address 0x4D)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			14-bit high-voltage threshold for the balancing-switch conducting and cell sense-wire
D8	0	DAI UICUTUDI15:01	diagnostic tests The ADC results in this test mode are compared against the threshold. If any result is above the threshold, it is flagged as a balancing-switch alert. Results
D7	0	BALHIGHTHR[15:0]	below the threshold are considered normal. The threshold should be set by the system controller prior to making a diagnostic measurement. BALHIGHTHR[1:0] always reads
D6			logic-zero.
D5			
D4			
D3			
D2			
D1			
D0			

DIAG Register (address 0x50)

BIT	POR	NAME	DESCRIPTION
D15			
D14			
D13			
D12			
D11			
D10			
D9			
D8	0	DIA C[45:0]	DIAG[15:2] contains the 14-bit measurement result for the diagnostic selected by
D7	0	DIAG[15:0]	DIAGCFG[2:0]. DIAG[1:0] always reads logic-zero. Read-only.
D6			
D5			
D4			
D3			
D2			
D1			
D0			

DIAGCFG Register (address 0x51)

D15			DESCRIPTION		
D14			Configures the curren or 3.125µA per bit.	t level for all enabled test sources p	per the table below (either 6.25µA
D40			0707040(0.0)	TEST SOURCE CURRENT	
D13			CTSTDAC{3:0]	Cx, AUXINn	Cx, AUXINn
			0h	6.25µA	3.125µA
	0	CTSTDAC[3:0]	1h	12.5µA	6.25µA
			2h	18.75µA	9.375µA
D12					
			Dh	87.5µA	43.75μΑ
			Eh	93.75µA	46.875µA
			Fh	100μΑ	50µA
D11	0	CTSTSRC	Configures the cell inport or sink current to AGN from V _{AA} only.	out test-current sources to either so ID (logic-zero). For C0, configures	urce current from V _{AA} (logic-one), the cell input test current to source
D10	0	Reserved	Reserved for future us	se.	
D9	0			ent sources connected to the corres	
D8	0	AUXINTSTEN[2:1]	diagnostic testing. The direction is configured	e current level is configured by the lby CTSTSRC.	CTSTDAC[3:0] and the current
	0	MUXDIAGBUS	Selects the HVMUX output to which the HVMUX test current source is connected, if MUXDIAGPAIR is enabled, as shown below:		
D7			MUXDIAGBUS	HVMUX	OUTPUT
			0	Output used for even cells, C0, a	nd AGND.
			1	Output used for odd cells, REF, a	nd ALTREF.
D6	0	MUXDIAGPAIR	output (as selected by	VMUX test-current source to be con MUXDIAGBUS). In the default corrent sources are connected to both	nfiguration (MÚXDIAGPAIR = 0),
D5	0	Reserved	Always reads logic-ze	ro.	
D4	0	MUXDIAGEN	Enables the HVMUX test-current source(s). The current level is configured by CSTDAC[3:0] and the connectivity is configured by MUXDIAGPAIR and MUXDIAGBUS. The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the value of this bit takes effect at the next measurement-cycle start.		
D3	0	ALTMUXSEL	Enables cell measure inputs (HVMUX data	ments on the SWn inputs (ALTMU) path). See the <i>Diagnostics</i> section.	(data path) instead of the Cn
D2			Selects the diagnostic	measurement for the acquisition p	er table below:
			DIAGSEL[2:0]	DIAGNOSTIC	MEASUREMENT
D1			0b000	No measurement	
			0b001	V _{ALTREF} (with ADC reference = F	REF)
	0	5 66=:	0b010	V _{AA} (with ADC reference = REF)	
		DIAGSEL[2:0]	0b011	LSAMP offset	
D0			0b100	Zero-scale ADC output (000h)	
			0b101	Full-scale ADC output (FFFh)	
			0b110	Die temperature	
			0b111	No measurement	

CTSTEN Register (address 0x52)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	Reserved	Always reads logic-zero.
D13			
D12			
D11			
D10			
D9			
D8			
D7			Enables the current sources connected to the corresponding cell input for diagnostic
D6	0	CTSTEN[12:0]	testing. The current level is configured by the CTSTDAC[3:0] and the current direction is
D5			configured by CTSTSRC in the DIAGCFG register.
D4			
D3			
D2			
D1			
D0			

ADCTEST1A Register (address 0x57)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	December	Aboron and lasis was
D13	0	Reserved	Always reads logic-zero.
D12			
D11			
D10			
D9			
D8			
D7			
D6		ADCTEST1A[11:0]	User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into
D5		ADCTESTIA[11.0]	the ALU during the first conversion of odd-numbered samples (e.g., first sample).
D4			
D3			
D2			
D1			
D0			

ADCTEST1B Register (address 0x58)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	Reserved	Alwaya raada lagia zara
D13	U	Reserved	Always reads logic-zero.
D12			
D11			
D10			
D9			
D8			
D7			
D6		ADCTEST1B[11:0]	User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into
D5		ADCTEST IB[11.0]	the ALU during the second conversion of odd-numbered samples (e.g., first sample).
D4			
D3			
D2			
D1			
D0			

ADCTEST2A Register (address 0x59)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	Reserved	Alwaya raada lagia zara
D13	U	Reserved	Always reads logic-zero.
D12			
D11			
D10			
D9			
D8			
D7			
D6	0	ADCTEST2A[11:0]	User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into
D5	U	ADCILGIZA[II.0]	the ALU during the first conversion of even-numbered samples in oversampling mode.
D4			
D3			
D2			
D1			
D0			

ADCTEST2B Register (address 0x5A)

BIT	POR	NAME	DESCRIPTION
D15			
D14	0	December	Abordo productorio mana
D13	0	Reserved	Always reads logic-zero.
D12			
D11			
D10			
D9			
D8			
D7			
D6	0	ADCTEST2B[11:0]	User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into
D5	U	ADCTEST2B[11.0]	the ALU during the second conversion of even-numbered samples in oversampling mode.
D4			
D3			
D2			
D1			
D0			

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX17843ACB+*	-40° to +125°C	64 LQFP
MAX17843ACB/V+	-40° to +125°C	64 LQFP

/V denotes an automotive qualified part.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND	
TYPE	CODE	NO.	PATTERN NO.	
64 LQFP	C64+13	21-0083	90-0141	

⁺ Denotes a lead(Pb)-free/RoHS-compliant package.

^{*}Future product—contact factory for availability.

MAX17843

12-Channel, High-Voltage Smart Sensor **Data-Acquisition Interface**

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/17	Initial release	_
1	11/17	Updated Benefits and Features, Absolute Maximum Ratings, Electrical Characteristics, TX Adaptive Mode for Single-Ended Mode, UART Communication Mode, SCANCTRL Register (address 0x13), and OVTHSET Register (address 0x42) sections/tables	1, 14, 16, 53, 56, 111, 122
2	Changed Total-Acquisition Error (V _{BLKP} Input) in <i>Electrical Characteristics</i> table from "-125 (min) to +125 (max)" to "-110 (min) to +110 (max)" and changed Bit-Wise and Mask in rows 8 and 16 from "0x001F to 0x003F"		16, 87

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.