

BACKUP-BATTERY SUPERVISORS FOR RAM RETENTION

FEATURES

- Supply Current of 40 µA (Max)
- Battery-Supply Current of 100 nA (Max)
- Precision Supply Voltage Monitor 3.3 V, 5 V, Other Options on Request
- Backup-Battery Voltage Can Exceed V_{DD}
- Power On Reset Generator With Fixed 100-ms **Reset Delay Time**
- Voltage Monitor For Power-Fail or Low-Battery Monitoring
- **Battery Freshness Seal (TPS3619)**
- **Pin-For-Pin Compatible With MAX819,** MAX703, and MAX704
- 8-Pin MSOP Package
- Temperature Range –40°C to +85°C

APPLICATIONS

- **Fax Machines**
- Set-Top Boxes
- **Advanced Voice Mail Systems**
- **Portable Battery-Powered Equipment**
- **Computer Equipment**
- Advanced Modems
- **Automotive Systems**
- Portable Long-Time Monitoring Equipment
- **Point-of-Sale Equipment**

DESCRIPTION

The TPS3619 and TPS3620 families of supervisory circuits monitor and control processor activity by providing backup-battery switchover for data retention of CMOS RAM.

During power on, RESET is asserted when the supply voltage (V_{DD} or V_{BAT}) becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors V_{DD} and keeps RESET output active as long as V_{DD} remains below the threshold voltage (V_{IT}). An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time starts after V_{DD} has risen above V_{IT} . When the supply voltage drops below VIT. the output becomes active (low) again.

The product spectrum is designed for supply voltages of 3.3 V and 5 V. The TPS3619 and TPS3620 are available in an 8-pin MSOP package and are characterized for operation over a temperature range of -40°C to +85°C.

DGK PACKAGE (TOP VIEW)						
V _{OUT}	1 0	8				
	2	7				
GND 📖	3	6	🗀 MR			

5

4

PFI 🗖

ACTUAL SIZE 3,05 mm x 4,98 mm

TYPICAL OPERATING CIRCUIT

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of 么 Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

TPS3619-33, TPS3619-50 TPS3620-33, TPS3620-50

SLVS387H-APRIL 2001-REVISED DECEMBER 2007

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY			
TPS3619-33		AFL	TPS3619-33DGK	Tube, 80			
153019-33		AFL	TPS3619-33DGKR	Tape and Reel, 2500			
TD00040 50	0.50	TPS3619-50DGK	Tube, 80				
TPS3619-50		AFM	TPS3619-50DGKR	Tape and Reel, 2500			
TDC2000.00	–40°C to +85°C	A.N.II	TPS3620-33DGKT	Tape and Reel, 250			
TPS3620-33		ANL	TPS3620-33DGKR	Tape and Reel, 2500			
TPS3620-50	-	0.N.N.4	TPS3620-50DGKT	Tape and Reel, 250			
		ANM	TPS3620-50DGKR	Tape and Reel, 2500			

PACKAGE INFORMATION⁽¹⁾

(1) For the most current specifications and package information, see the Package Option Addendum located at the end of this data sheet or refer to our web site at www.ti.com.

STANDARD AND APPLICATION SPECIFIC VERSIONS

DEVICE NAME	NOMINAL VOLTAGE ⁽¹⁾ , V _{NOM}
TPS3619-33 DGK	3.3 V
TPS3619-50 DGK	5.0 V
TPS3620-33 DGK	3.3 V
TPS3620-50 DGK	5.0 V

 For other threshold voltage versions, contact the local TI sales office for availability and lead-time.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature (unless otherwise noted).⁽¹⁾

		UNIT
Supply voltage:	V _{DD} ⁽²⁾	7 V
	MR and PFI pins ⁽²⁾	-0.3 V to (V _{DD} + 0.3 V)
Continuous output current:	V _{OUT} , I _O	400 mA
	All other pins, $I_0^{(2)}$	±10 mA
Continuous total power dissipation		See Dissipation Rating Table
Operating free-air temperature range	e, T _A	-40°C to +85°C
Storage temperature range, T _{stg}		−65°C to +150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds		+260°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to GND. For reliable operation, the device must not be operated at 7 V for more than t = 1000h continuously.

DISSIPATION RATING TABLE

PACKAGE	θJC	θ _{JA} (LOW-K)	θ _{JA} (HIGH-K)	T _A < 25°C POWER RATING	DERATING FACTOR ABOVE T _A = +25°C	T _A = +70°C POWER RATING	T _A = +85°C POWER RATING
DGK	55°C/W	266°C/W	180°C/W	470 mW	3.76 mW/°C	301 mW	241 mW

Submit Documentation Feedback

Copyright © 2001–2007, Texas Instruments Incorporated

Product Folder Link(s): TPS3619-33 TPS3619-50 TPS3620-33 TPS3620-50

RECOMMENDED OPERATING CONDITIONS

At specified temperature range.

	MIN	MAX	UNIT
Supply voltage, V _{DD}	1.65	5.5	V
Battery supply voltage, V _{BAT}	1.5	5.5	V
Input voltage, V _I	0	V _{DD} + 0.3	V
High-level input voltage, V _{IH}	0.7 x V _{DD}		V
Low-level input voltage, VIL		$0.3 \ x \ V_{DD}$	V
Continuous output current at V_{OUT} , I_O		300	mA
Input transition rise and fall rate at MR		100	ns/V
Slew rate at V_{DD} or V_{BAT} , $\Delta t/\Delta V$		1	V/µs
Operating free-air temperature range, T _A	-40	+85	°C

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions (unless otherwise noted).

	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
			V _{DD} = 1.8 V,	I _{OH} = -400 μA	$V_{DD} - 0.2 V$				
		RESET	V _{DD} = 3.3 V,	I _{OH} = -2 mA	V _{DD} – 0.4 V			V	
	LPath land and and and and the		V _{DD} = 5 V,	I _{OH} = -3 mA	V _{DD} – 0.4 V				
V _{OH}	High-level output voltage		V _{DD} = 1.8 V,	I _{OH} = -20 μA	V _{DD} – 0.3 V				
		PFO	V _{DD} = 3.3 V,	I _{OH} = -80 μA	$V_{DD} - 0.4 V$			V	
			V _{DD} = 5 V,	I _{OH} = −120 μA	$V_{DD} - 0.4 V$				
			V _{DD} = 1.8 V,	$I_{OL} = -400 \ \mu A$			0.2		
V _{OL}	Low-level output voltage	RESET PFO	V _{DD} = 3.3 V,	$I_{OL} = 2 \text{ mA}$			0.4	V	
			V _{DD} = 5 V,	I _{OL} = 3 mA			0.4		
V _{res}	Power-up reset voltage (see	⁽¹⁾)	$I_{OL} = 20 \ \mu A, \ V_{BAT}$ $V_{DD} > 1.1 \ V$	> 1.1 V or			0.4	V	
	Normal mode		I _{OUT} = 8.5 mA, V _{BAT} = 0 V	V _{DD} = 1.8 V	V _{DD} – 50 mV				
			I _{OUT} = 125 mA, V _{BAT} = 0 V	V _{DD} = 3.3 V	V _{DD} – 150 mV			V	
V _{OUT}				$V_{DD} = 5 V$	V _{DD} – 200 mV				
	Battery-backup mode		I _{OUT} = 0.5 mA, V _{BAT} = 1.5 V	$V_{DD} = 0 V$	V _{BAT} – 20 mV			- V	
			I _{OUT} = 7.5 mA, V _{BAT} = 3.3 V		V _{BAT} – 113 mV				
	V _{DD} to V _{OUT} on-resistance		$V_{DD} = 5 V$			0.6	1	0	
r _{DS(on)}	V _{BAT} to V _{OUT} on-resistance		V _{DD} = 3.3 V			8	15	Ω	
		TPS3619-33			2.88	2.93	3		
V _{IT-}	Negative-going input threshold voltage (see ⁽²⁾)	TPS3619-50	$T_{A} = -40^{\circ}C$ to 85^{\circ}	O.	4.46	4.55	4.64	V	
V _{PFI}		PFI			1.13	1.15	1.17		
			1.65 V < V _{IT} < 2.5	5 V		20			
		V _{IT}	2.5 V < V _{IT} < 3.5 V			40			
V _{hys}	Hysteresis		3.5 V < V _{IT} < 5.5 V			60		mV	
v nys	11931010313	PFI				12		111 V	
		VBSW (see ⁽³⁾)	V _{DD} = 1.8 V			55			

(1)

The lowest supply voltage at which RESET becomes active. $t_{r,VDD} \ge 15 \ \mu s/V$. To ensure the best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 μ F) should be placed near the supply terminals. For $V_{DD} < 1.6 \ V$, V_{OUT} switches to V_{BAT} regardless of V_{BAT} . (2)(3)

Copyright © 2001–2007, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating conditions (unless otherwise noted).

PARAMETER		TEST CO	TEST CONDITIONS		TYP	MAX	UNIT	
I _{IH}	High-level input current	MR	$\overline{\text{MR}}$ = 0.7 x V _{DD}	V _{DD} = 5 V	-33		-76	۵
IIL	Low-level input current	IVIR	$\overline{MR} = 0 V$	$v_{DD} = 5 v$	-110		-255	μA
I _I	Input current	PFI			-25		25	nA
				$V_{DD} = 1.8 V$			-0.3	
I _{OS} Short-circuit current	Short-circuit current	PFO	<u>PFO</u> = 0 V	$V_{DD} = 3.3 V$			-1.1	mA
				$V_{DD} = 5 V$			-2.4	
1	V aupply aurrent		$V_{OUT} = V_{DD}$	$V_{OUT} = V_{DD}$			40	۸
I _{DD}	V _{DD} supply current		$V_{OUT} = V_{BAT}$	V _{OUT} = V _{BAT}			40	μA
) V _{BAT} supply current		$V_{OUT} = V_{DD}$	$V_{OUT} = V_{DD}$			0.1	۸
I _(BAT)			$V_{OUT} = V_{BAT}$	V _{OUT} = V _{BAT}			0.5	μA
Ci	Input capacitance		$V_I = 0 V \text{ to } 5 V$			5		pF

TIMING REQUIREMENTS

At $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$.

	PARAMETER	1	TEST CONDITIONS	MIN	TYP	MAX	UNIT
+	Pulse width	at V _{DD}	$V_{IH} = V_{IT} + 0.2 \text{ V}, V_{IL} = V_{IT} - 0.2 \text{ V}$	6			μs
۲w	Fuise width	at MR	$V_{DD} = V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \text{ x} V_{DD}, V_{IH} = 0.7 \text{ x} V_{DD}$	100			ns

SWITCHING CHARACTERISTICS

At R_L = 1 MΩ, C_L= 50 pF, T_A= -40°C to +85°C.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _d	Delay time		$V_{DD} \ge V_{IT}$ + 0.2 V, $\overline{MR} \ge 0.7 \times V_{DD}$ See timing diagram	60	100	140	ms
		V _{DD} to RESET	$V_{IL} = V_{IT} - 0.2 \text{ V}, V_{IH} = V_{IT} + 0.2 \text{ V}$		2	5	
touu	^{TPHL} high-to-low level output	PFI to PFO delay	$V_{IL} = V_{PFI} - 0.2 \text{ V}, V_{IH} = V_{PFI} + 0.2 \text{ V}$		3	5	us
PHL		MR to RESET	$ \begin{array}{l} V_{\text{DD}} \geq V_{\text{IT}} \textbf{+} \; 0.2 \; V, \; V_{\text{IL}} \textbf{=} \; 0.3 \; \textbf{x} \; V_{\text{DD}}, \\ V_{\text{IH}} = 0.7 \; \textbf{x} \; V_{\text{DD}} \end{array} $		0.1	1	μο

t

5

SLVS387H-APRIL 2001-REVISED DECEMBER 2007

Table 1. FUNCTION TABLE

$V_{DD} > V_{IT}$	$V_{DD} > V_{BAT}$	MR	V _{OUT}	RESET
0	0	0	V _{BAT}	0
0	0	1	V _{BAT}	0
0	1	0	V _{DD}	0
0	1	1	V _{DD}	0
1	0	0	V _{DD}	0
1	0	1	V_{DD}	1
1	1	0	V _{DD}	0
1	1	1	V_{DD}	1

PFI > V _{PFI}	PFO			
0	0			
1	1			
CONDITION.: V _{DD} > V _{DD_MIN}				

Downloaded from Arrow.com.

Ĵ.

TEXAS INSTRUMENTS www.ti.com

TPS3619-33, TPS3619-50 TPS3620-33, TPS3620-50

SLVS387H-APRIL 2001-REVISED DECEMBER 2007

TEXAS INSTRUMENTS www.ti.com

Table 2. TERMINAL FUNCTIONS

TERMINAL			DESCRIPTION					
NAME	NO.	I/O	DESCRIPTION					
GND	3	I	Ground					
MR	6	I	Manual reset input					
PFI	4	I	Power-fail comparator input					
PFO	5	0	Power-fail comparator output					
RESET	7	0	Active-low reset output					
V _{BAT}	8	I	Backup-battery input					
V _{DD}	2	I	Input supply voltage					
V _{OUT}	1	0	Supply output					

FUNCTIONAL BLOCK DIAGRAM

7

SLVS387H-APRIL 2001-REVISED DECEMBER 2007

TYPICAL CHARACTERISTICS

TEXAS TRUMENTS

TYPICAL CHARACTERISTICS (continued)

9

SLVS387H-APRIL 2001-REVISED DECEMBER 2007

TYPICAL CHARACTERISTICS (continued)

Downloaded from Arrow.com.

DETAILED DESCRIPTION

Battery Freshness Seal (TPS3619)

The battery freshness seal of the TPS3619 family disconnects the backup-battery from internal circuitry until it is needed. This function prevents the backup-battery from being discharged unit the final product is put to use. The following steps explain how to enable the freshness seal mode.

- 1. Connect V_{BAT} ($V_{BAT} > V_{BAT}$ min)
- 2. Ground PFO
- 3. Connect PFI to V_{DD} (PFI = V_{DD})
- 4. Connect V_{DD} to power supply ($V_{DD} > V_{IT}$) and keep connected for 5 ms < t < 35 ms

The battery freshness seal mode is automatically removed by the positive-going edge of $\overline{\text{RESET}}$ when V_{DD} is applied.

Power-Fail Comparator (PFI and PFO)

An additional comparator is provided to monitor voltages other than the nominal supply voltage. The power-fail-input (PFI) is compared with an internal voltage reference of 1.15 V. If the input voltage falls below the power-fail threshold $V_{IT(PFI)}$ of typical 1.15 V, the power-fail output (PFO) goes low. If $V_{IT(PFI)}$ goes above $V_{(PFI)}$, plus about 12-mV hysteresis, the output returns to high. By connecting two external resistors, it is possible to supervise any voltages above $V_{(PFI)}$. The sum of both resistors should be about 1 M Ω , to minimize power consumption and also to assure that the current in the PFI pin can be ignored compared with the current through the resistor network. The tolerance of the external resistors should be not more than 1% to ensure minimal variation of sensed voltage. If the power-fail comparator is unused, PFI should be connected to ground and PFO left unconnected.

Backup-Battery Switchover

In case of a brownout or power failure, it may be necessary to preserve the contents of RAM. If a backup battery is installed at V_{BAT}, the device automatically switches the connected RAM to backup power when V_{DD} fails. In order to allow the backup battery (e.g., a 3.6-V lithium cell) to have a higher voltage than V_{DD}, these supervisors do not connect V_{BAT} to V_{OUT} when V_{BAT} is greater than V_{DD}. V_{BAT} only connects to V_{OUT} (through a 15- Ω switch) when V_{DD} falls below V_{IT} and V_{BAT} is greater than V_{DD}. When V_{DD} recovers, switchover is deferred either until V_{DD} crosses V_{BAT}, or until V_{DD} rises above the reset threshold V_{IT}. V_{OUT} connects to V_{DD} through a 1- Ω (max) PMOS switch when V_{DD} crosses the reset threshold.

FUNCTION TABLE								
V _{DD} > V _{BAT}	$V_{DD} > V_{IT}$	V _{OUT}						
1	1	V _{DD}						
1	0	V _{DD}						
0	1	V _{DD}						
0	0	V _{BAT}						

VBAT – Backup-Battery Supply Voltage – V

Figure 13. Normal Supply Voltage vs Backup-Battery Supply Voltage

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	Lead finish/ MSL rating/		Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS3619-33DGK	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFL
TPS3619-33DGK.Z	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFL
TPS3619-33DGKG4	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFL
TPS3619-33DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFL
TPS3619-33DGKR.Z	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFL
TPS3619-33DGKRG4	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFL
TPS3619-50DGK	Obsolete	Production	VSSOP (DGK) 8	-	-	Call TI	Call TI	-40 to 85	AFM
TPS3619-50DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFM
TPS3620-33DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ANL
TPS3620-33DGKT	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ANL
TPS3620-50DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ANM

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

www.ti.com

PACKAGE OPTION ADDENDUM

14-May-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3619-33DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3619-50DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3620-33DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3620-33DGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3620-50DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Apr-2024

*All dimensions are nominal

Device	evice Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS3619-33DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0	
TPS3619-50DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0	
TPS3620-33DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0	
TPS3620-33DGKT	VSSOP	DGK	8	250	358.0	335.0	35.0	
TPS3620-50DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0	

DGK0008A

PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

DGK0008A

EXAMPLE BOARD LAYOUT

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
- on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

DGK0008A

EXAMPLE STENCIL DESIGN

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated