

MOSFET – Power, Single P-Channel, μ8FL

-30 V, -88.6 A, 7.5 m Ω

NVTFS015P03P8Z

Features

- Ultra Low R_{DS(on)} to Improve System Efficiency
- Advanced Package Technology in 3.3 x 3.3 mm for Space Saving and Excellent Thermal Conduction
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Power Load Switch
- Protection: Reverse Current, Over Voltage, and Reverse Negative Voltage
- Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

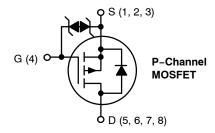
Symbol	Parameter			Value	Unit
V _{DSS}	Drain-to-Source Voltage			-30	V
V_{GS}	Gate-to-Source Voltage			±25	V
I _D	Continuous Drain Cur-	Steady	T _C = 25°C	-88.6	Α
	rent $R_{\theta JC}$ (Notes 1, 2)	State	T _C = 100°C	-62.6	
P _D	Power Dissipation		T _C = 25°C	88.2	W
	R _{θJC} (Notes 1, 2)		T _C = 100°C	44.1	
I _D	Continuous Drain Cur-	Steady	T _A = 25°C	-17	Α
	rent R _{θJA} (Notes 1, 2)	State	T _A = 100°C	-12	
P_{D}	Power Dissipation $R_{\theta JA}$			3.2	W
	(Notes 1, 2)		T _A = 100°C	1.6	
I _{DM}	Pulsed Drain Current	$T_A = 25^\circ$	C, t _p = 10 μs	-353	Α
T _J , T _{stg}	Operating Junction and Storage Temperature Range			–55 to 175	°C
Is	Source Current (Body Diode)			73.5	Α
E _{AS}	Single Pulse Drain to Source Avalanche Energy (I _L = 8.5 A)			88	mJ
TL	Lead Temperature for So (1/8" from case for 10 s)	Idering Pu	urposes	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Junction-to-Case - Steady State (Drain) (Note 2)	1.7	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 2)	46.4	°C/W

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- Surface-mounted on FR4 board using a 1 in², 2 oz. Cu pad. Assuming a 76 mm x 76 mm x 1.6 mm board.


V _{(BR)DSS}	R _{DS(on)}	I _D
-30 V	7.5 mΩ @ –10 V	-88.6 A
	12 mΩ @ -4.5 V	

WDFN8 (μ8FL) CASE 511AB

WDFNW8 (μ8FL WF) CASE 515AN

MARKING DIAGRAMS

XXXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week • Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Con	dition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS				•	•	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I_D = -250 μA		-30			V
V _{(BR)DSS} /	Drain-to-Source Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, ref to $25^{\circ}C$			-4.4		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = -30 V	T _J = 25°C			-10	μΑ
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 V, V_{G}$	_S = ±25 V			±10	μΑ
ON CHARAC	TERISTICS (Note 3)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D}$	= -250 μA	-1.0		-3.0	V
V _{GS(TH)} /T _J	Threshold Temperature Coefficient	I _D = -250 μA,	ref to 25°C		5.6		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	$V_{GS} = -10 \text{ V},$	I _D = -12 A		5.0	7.5	mΩ
	<u> </u>	$V_{GS} = -4.5 V$,	I _D = -10 A		8.0	12	
9FS	Froward Transconductance	V _{DS} = −5 V, I	_D = -10 A		77		S
CHARGES A	ND CAPACITANCES						
C _{iss}	Input Capacitance	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -15 \text{ V}$			2706		pF
C _{oss}	Output Capacitance				907		
C _{rss}	Reverse Transfer Capacitance				875		
Q _{G(TOT)}	Total Gate Charge	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_{D} = -10 \text{ A}$			37		nC
Q _{G(TH)}	Threshold Gate Charge				5.1		
Q_{GS}	Gate-to-Source Charge				8.2		
Q_{GD}	Gate-to-Drain Charge				21.7		
Q _{G(TOT)}	Total Gate Charge	$V_{GS} = -10 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -10 \text{ A}$			62.3	105	
SWITCHING	CHARACTERISTICS, V _{GS} = 4.5 V (Note	3)					
t _{d(on)}	Turn-On Delay Time	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$			25		ns
t _r	Rise Time	$I_D = -10 \text{ A}, I$	H _G = 6 Ω		138		
t _{d(off)}	Turn-Off Delay Time				55		
t _f	Fall Time				98		
SWITCHING	CHARACTERISTICS, V _{GS} = 10 V (Note 3	3)					
t _{d(on)}	Turn-On Delay Time	V _{GS} = -10 V, V			6		ns
t _r	Rise Time	$I_D = -10 \text{ A}, I$	1 _G = 6 Ω		17		
t _{d(off)}	Turn-Off Delay Time				52		
t _f	Fall Time				63		
DRAIN-SOU	RCE DIODE CHARACTERISTICS						
V _{SD}	Forward Diode Voltage	V _{GS} = 0 V,	T _J = 25°C		-0.8	-1.3	V
		$I_S = -10 \text{ A}$ $T_J = 125^{\circ}\text{C}$			-0.65		
t _{RR}	Reverse Recovery Time	V_{GS} = 0 V, dl _s /dt = 100 A/ μ s, I_s = -10 A			40.7		ns
ta	Charge Time				18.4		
t _b	Discharge Time				22.3		
Q _{RR}	Reverse Recovery Charge				29		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

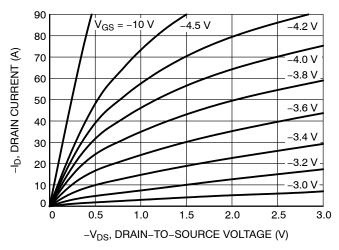


Figure 1. On-Region Characteristics

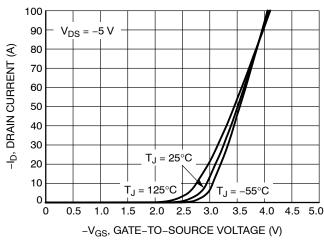


Figure 2. Transfer Characteristics

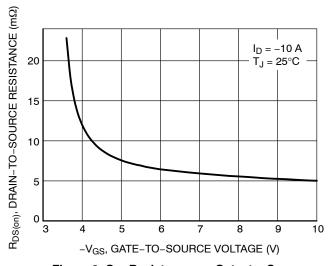


Figure 3. On-Resistance vs. Gate-to-Source Voltage

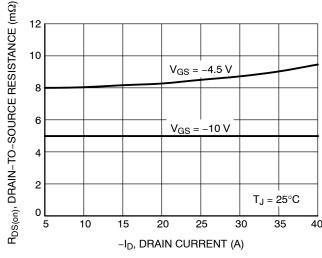


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

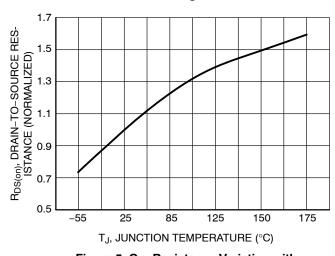


Figure 5. On–Resistance Variation with Temperature

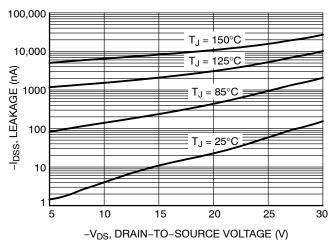


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS (continued)

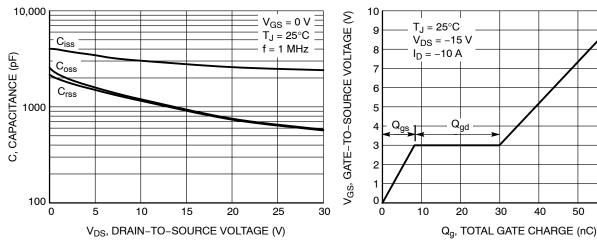


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

40

60

70

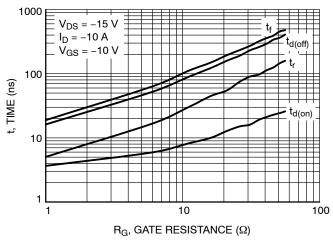


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

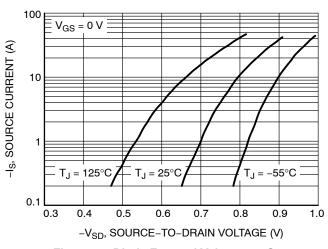


Figure 10. Diode Forward Voltage vs. Current

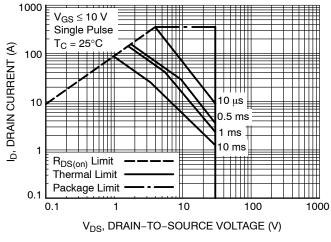


Figure 11. Maximum Rated Forward Biased Safe Operating Area

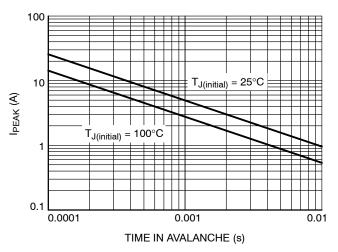


Figure 12. Maximum Drain Current vs. Time in **Avalanche**

TYPICAL CHARACTERISTICS (continued)

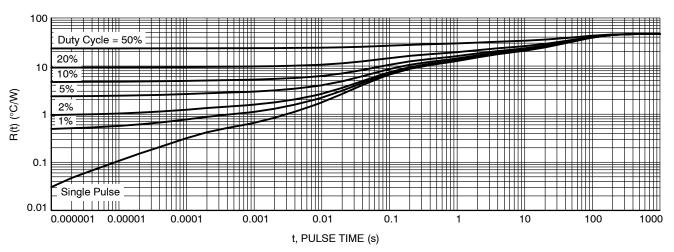


Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

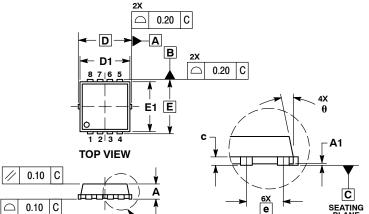
Device	Marking	Package	Shipping [†]
NVTFWS015P03P8ZTAG	15PW	WDFN8 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

DISCONTINUED (Note 4)

NVTFS015P03P8ZTAG	15P3	WDFN8	1500 / Tape & Reel
		(Pb-Free)	·

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

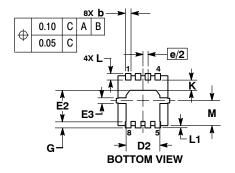
^{4.} **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com.



SCALE 2:1

WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D

DATE 23 APR 2012

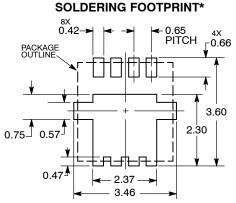

DETAIL A

DETAIL A

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH
 PROTRUSIONS OR GATE BURRS.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00		0.05	0.000		0.002
b	0.23	0.30	0.40	0.009	0.012	0.016
С	0.15	0.20	0.25	0.006	0.008	0.010
D		3.30 BSC		0	.130 BSC	;
D1	2.95	3.05	3.15	0.116	0.120	0.124
D2	1.98	2.11	2.24	0.078	0.083	0.088
E		3.30 BSC		0	.130 BSC	;
E1	2.95	3.05	3.15	0.116	0.120	0.124
E2	1.47	1.60	1.73	0.058	0.063	0.068
E3	0.23	0.30	0.40	0.009	0.012	0.016
е	0.65 BSC			(0.026 BS	0
G	0.30	0.41	0.51	0.012	0.016	0.020
K	0.65	0.80	0.95	0.026	0.032	0.037
L	0.30	0.43	0.56	0.012	0.017	0.022
L1	0.06	0.13	0.20	0.002	0.005	0.008
М	1.40	1.50	1.60	0.055	0.059	0.063
θ	0 °		12 °	0 °		12 °


GENERIC MARKING DIAGRAM*

SIDE VIEW

XXXXX = Specific Device Code = Assembly Location

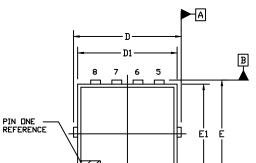
= Year WW = Work Week = Pb-Free Package

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Reported versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1	

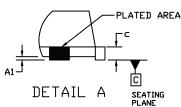
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

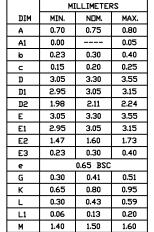

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

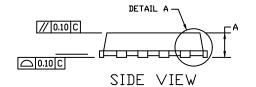
WDFNW8 3.3x3.3, 0.65P (Full-Cut μ8FL WF)

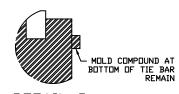
CASE 515AN ISSUE O

DATE 25 AUG 2020

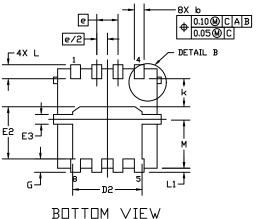


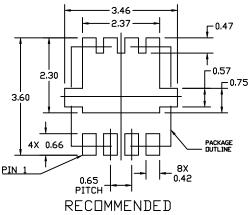

3


TOP VIEW



- 1. DIMENSIONING AND TOLERANCING PERASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.





MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX AYWW• XXXX = Specific Device Code

A = Assembly Location Y = Year

WW = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

(Note: Microdot may be in either location)

DOCUMENT NUMBER:	98AON24556H	DN24556H Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED		
DESCRIPTION:	WDFNW8 3.3x3.3, 0.65P (F	ull–Cut μ8FL WF)	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales