PW PACKAGE[†] (TOP VIEW)

LOGIC VDD

SELECT

VCO OUT

FIN-A

PFD OUT

LOGIC GND

TLC2932IPWLE.

NC - No internal connection

FIN-B

2

3

4

5

6

[†] Available in tape and reel only and ordered as the

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

14

13

12

11

10

9

8

VCO GND

UCO INHIBIT

PFD INHIBIT

Voltage-Controlled Oscillator (VCO) Section:

- Complete Oscillator Using Only One External Bias Resistor (R_{BIAS})

- Lock Frequency: 22 MHz to 50 MHz (V_{DD} = 5 V ±5%, $T_A = -20^{\circ}C$ to $75^{\circ}C$, $\times 1$ Output) 11 MHz to 25 MHz (V_{DD} = 5 V \pm 5%, $T_A = -20^{\circ}C$ to 75°C, ×1/2 Output)
- Output Frequency . . . ×1 and ×1/2 Selectable
- **Phase-Frequency Detector (PFD) Section** Includes a High-Speed Edge-Triggered Detector With Internal Charge Pump
- Independent VCO, PFD Power-Down Mode
- Thin Small-Outline Package (14 terminal)
- **CMOS** Technology
- **Typical Applications:**
 - Frequency Synthesis
 - Modulation/Demodulation
 - Fractional Frequency Division
- Application Report Available[†]
- **CMOS Input Logic Level**

description

The TLC2932 is designed for phase-locked-loop (PLL) systems and is composed of a voltage-controlled oscillator (VCO) and an edge-triggered-type phase frequency detector (PFD). The oscillation frequency range of the VCO is set by an external bias resistor (R_{BIAS}). The VCO has a 1/2 frequency divider at the output stage. The high-speed PFD with internal charge pump detects the phase difference between the reference frequency input and signal frequency input from the external counter. Both the VCO and the PFD have inhibit functions, which can be used as a power-down mode. The TLC2932 is suitable for use as a high-performance PLL due to the high speed and stable oscillation capability of the device.

functional block diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[†]TLC2932 Phase-Locked-Loop Building Block With Analog Voltage-Controlled Oscillator and Phase Frequency Detector (SLAA011).

PRODUCTION DATA information is current as of publication date Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

Copyright © 1997, Texas Instruments Incorporated

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

TERMINA	4L		
NAME	NO.	1/0	DESCRIPTION
FIN-A	4	1	Input reference frequency f(REF IN) is applied to FIN-A.
FIN-B	5	I	Input for VCO external counter output frequency f _(FIN-B) . FIN-B is nominally provided from the external counter.
LOGIC GND	7		GND for the internal logic.
LOGIC V _{DD}	1		Power supply for the internal logic. This power supply should be separate from VCO V_{DD} to reduce cross-coupling between supplies.
NC	8		No internal connection.
PFD INHIBIT	9	I	PFD inhibit control. When PFD INHIBIT is high, PFD output is in the high-impedance state, see Table 3.
PFD OUT	6	0	PFD output. When the PFD INHIBIT is high, PFD output is in the high-impedance state.
BIAS	13	1	Bias supply. An external resistor (R_{BIAS}) between VCO V_{DD} and BIAS supplies bias for adjusting the oscillation frequency range.
SELECT	2	1	VCO output frequency select. When SELECT is high, the VCO output frequency is $\times 1/2$ and when low, the output frequency is $\times 1$, see Table 1.
VCO IN	12	1	VCO control voltage input. Nominally the external loop filter output connects to VCO IN to control VCO oscillation frequency.
VCO INHIBIT	10	1	VCO inhibit control. When VCO INHIBIT is high, VCO OUT is low (see Table 2).
VCO GND	11		GND for VCO.
VCO OUT	3	0	VCO output. When the VCO INHIBIT is high, VCO output is low.
VCO V _{DD}	14		Power supply for VCO. This power supply should be separated from LOGIC V_{DD} to reduce cross-coupling between supplies.

Terminal Functions

detailed description

VCO oscillation frequency

The VCO oscillation frequency is determined by an external resistor (R_{BIAS}) connected between the VCO V_{DD} and the BIAS terminals. The oscillation frequency and range depends on this resistor value. The bias resistor value for the minimum temperature coefficient is nominally 3.3 k Ω with 3-V at the VCO V_{DD} terminal and nominally 2.2 k Ω with 5-V at the VCO V_{DD} terminal. For the lock frequency range refer to the recommended operating conditions. Figure 1 shows the typical frequency variation and VCO control voltage.

2

VCO output frequency 1/2 divider

The TLC2932 SELECT terminal sets the f_{OSC} or 1/2 f_{OSC} VCO output frequency as shown in Table 1. The 1/2 f_{OSC} output should be used for minimum VCO output jitter.

Table 1. VCO Output 1/2 Divider Function

SELECT	VCO OUTPUT
Low	f _{osc}
High	1/2 f _{OSC}

VCO inhibit function

The VCO has an externally controlled inhibit function which inhibits the VCO output. A high level on the VCO INHIBIT terminal stops the VCO oscillation and powers down the VCO. The output maintains a low level during the power-down mode, refer to Table 2.

Table 2. VCO Inhibit Function

VCO INHIBIT	VCO OSCILLATOR	VCO OUTPUT	IDD(VCO)
Low	Active	Active	Normal
High	Stopped	Low level	Power Down

PFD operation

The PFD is a high-speed, edge-triggered detector with an internal charge pump. The PFD detects the phase difference between two frequency inputs supplied to FIN–A and FIN–B as shown in Figure 2. Nominally the reference is supplied to FIN–A, and the frequency from the external counter output is fed to FIN–B.

Figure 2. PFD Function Timing Chart

PFD output control

A high level on the PFD INHIBIT terminal places the PFD output in the high-impedance state and the PFD stops phase detection as shown in Table 3. A high level on the PFD INHIBIT terminal also can be used as the power-down mode for the PFD.

PFD INHIBIT	DETECTION	PFD OUTPUT	IDD(PFD)
Low	Active	Active	Normal
High	Stopped	Hi-Z	Power Down

Table 3. VCO Output Control Function

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

schematics

VCO block schematic

PFD block schematic

absolute maximum ratings[†]

Supply voltage (each supply), V _{DD} (see Note 1)	
Input voltage range (each input), VI (see Note 1)	
Input current (each input), I	±20 mA
Output current (each output), IO	±20 mA
Continuous total power dissipation, at (or below) $T_A = 25^{\circ}C$ (see Note 2)	
Operating free-air temperature range, TA	–20°C to 75°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network GND.

2. For operation above 25°C free-air temperature, derate linearly at the rate of 5.6 mW/°C.

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

recommended operating conditions

PAR	AMETER		MIN	NOM	MAX	UNIT
Supply voltage, V_{DD} (each supply, see Note 3)	$V_{DD} = 3 V$		2.85	3	3.15	V
	$V_{DD} = 5 V$		4.75	5	5.25	v
put voltage, VI (inputs except VCO IN)			0		V _{DD}	V
Output current, IO (each output)			0		±2	mA
VCO control voltage at VCO IN			0.9		V _{DD}	V
Look from one (14 output)	$V_{DD} = 3 V$		14		21	MHz
Lock frequency (×1 output)	$V_{DD} = 5 V$		22		50	IVITZ
Look frequency (x1/2 output)	$V_{DD} = 3 V$		7		10.5	MHz
Lock frequency (×1/2 output)	$V_{DD} = 5 V$		11		25	IVITIZ
Pige register Paulo	V _{DD} = 3 V		2.2	3.3	4.3	kΩ
Bias resistor, RBIAS	$V_{DD} = 5 V$		1.5	2.2	3.3	K12

NOTE 3: It is recommended that the logic supply terminal (LOGIC V_{DD}) and the VCO supply terminal (VCO V_{DD}) should be at the same voltage and separated from each other.

electrical characteristics over recommended operating free-air temperature range, $V_{DD} = 3 V$ (unless otherwise noted)

VCO section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	$I_{OH} = -2 \text{ mA}$	2.4			V
VOL	Low-level output voltage	$I_{OL} = 2 \text{ mA}$			0.3	V
VIT	Input threshold voltage at SELECT, VCO INHIBIT		0.9	1.5	2.1	V
lj	Input current at SELECT, VCO INHIBIT	$V_I = V_{DD}$ or GND			±1	μΑ
Zi(VCO IN)	Input impedance	VCO IN = $1/2 V_{DD}$		10		MΩ
IDD(INH)	VCO supply current (inhibit)	See Note 4		0.01	1	μΑ
IDD(VCO)	VCO supply current	See Note 5		5	15	mA

NOTES: 4. Current into VCO V_{DD} , when VCO INHIBIT = V_{DD} , PFD is inhibited.

5. Current into VCO V_{DD}, when VCO IN = 1/2 V_{DD}, R_{BIAS} = 3.3 k Ω , VCO INHIBIT = GND, and PFD is inhibited.

PFD section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	$I_{OH} = -2 \text{ mA}$	2.7			V
VOL	Low-level output voltage	$I_{OL} = 2 \text{ mA}$			0.2	V
IOZ	High-impedance-state output current	PFD INHIBIT = high, $V_I = V_{DD}$ or GND			±1	μΑ
VIH	High-level input voltage at FIN–A, FIN–B		2.7			V
VIL	Low-level input voltage at FIN–A, FIN–B				0.5	V
VIT	Input threshold voltage at PFD INHIBIT		0.9	1.5	2.1	V
Ci	Input capacitance at FIN–A, FIN–B			5		pF
Zi	Input impedance at FIN–A, FIN–B			10		MΩ
IDD(Z)	High-impedance-state PFD supply current	See Note 6		0.01	1	μA
IDD(PFD)	PFD supply current	See Note 7		0.1	1.5	mA

NOTES: 6. Current into LOGIC V_{DD} , when FIN–A, FIN–B = GND, PFD INHIBIT = V_{DD} , no load, and VCO OUT is inhibited.

 Current into LOGIC V_{DD}, when FIN–A, FIN–B = 1 MHz (V_{I(PP)} = 3 V, rectangular wave), NC = GND, no load, and VCO OUT is inhibited.

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

operating characteristics over recommended operating free-air temperature range, $V_{DD} = 3 V$ (unless otherwise noted)

VCO section

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
fosc	Operating oscillation frequency	$R_{BIAS} = 3.3 \text{ k}\Omega, \text{ VCO IN} = 1/2 \text{ V}$	DD	15	19	23	MHz
ts(fosc)	Time to stable oscillation (see Note 8)	Measured from VCO INHIBIT \downarrow				10	μs
+	Rise time	C _L = 15 pF, See Figure 3			7	14	ns
t _r	Rise time	C _L = 50 pF, See Figure 3			14		115
+.	Fall time	C _L = 15 pF, See Figure 3			6	12	
t _f	Fairtime	C _L = 50 pF, See Figure 3			10		ns
	Duty cycle at VCO OUT	$R_{BIAS} = 3.3 \text{ k}\Omega, \text{ VCO IN} = 1/2 \text{ V}$	DD,	45%	50%	55%	
$\alpha_{(fosc)}$	Temperature coefficient of oscillation frequency	$R_{BIAS} = 3.3 \text{ k}\Omega$, VCO IN = 1/2 V T _A = -20°C to 75°C	DD,		0.04		%/°C
kSVS(fosc)	Supply voltage coefficient of oscillation frequency	$R_{BIAS} = 3.3 \text{ k}\Omega$, VCO IN = 1.5 V V _{DD} = 2.85 V to 3.15 V	,		0.02		%/mV
	Jitter absolute (see Note 9)	$R_{BIAS} = 3.3 \text{ k}\Omega$			100		ps

NOTES: 8. The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.

 The low-pass-filter (LPF) circuit is shown in Figure 28 with calculated values listed in Table 7. Jitter performance is highly dependent on circuit layout and external device characteristics. The jitter specification was made with a carefully designed PCB with no device socket.

PFD section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum operating frequency		20			MHz
^t PLZ	PFD output disable time from low level			21	50	
^t PHZ	PFD output disable time from high level	See Eiguree 4 and 5 and Table 4		23	50	ns
^t PZL	PFD output enable time to low level	See Figures 4 and 5 and Table 4		11	30	20
^t PZH	PFD output enable time to high level			10	30	ns
t _r	Rise time	0 45 5 0 0 5 5 5 5 4		2.3	10	ns
t _f	Fall time	$C_L = 15 \text{ pF}$, See Figure 4		2.1	10	ns

SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range, V_{DD} = 5 V (unless otherwise noted)

VCO section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	$I_{OH} = -2 \text{ mA}$	4			V
VOL	Low-level output voltage	$I_{OL} = 2 \text{ mA}$			0.5	V
VIT	Input threshold voltage at SELECT, VCO INHIBIT		1.5	2.5	3.5	V
lj	Input current at SELECT, VCO INHIBIT	$V_I = V_{DD}$ or GND			±1	μA
Zi(VCO IN)	Input impedance	VCO IN = $1/2 V_{DD}$		10		MΩ
IDD(INH)	VCO supply current (inhibit)	See Note 4		0.01	1	μA
IDD(VCO)	VCO supply current	See Note 5		15	35	mA

NOTES: 4. Current into VCO V_{DD} , when VCO INHIBIT = V_{DD} , and PFD is inhibited.

5. Current into VCO V_{DD}, when VCO IN = 1/2 V_{DD}, R_{BIAS} = 3.3 k Ω , VCO INHIBIT = GND, and PFD is inhibited.

PFD section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	I _{OH} = 2 mA	4.5			V
VOL	Low-level output voltage	$I_{OL} = 2 \text{ mA}$			0.2	V
IOZ	High-impedance-state output current	PFD INHIBIT = high, $V_I = V_{DD}$ or GND			±1	μΑ
VIH	High-level input voltage at FIN–A, FIN–B		4.5			V
VIL	Low-level input voltage at FIN–A, FIN–B				1	V
VIT	Input threshold voltage at PFD INHIBIT		1.5	2.5	3.5	V
Ci	Input capacitance at FIN–A, FIN–B			5		pF
Zi	Input impedance at FIN–A, FIN–B			10		MΩ
IDD(Z)	High-impedance-state PFD supply current	See Note 6		0.01	1	μA
IDD(PFD)	PFD supply current	See Note 7		0.15	3	mA

NOTES: 6. Current into LOGIC V_{DD} , when FIN–A, FIN–B = GND, PFD INHIBIT = V_{DD} , no load, and VCO OUT is inhibited.

 Current into LOGIC V_{DD}, when FIN–A, FIN–B = 1 MHz (V_{I(PP)} = 5 V, rectangular wave), PFD INHIBIT = GND, no load, and VCO OUT is inhibited.

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

operating characteristics over recommended operating free-air temperature range, $V_{DD} = 5 V$ (unless otherwise noted)

VCO section

	PARAMETER	TEST CONDIT	TIONS	MIN	TYP	MAX	UNIT
fosc	Operating oscillation frequency	$R_{BIAS} = 2.2 \text{ k}\Omega, \text{ VCO}$	$IN = 1/2 V_{DD}$	30	41	52	MHz
^t s(fosc)	Time to stable oscillation (see Note 8)	Measured from VCO IN	HIBIT↓			10	μs
tr Rise time		$C_L = 15 \text{ pF}, \qquad \text{See F}$	Figure 3		5.5	10	200
tr	Rise time	C _L = 50 pF, See F	igure 3		8		ns
+.	Fall time	C _L = 15 pF, See F	igure 3		5	10	ns
tf		C _L = 50 pF, See F	igure 3		6		115
	Duty cycle at VCO OUT	$R_{BIAS} = 2.2 \text{ k}\Omega, \text{ VCO}$	$IN = 1/2 V_{DD},$	45%	50%	55%	
α _(fosc)	Temperature coefficient of oscillation frequency	$R_{BIAS} = 2.2 \text{ k}\Omega, \text{ VCO}$ $T_A = -20^{\circ}\text{C} \text{ to } 75^{\circ}\text{C}$	IN = 1/2 V _{DD} ,		0.06		%/°C
kSVS(fosc)	Supply voltage coefficient of oscillation frequency	$R_{BIAS} = 2.2 \text{ k}\Omega$, VCO VDD = 4.75 V to 5.25 V			0.006		%/mV
	Jitter absolute (see Note 9)	$R_{BIAS} = 2.2 \text{ k}\Omega$			100		ps

NOTES: 8: The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.

9. The LPF circuit is shown in Figure 28 with calculated values listed in Table 7. Jitter performance is highly dependent on circuit layout and external device characteristics. The jitter specification was made with a carefully designed PCB with no device socket.

PFD section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum operating frequency		40			MHz
^t PLZ	PFD output disable time from low level			21	40	
^t PHZ	PFD output disable time from high level	See Figures 4 and 5 and Table 4		20	40	ns
t _{PZL}	PFD output enable time to low level	See Figures 4 and 5 and Table 4		7.3	20	
^t PZH	PFD output enable time to high level			6.5	20	ns
t _r	Rise time	C _L = 15 pF, See Figure 4		2.3	10	ns
tf	Fall time	C _L = 15 pF, See Figure 4		1.7	10	ns

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

[†] FIN–A and FIN–B are for reference phase only, not for timing.

Table 4. PFD Output Test Conditions

Figure 4. PFD Output Voltage Waveform

PARAMETER	RL	СL	s ₁	S ₂	
^t PZH					
^t PHZ			Open	Close	
tr	1 kΩ	-0 45 -5			
^t PZL	1 K22	15 pF			
^t PLZ			Close	Open	
tf					

Figure 5. PFD Output Test Conditions

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

TYPICAL CHARACTERISTICS

SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997

TYPICAL CHARACTERISTICS

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

12

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

TYPICAL CHARACTERISTICS

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

APPLICATION INFORMATION

14

SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997

APPLICATION INFORMATION

gain of VCO and PFD

Figure 24 is a block diagram of the PLL. The countdown N value depends on the input frequency and the desired VCO output frequency according to the system application requirements. The K_p and K_V values are obtained from the operating characteristics of the device as shown in Figure 24. K_p is defined from the phase detector V_{OL} and V_{OH} specifications and the equation shown in Figure 24(b). K_V is defined from Figure 8, 9, 10, and 11 as shown in Figure 24(c).

The parameters for the block diagram with the units are as follows:

external counter

When a large N counter is required by the application, there is a possibility that the PLL response becomes slow due to the counter response delay time. In the case of a high frequency application, the counter delay time should be accounted for in the overall PLL design.

The external bias resistor sets the VCO center frequency with 1/2 V_{DD} applied to the VCO IN terminal. However, for optimum temperature performance, a resistor value of 3.3 k Ω with a 3-V supply and a resistor value of 2.5 k Ω for a 5-V supply is recommended. For the most accurate results, a metal-film resistor is the better choice but a carbon-compositiion resistor can be used with excellent results also. A 0.22 μ F capacitor should be connected from the BIAS terminal to ground as close to the device terminals as possible.

hold-in range

From the technical literature, the maximum hold-in range for an input frequency step for the three types of filter configurations shown in Figure 25 is as follows:

$$\Delta \omega_{\text{H}} \simeq 0.8 \, \left(\text{K}_{\text{P}}\right) \left(\text{K}_{\text{V}}\right) \left(\text{K}_{\text{f}}(\infty)\right)$$

Where

 $K_f(\infty)$ = the filter transfer function value at $\omega = \infty$

Figure 24. Example of a PLL Block Diagram

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

APPLICATION INFORMATION

low-pass-filter (LPF) configurations

Many excellent references are available that include detailed design information about LPFs and should be consulted for additional information. Lag-lead filters or active filters are often used. Examples of LPFs are shown in Figure 25. When the active filter of Figure 25(c) is used, the reference should be applied to FIN-B because of the amplifier inversion. Also, in practical filter implementations, C2 is used as additional filtering at the VCO input. The value of C2 should be equal to or less than one tenth the value of C1.

Figure 25. LPF Examples for PLL

the passive filter

The transfer function for the lag-lead filter shown in Figure 25(b) is;

$$\frac{V_{O}}{V_{IN}} = \frac{1 + s \cdot T_{2}}{1 + s \cdot (T_{1} + T_{2})}$$

Where

 $T1 = R1 \cdot C1$ and $T2 = R2 \cdot C1$

Using this filter makes the closed loop PLL system a second-order type 1 system. The response curves of this system to a unit step are shown in Figure 26.

the active filter

When using the active integrator shown in Figure 25(c), the phase detector inputs must be reversed since the integrator adds an additional inversion. Therefore, the input reference frequency should be applied to the FIN-B terminal and the output of the VCO divider should be applied to the input reference terminal, FIN-A.

The transfer function for the active filter shown in Figure 25(c) is:

$$F(s) = \frac{1 + s \cdot R2 \cdot C1}{s \cdot R1 \cdot C1}$$

Using this filter makes the closed loop PLL system a second-order type 2 system. The response curves of this system to a unit step are shown in Figure 27.

basic design example

The following design example presupposes that the input reference frequency and the required frequency of the VCO are within the respective ranges of the device.

APPLICATION INFORMATION

basic design example (continued)

Assume the loop has to have a 100 μ s settling time (t_s) with a countdown N = 8. Using the Type 1, second order response curves of Figure 26, a value of 4.5 radians is selected for $\omega_n t_s$ with a damping factor of 0.7. This selection gives a good combination for settling time, accuracy, and loop gain margin. The initial parameters are summarized in Table 5. The loop constants, K_V and K_p, are calculated from the data sheet specifications and Table 6 shows these values.

The natural loop frequency is calculated as follows:

Since

$$\omega_n t_s = 4.5$$

Then

$$\omega_n = \frac{4.5}{100 \ \mu s} = 45 \ k\text{-radians/sec}$$

PARAMETER	SYMBOL	VALUE	UNITS
Division factor	N	8	
Lockup time	t	100	μs
Radian value to selected lockup time	ω _n t	4.5	rad
Damping factor	ζ	0.7	

Table 5. Design Parameters

PARAMETER	SYMBOL	VALUE	UNITS
VCO gain		76.6	Mrad/V/s
fMAX		70	MHz
f _{MIN}	KV	20	MHz
VIN MAX		5	V
VIN MIN		0.9	V
PFD gain	К _р	0.342357	V/rad

Table 6. Device Specifications

	Table	7.	Calculated	Values
--	-------	----	------------	--------

PARAMETER	SYMBOL	VALUE	UNITS
Natural angular frequency	ω _n	45000	rad/sec
$K = (K_V \bullet K_p)/N$		3.277	Mrad/sec
Lag-lead filter Calculated value Nearest standard value	R1	15870 16000	Ω
Calculated value Nearest standard value	R2	308 300	Ω
Selected value	C1	0.1	μF

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

APPLICATION INFORMATION

Using the low-pass filter in Figure 25(b) and divider ratio N, the transfer function for phase and frequency are shown in equations 1 and 2. Note that the transfer function for phase differs from the transfer function for frequency by only the divider value N. The difference arises from the fact that the feedback for phase is unity while the feedback for frequency is 1/N.

Hence, transfer function of Figure 24 (a) for phase is

$$\frac{\Phi 2(s)}{\Phi 1(s)} = \frac{K_p \cdot K_V}{N \cdot (T1 + T2)} \left[\frac{1 + s \cdot T2}{s^2 + s \left[1 + \frac{K_p \cdot K_V \cdot T2}{N \cdot (T1 + T2)} \right] + \frac{K_p \cdot K_V}{N \cdot (T1 + T2)}} \right]$$
(1)

and the transfer function for frequency is

$$\frac{F_{OUT(s)}}{F_{REF(s)}} = \frac{K_{p} \cdot K_{V}}{(T1 + T2)} \left[\frac{1 + s \cdot T2}{s^{2} + s \cdot \left[1 + \frac{K_{p} \cdot K_{V} \cdot T2}{N \cdot (T1 + T2)}\right] + \frac{K_{p} \cdot K_{V}}{N \cdot (T1 + T2)}} \right]$$
(2)

The standard two-pole denominator is $D = s^2 + 2\zeta \omega_n s + \omega_n^2$ and comparing the coefficients of the denominator of equation 1 and 2 with the standard two-pole denominator gives the following results.

$$\omega_{n} = \sqrt{\frac{K_{p} \cdot K_{V}}{N \cdot (T1 + T2)}}$$

Solving for T1 + T2

$$T1 + T2 = \frac{K_p \cdot K_V}{N \cdot \omega_n^2}$$
(3)

and by using this value for T1 + T2 in equation 3 the damping factor is

$$\zeta = \frac{\omega_n}{2} \cdot \left(\mathsf{T2} + \frac{\mathsf{N}}{\mathsf{K}_p \cdot \mathsf{K}_V} \right)$$

solving for T2

$$T2 = \frac{2 \zeta}{\omega} - \frac{N}{K_{p} \cdot K_{V}}$$

then by substituting for T2 in equation 3

$$T1 = \frac{\kappa_{V} \cdot \kappa_{p}}{N \cdot \omega_{n}^{2}} - \frac{2 \zeta}{\omega_{n}} + \frac{N}{\kappa_{p} \cdot \kappa_{V}}$$

APPLICATION INFORMATION

From the circuit constants and the initial design parameters then

$$R2 = \left[\frac{2\zeta}{\omega_{n}} - \frac{N}{K_{p} \cdot K_{V}}\right] \frac{1}{C1}$$
$$R1 = \left[\frac{K_{p} \cdot K_{V}}{\omega_{n}^{2} \cdot N} - \frac{2\zeta}{\omega_{n}} + \frac{N}{K_{p} \cdot K_{V}}\right] \frac{1}{C1}$$

The capacitor, C1, is usually chosen between 1 μ F and 0.1 μ F to allow for reasonable resistor values and physical capacitor size. In this example, C1 is chosen to be 0.1 μ F and the corresponding R1 and R2 calculated values are listed in Table 7.

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

APPLICATION INFORMATION

20

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

APPLICATION INFORMATION

Figure 27. Type 2 Second-Order Step Response

SLAS097E - SEPTEMBER 1994 - REVISED MAY 1997

APPLICATION INFORMATION

[†]R_{BIAS} resistor

Figure 28. Evaluation and Operation Schematic

PCB layout considerations

The TLC2932 contains a high frequency analog oscillator; therefore, very careful breadboarding and printed-circuit-board (PCB) layout is required for evaluation.

The following design recommendations benefit the TLC2932 user:

- External analog and digital circuitry should be physically separated and shielded as much as possible to reduce system noise.
- RF breadboarding or RF PCB techniques should be used throughout the evaluation and production process.
- Wide ground leads or a ground plane should be used on the PCB layouts to minimize parasitic inductance and resistance. The ground plane is the better choice for noise reduction.
- LOGIC V_{DD} and VCO V_{DD} should be separate PCB traces and connected to the best filtered supply point available in the system to minimize supply cross-coupling.
- VCO V_{DD} to GND and LOGIC V_{DD} to GND should be decoupled with a 0.1-µF capacitor placed as close as possible to the appropriate device terminals.
- The no-connection (NC) terminal on the package should be connected to GND.

22

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC2932IPW	NRND	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		Y2932	
TLC2932IPWG4	NRND	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y2932	
TLC2932IPWR	NRND	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		Y2932	
TLC2932IPWRG4	NRND	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y2932	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

15-Apr-2017

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

TEXAS INSTRUMENTS

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC2932IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC2932IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated