-
AtmeL USER GUIDE

Wireless Production Test Reference

Atmel AT-WPTRB

42253A-WIRELESS-03/2014

Downloaded from AFrow.com.

http://www.arrow.com

Table of Contents

1. OVEBIVIEW .. e aaaeaaens 3
2. FRAMUMES... e 3
3. ADDIreVviatioNSoooviiiiiiiiiiiiiie e 3
4. Production TeSt SEtUP......coiiiiiiiiee e 4
4.1 Hardware OVEIVIEW..........oiiiuiiiiii ettt e et e e e e e e e e e e ennnees 5
411 Guidelines for Designing a Customer Adapter Boardcc.......... 8
4111 Hardware Guidelinesccooiiiiiiiiiiieeeeee e 8
411.2 Mechanical Guidelines...........cccooiiiiiiiiiiiieee e 9
4.1.2 Configure the Hardware for Production Test............ccooiiiiiiiiiiiiiies 10
4.1.21 Prepare the Production Xplained Pro for Crystal

Calibration..........oooiii 10

4.1.2.2 Characterize Golden DUT's used for RF Path Verification
Of TeSt SEtUP:..vviiiii i 10
4.2 FIrmware OVEIVIEWoiiiiiiiiiiiiiii ettt e e e e e e e e eeeas 11
421 Firmware ArchiteCture.............ccoiiiii i 11
422 Production Tests Supported in the WPTR Setup.......ccccceeeevviivnneen... 12
4221 Hardware Testcooiuiiiiiiie e 12
4222 Current Measurement..........cccceviieeiiieee e 12
4223 Crystal Calibration..........c..cccoeovviieiiieiieiee e 12
4224 L =T PR 13
4225 GPIO TSt eiiiiiiiie et 13
4.2.3 Porting Application Firmware to Customer Board...............c.cccceeune 13
4.3 SOMWAre OVEIVIEWeiiiiiiiiie ettt see e e naeeeenes 14
4.4 Running Production TestS......cooiiiiiiiiiiie e 14
441 ConfigUurationeiiii e 15
4411 Configuration of ZigBit USB and Xplained Pro................ 15
4412 Configuration of Tests........cooiiiiiiiiiii 17
442 Running Command-ling Toolccceeeiiiiiiiiiiie e 17
5. Add @ CuSTOM TSt ...oiiiiiiiiiiiiiiiiiieeeeee e 20
5.1 Modifying FirMWAarE........ccoooiiiiiiie ettt e e 21
52 Modifying XML FileS...cooi it 23
5.3 Modifying EXtENSION ClasSccceiiiiiiiiiiiiie e 25
5.4 WrtING TeST CASE....eeiiiiiiiiiiiiiii et 25
6. Customize Test LOgger......couuiiiiiiiiiiiei e 27
Appendix A. Reference Links...........ooovvvieiiiiiiiiic e, 28
Appendix B. Revision History ... 29
Wireless Production Test Reference [USER GUIDE 2

Atmel []

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

1. Overview

Wireless Production Test Reference (WPTR) is a complete production test setup solution offered for customers using
the Atmel® wireless solutions including ZigBee® Transceivers and SoC in their product. Main purpose of this reference
solution is to ensure faster ramp up of production test for customer’s products in high volume manufacturing.

The tests that can be executed in the production site using this framework ensure to cover most of the RF circuitry
functionality. With minimal efforts customers would be able to deploy production testing for their products. This test
setup reduces the need of test equipment and also the test time required in high volume production.

2. Features

WPTR provides production ready setup consisting of hardware, firmware and software. The main features of the test
setup are:
e Supports Atmel Wireless Transceivers and Single Chip Solutions
e Windows® command line tool for running tests
e Extensible framework
e Test cases that the test setup can support
e Customer Product (or here on referred to as DUT) - Current measurement
e Crystal calibration
e Peripheral test
o RSSI test
e GPIO test — Detects shorted pins
e 32kHz crystal test (In SoC devices only)

3. Abbreviations

WPTR - Wireless Production Test Reference
PDT - Production Test

DUT - Device Under Test

MCU - Microcontroller

XPRO - Xplained Pro

AtmeL Wireless Production Test Reference [USER GUIDE] 3

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

4. Production Test Setup

A typical production test setup would comprise of the following elements:
e Hardware:
e Production Xplained Pro board
e ZigBit® USB Stick: ATZB-X-233-USB and ATZB-X-212B-USB
o ATmega256RFR2 Xplained Pro Board: ATMEGA256RFR2-XPRO
e Customer’s board or DUT (in this document we will refer to Production Xplained Pro - Adapter board)
e Software:
e Windows command line software: “pdt_runner.zip”
e Firmware:
e WPTR Application Firmware: “wptr_firmware.zip”

Figure 4-1. An Overview of the Hardware Setup for Production Test of the DUT

use

PRODUCTION XPLAINED PRO - WIRELESS ADAPTOR BOARD

PRODUCTION XPLAINED PRO -
WIRELESS

ATMEL- ATMEGA256RFR2 Xplained pro

-| - Stack up of

™ ¥ P Production Xplained Pro - Wireless
> Adaptor Board {or DUT)
over
Production Xplained Pro - Wireless
Zigbit USB Stick

ATmega256RFR2 Xplained Pro: The control board that interfaces the computer with the DUT and also the
ATmega1284P controller.

In case of a DUT with on-board MCU, this control board would only perform as a controller between the DUT- MCU and
the computer. But if the DUT does not have an on-board MCU, the ATmega256RFR2 on this control board acts as a
baseband controller for the RF only transceiver devices.

Production Xplained Pro: This is a production test board that interfaces the Xplained Pro board and the DUT. The
following interfaces are exposed:

1. JTAG interface of the controller used in the DUT.

2. ATmega1284P which is used as the controller to run most of the production tests:
a. JTAG interface of ATmega1284P.
b. Reset circuitry.
c. Debug UART interface of the ATmega1284P controller.

/ItmeL Wireless Production Test Reference [USER GUIDE] 4

42253A-WIRELESS-03/2014

Downloaded from AFFOW.Com.

http://www.arrow.com

3. CLKREF SMA Connector used for tuning CFPT-126.
CLKREF SMA Connector is used for measuring the reference clock frequency for crystal calibration and tunes
it to the expected value.

4. 10kQ potentiometer (R303) - Potentiometer R303 can be used to tune the clock output on the CLKREF SMA
connector to 1.000065Hz. The accuracy of the DUT crystal calibration depends on this tuning.

Production Xplained Pro - Wireless Adaptor board: This is a reference DUT adaptor board with an
ATmega256RFR2-Zigbit mounted to demonstrate the production test setup.

ZigBit USB Sticks: This is the 2.4GHz or SubGHz ZigBit USB Stick used for RF testing of the DUT.

4.1 Hardware Overview

Figure 4-2. Top Side of the Board

JTAG_TARGET JTAG_EXTN

) - @
i JTAG Programming Connector for

7r405 B €8 11408 Device Under Test
RT

JTAG Programming Connector for
Atmega1284P

UART from Atmega 1284P

External clock reference for

0 o Crystal calibration
RESET to Atmega 1284P
Mounting hole - 1 2B Mounting hole - 2

Guide hole - 1 for stack up .
for DUT and pogo pins in Connector X200 to interface
production test fixture with Device Under Test

Connector X201 to interface
with Device Under Test

Connects to Xplained Pro board

02 Mounting hole - 3 .’\ Mounting hole - 4

Guide hole 2 for stack
up for DUT and pogo pins . ’
in production test fixture Potentiometer to Calibrate

A t m el‘ TCVCXO

R3C2
—— [———EEE Optional Potentiometer with
—’ — higher accuracy to Calibrate

TCVCXO
Potentiometer Optional 10ppm potentiometer

X200 and X201 connectors used on the board is Samtec board-to-board connector, part number: TFM-115-02-SM-D-
LC (CONNECTOR TFM, 2X15 PINS, SMD 1.27 Pitch).

Refer to Table 4-1 and Table 4-2 for pinout details of the board-to-board connectors X200 and X201.

AtmeL Wireless Production Test Reference [USER GUIDE] 5

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Table 4-1. Board-to-board Connector X200

m Pin description m Pin description

Pin 1 GPIO pin short test Pin 2 VCC_TARGET_P3V3
Pin 3 GPIO pin short test Pin 4 VCC_ZB P3V3
Pin 5 GPIO pin short test Pin 6 VCC_CS _P3V3
Pin 7 GPIO pin short test Pin 8 No Connection

Pin 9 GPIO pin short test Pin 10 No Connection

Pin 11 GPIO pin short test Pin 12 No Connection

Pin 13 GPIO pin short test Pin 14 No Connection

Pin 15 GPIO pin short test Pin 16 No Connection

Pin 17 GPIO pin short test Pin 18 JTAG - NRESET
Pin 19 GPIO pin short test Pin 20 JTAG -TCK

Pin 21 GPIO pin short test Pin 22 JTAG -TDI

Pin 23 GPIO pin short test Pin 24 JTAG -TDO

Pin 25 GPIO pin short test Pin 26 JTAG -TMS

Pin 27 GPIO pin short test Pin 28 Ground

Pin 29 GPIO pin short test Pin 30 GPIO pin short test

Table 4-2. Board-to-board Connector X201

m Pin description m Pin description

Pin 1 VCC_TARGET_3V3 Pin 2 CLKO

Pin 3 SDA_DUT Pin 4 SCL_DUT

Pin 5 UART_TX Pin 6 UART_RX

Pin 7 SPI_NSEL Pin 8 SPI_MISO

Pin 9 SPI_MOSI Pin 10 SPI_SCK

Pin 11 NRESET Pin 12 IRQ

Pin 13 SLP_TR Pin 14 FEM_CSD

Pin 15 FEM_CPS Pin 16 DIG1

Pin 17 DIG2 Pin 18 DIG3

Pin 19 DIG4 Pin 20 GPIO1

Pin 21 GPI02 Pin 22 GPIO3

Pin 23 GPIO4 Pin 24 GPIO5

Pin 25 Ground Pin 26 Ground

Pin 27 Ground Pin 28 Ground

Pin 29 Ground Pin 30 Ground
AtmeL Wireless Production Test Reference [USER GUIDE] 6

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Figure 4-3. Bottom Side of the Board

Atmel Corp ® 2013

L]

A08-1898Rev 3

INA226 Current sensor to
measure current consumed
by Device Under Test (DUT)

TCVCXO Crystal
Oscillator

-R-RIE-R-R-H-R-H-J -
PONOCHOOOEE

L]

Figure 4-4. Crystal Calibration and Current Measurement using ATmega1284P

DUT
(or Product)

Power ﬂ»
TCVCXO/
System Clock of
1284P
10MHz Crystal Oscillator
OCOA/ICP1
ATMega1284P
OC2A/TO
CLKO/T1
Power _>3V3
TWI Power .
| DUT_3V3
Power . INA226 Shunt
DUT_3V3 Monitor
- Current Sense

Atmel

Downloaded from AFFOW.COmM.

Wireless Production Test Reference [USER GUIDE]

42253A-WIRELESS-03/2014

7

http://www.arrow.com

DUT 16MHz Crystal Calibrations:

10MHz CFPT-126 Temperature Compensated Voltage Controlled crystal Oscillator (TCVCXO) providing a high degree
of frequency stability over a wide temperature range is used to generate the reference clock for crystal calibration using
ATmega1284P. 10MHz clock output from CFPT-126 is used as system clock by the ATmega1284P.

A low frequency reference clock of 1.000065Hz is generated by cascading two timers, Timer 2 and Timer 0, of
ATmega1284P. Timer 2 module generates a low frequency clock from system clock by using its Output Compare
module and outputs it on Output Compare pin OC2A. This signal is used to clock the Timer module Timer O.

Timer 0 module again uses its Output Compare unit to generate a 1.000065Hz signal on it OCOA pin.
This signal is available on the CLKREF SMA connector for further tuning.

Crystal calibration is done using the Timer 1 module of ATmega1284P, which is clocked from the 4MHz CLKM from the
DUT. Low frequency signal 1.000065Hz is given to the Input Capture pin of the Timer 1. Timer 1 counts between the
rising edges of this signal, is used to calibrate the DUT 16MHz crystal.

Current Measurement:

INA226 Current/Power monitor with I°C interface is used to measure the current consumed by the DUT. ATmega1284
can read and configure the INA226 registers using its TWI interface.

411 Guidelines for Designing a Customer Adapter Board

4.1.1.1 Hardware Guidelines

During the hardware design of the adapter board or DUT, the below mentioned signals, power lines, and GPIOs should
be made available to connect with Production XPRO for executing the mentioned tests (Section 4.2.2) in this document.

GPIO Pin Short Test: The pins described as GPIO Pin Short test are used to test the continuity of the GPIOs and short
between adjacent pins. Connect the GPIO’s that you want to test between adjacent GPIO Pin Short pins.

For example, to test the GPIOs PB2 and PB3; connect PB2 to Pin No. 1 of X200 and PB3 to Pin No. 2 of X200. (Refer
to the schematics in Appendix.)

VCC_CS_P3V3: 3.3V power supply to the DUT. In order to measure the current consumed by the DUT, the DUT has to
be powered from this power supply on the Production XPRO.

VCC_TARGET_P3V3: 3.3V power supply to ATmega1284P on the Production XPRO.

VCC_ZB_P3V3: 3.3V power supply to the DUT before the current sense resistors. This can be used if current
measurement is not required.

JTAG: JTAG lines of the MCU used in the DUT for programming and debugging.

CLKO: Connect the CLKO to the Clock output of the DUT. This clock output should be 4MHz and is used to calibrate
the 16MHz crystal oscillator

SDA_DUT and SCL_DUT: Used to check the TWI peripheral of the DUT. Connect to the TWI lines of DUT accordingly.
UART_RX: Connect to the UART RX pin of the MCU in the DUT.

UART_TX: Connect to the UART TX pin of the MCU in the DUT.

SPI Bus: Connect to the SPI peripheral of the DUT. The DUT acts as a slave module in this reference test setup.
NRESET: Connect to the RESET pin of the DUT.

IRQ: Connect to the IRQ pin of the DUT. DUT interrupts the ATmega256RFR2 Xplained Pro when the data is to be
read.

SLP_TR: Connect to the SLP_TR pin of the RF only Transceivers.
FEM_CSD: Connect to the Chip Select pin of the FEM module if present.

/ItmeL Wireless Production Test Reference [USER GUIDE] 8

42253A-WIRELESS-03/2014

Downloaded from AFFOW.Com.

http://www.arrow.com

FEM_CPS: Connect to the Mode Control pin of the FEM module if used.
DIG1, DIG2, DIG3, and DIG4: Connect to the DIG line DIG1, DIG2, DIG3, and DIG4 of the DUT.

GPIO signals (GPIO1- GPIO5): Five GPIO pins of the ATmega1284P are available as spare GPIO pins that the
customers can use for their requirement.

4.1.1.2 Mechanical Guidelines

Figure 4-5. Reference Stack Up of Boards and Other Mechanicals for Production Test

DuT
Guides to align Floating plate
boards and
other
mechanicals Guide bracket
Double-sided
0 pins
Connect to i
256RFR2-XPRO i
(A09-1705) Guide bracket
1.27mm
SAMTECH
connector
-.\ ;/,‘ (female)

|43

(RERTRRNG [{ITEREE]

$444444444

N

(LSRTSRRATET LRl]

©

Zigbit 2 Testpad Adapter Card

—
-
-
-
i)

WPTR Card Concept Side View

Figure 4-5 shows the example production assembly of boards. An adapter board is mounted onto the WPTR and
customer DUT is placed on the floating plate and the test pads on this DUT connect to the adaptor board through the
pogo pins.

e Guide holes and mount holes: Provide the Guide and Mount holes in the adapter board in line with the
Production XPRO; these are used to ensure the stack-up of boards is aligned for proper contact. For better
understanding and more details of how to provide these holes; refer to the layout of Production Xplained Pro-
Wireless Adapter board

e Guides: Are used to keep the boards and other mechanicals used in the wireless production test setup aligned
with higher accuracy

e Pogo Pins: Double sided pogo pins can be used to interface adaptor board and customer DUT

AtmeL Wireless Production Test Reference [USER GUIDE] 9

42253A-WIRELESS-03/2014

Downloaded from AFFOW.Com.

http://www.arrow.com

e Board to board connector: Use Samtec receptacle connector - SFM-115-L2-S-D-LC (Receptacle SFM, 2X15
PINS, SMD 1.27 Pitch)

e Floating plate: A plate which would hold the customer DUT and expose only the test pad beneath the DUT to
make contact with the pogo pins

4.1.2 Configure the Hardware for Production Test

4.1.2.1 Prepare the Production Xplained Pro for Crystal Calibration

As explained above the ATmega1284P on the Production Xplained Pro outputs a 1.000065Hz clock output on the
CLKREF SMA connector which is used as reference for the DUT crystal calibration. Either the 10kQ potentiometer
(R303) or the optional high precision potentiometer (R304 - not mounted) can be used for tuning the CLKREF clock
output to the expected value of 1.000065Hz.

Connect a frequency counter to the CLKREF SMA connector and measure the frequency. Adjust the potentiometer until
the measured frequency equals 1.000065Hz.
It is advised that the tuning of CLKREF clock output is done for every batch run as the accuracy of the crystal calibration
depends on this tuning.

4.1.2.2 Characterize Golden DUT’s used for RF Path Verification of Test Setup:

Follow the below steps to identify and characterize a customer’s Golden DUT from the production lot to verify the Test
setup.

1. Tx Power Characterization: DUT is configured to transmit data at each defined output power level. Calibrated
measurement equipment like Spectrum Analyzer should be used to determine the real output power from the
DUT at each defined level.

The measured values should then be compared to the specification and DUT with the closest value should be chosen.

Table 4-3. Example Measurement Table

Power level register value Power level from spec [dBm] Measured power level [dBm]

0x0 3.5
0x1 3.5
OxF -16.5

2. Rx Sensitivity Characterization: Rx RSSI sensitivity is measured by applying a range of known input power
levels, and reading the RSSI values from the DUT. The input power levels must be applied using a calibrated
RF generator.

Table 4-4. Example Measurement Table

Power level from generator [dBm] RSSI level register value

0
-10
-20
-30

Run the RF Test (refer to Section 4.2.2) using this Golden DUT in this setup at different Tx power level and log the

RSSI test results.

AtmeL Wireless Production Test Reference [USER GUIDE] 10

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Table 4-5. Example Measurement Table

Power level register value Rx RSSI [dBm] Tx RSSI [dBm]
1 0x0

2 0x1

Whenever there is a shift in the RSSI window used for RF Test for a particular test setup, use the Golden DUT to verify
the setup using the logged results.

4.2 Firmware Overview

WPTR provides firmware examples based on the new generation ZigBit Wireless modules. Firmware examples are
provided as standalone archive containing the applications shown in Error! Reference source not found..

Figure 4-6. Folder Structure

Mame

. WPTR_ProductionXPRO_1284P
J WPTR_RFR2_SoC

J WPTR_Xplained_PRO

. WPTR_Zighit_LISE

WPTR_Zigbit_USB contains the application firmware for ZigBit USB Sticks. Fuse settings for ATxmega256A3U on
ZigBit USB: OxFFFEFFFFOOFF.

WPTR_ProductionXPRO_1284P contains the application firmware running on ATmega1284P controller in the
Production Xplained Pro. Fuse settings for ATmega1284P: OxFF99EO.

WPTR_RFR2_SoC - contains the application firmware demonstrating WPTR on DUT, in this case the
ATmega256RFR2 ZigBit Wireless Module. Fuse settings for ATmega256RFR2 on DUT: 0xFF9998.

WPTR_Xplained_PRO - contains the application firmware running on the ATmega256RFR2 Xplained Pro. The
application also demonstrates the use of WPTR on ZigBit RF only modules such as the AT86RF233 Amplified ZigBit
Wireless Module. Fuse settings for ATmega256RFR2 on Xplained PRO: OxFF99E2.

Atmel Studio Project files are provided for each application along with the archive. The application firmware is tested for
Atmel GCC Tool Chain.

4.21 Firmware Architecture

WPTR firmware applications are based on the Atmel Software Framework, which has been designed to help develop
and glue together the different components of a Software design. Figure 4-7 explains the ASF structure.

AtmeL Wireless Production Test Reference [USER GUIDE] 11

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Figure 4-7. ASF Architecture

Application layer performing the tests

ASF /components /services
/utils y 4
Linker ' A

etc
Low level MCU drivers

v

/boards

Target Device

Refer to http://asf.atmel.com/docs/latest/ for further details on Atmel Software Framework.

4.2.2 Production Tests Supported in the WPTR Setup

4.2.2.1 Hardware Test

Peripherals, such as SPI, UART, and TWI of the SoC devices are verified by conducting a simple echo mode test with
the master controller on ATmega256RFR2 Xplained Pro. Also the 32kHz crystal oscillator connected to the SoC
devices is tested.

In case of RF only transceivers SPI peripheral as well as the GPIOs (RESET, SLP_TR, IRQ) used for transceiver
communication are tested.

4.2.2.2 Current Measurement

The current consumed by the DUT in TRX_OFF state is measured using INA226 Current Shunt monitor, which is
present on the Production Xplained Pro.

4.2.2.3 Crystal Calibration

All the Atmel Transceivers have an option to control the internal capacitance array connected to XTAL1 and XTAL2
using XTAL_TRIM bits in XOSC_CTRL register. Capacitance of OpF to 4.5pF with 0.3pF resolution can be attained.

This test gives you the best XTAL_TRIM value with the CLKM frequency measured at that trim value.

The user can store the XTAL TRIM value in a persistent memory on the DUT for future reference.

AtmeL Wireless Production Test Reference [USER GUIDE] 12

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://asf.atmel.com/docs/latest/
http://www.arrow.com

4.2.2.4 RF Test

The RF performance of the DUT is verified by doing a simple Transmit test with the ZigBit USB Sticks and comparing
the RSSI values with the expected range of values.

Steps executed in RF Test:

DUT transmits a packet of data to the ZigBit USB

ZigBit USB responds back the same packet along with its RSSI value (TX RSSI)

DUT receives the packet from ZigBit USB and verifies the received packet against the transmitted packet
If both the transmitted and received packet in DUT are the same, DUT gets its RSSI value (RX RSSI)
Finally both the TX RSSI and RX RSSI are reported back to the Test PC

4.2.2.5 GPIO Test
Pin short test and continuity test are done on all the required GPIOs of the SoC devices.

4.2.3 Porting Application Firmware to Customer Board

If the customer has designed his own board containing an Atmel SoC Transceiver, Atmel MCU, and a RF only
Transceiver, follow the below steps to port the application firmware to the new hardware:

1.
2.

Open Atmel Studio and Create a New Project from the File menu.

As shown in Figure 4-8, click on User-Boards if the customer board is not supported by Atmel Studio, select
the User Board template based on the Atmel MCU, and click ‘OK’.

Figure 4-8. New Project

FRicw Project |
Recent Templates Sort by: [Default | Search Installed Templates 2 |
Installed Templates =

Type: C/C++
E User Board template - ATmegal 28RFAL CIC++
4 C/C++ This user application template contains
I Arduino-Boards the bare minimum of files needed to start
Atmel-Boards El User Board template - ATmega256RFR2 C/C++ a project which works with the ASF
application builder wizard. [User
Esciinaids application template - User Board
Assembler User Board template - ATSAM4LC2A C/C++ template - ATrnega256RFR2]
Atmel Studio Sclution
User Board template - ATSAM4LCZE C/C++
h User Board template - ATSAMALC2C CiC++
User Board template - ATSAM4LC4A CIC++
User Board template - ATSAM4LC4B C/C++
User Board template - ATSAM4LC4AC C/C++
h User Board template - ATSAMALTEA CiC++
— User Board template - ATSAM4LCEB CIC++
User Board template - ATSAM4LCAEC C/C++
9 n e amcasasieas e -

I Mame: USER_APPLICATIONML I
Lecation: DATO138_Wireless_Tools_2013_ProgramHardware_Projects\Wireless production test reference’\05 =
Solution name: USER_APPLICATIOM1 Create directory for solution

OK Cancel

e ’l

3. This will create a new project in Atmel Studio based on ASF.
4. As shown in Figure 4-9, use the ASF wizard to add the required modules for the application.
AtmeL Wireless Production Test Reference [USER GUIDE] 13

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Figure 4-9. ASF Wizard

4.3

4.4

Atmel

ASF Wizard *AOx

Device: ATmegaS6RFR2 Project: |USER APPLICATIONI ~ |

Extensions Version
Available Modules Selected Modules
Extensions: | Atmel ASFB131) +| Show: B Generic board support (driver)
B IOPORT - General purpose I/0 service (service)
B0 Sleep Controller driver (driver) <

- SPI - Serial Peripheral Interface (driver)

. TWI - Two-wire Master and Slave Interface (driver)

B0 USART - Universal Synchronous/Asynchronous Recei\.rer,-"'l'ransmithl:I
B Watchdog Timer for megaRF (driver) B ™WI - Two-Wire Interface (Common APJ) (service)
0 Serial Bridge (service) —

a System Clock Control (service)
. 5P| - Senial Peripheral Interface Master (Common APY) (service) | standi
B USART - Serial interface (service)

(1} k 4 L[] L

Interrupt management (Common API)

Info Actions Details

B

10.

1.

Depending on the customer board modify the header files such as “user_board.h” and config. header files
under /src/config which helps you configure the System clock and the peripherals under use.

Modify the board_init function in “boards/user_board/init.c” to initialize the customer board based on the
requirement.

Import the application specific source files from “src/src” and “src/inc” of the demo application firmware
“WPTR_RFR2_SoC” to the example project.

Modify the “app_config.h” header file for customizing the application as per the requirements.

Tests mentioned in Section 4.2.2 are implemented in soc_dut_tests.c. The customer can customize the
already existing tests based on his requirement.

RF functionality is implemented in rf_trx.c. When modifying to any other Atmel transceiver, customize rf_trx.c
and underlying transceiver access layer: “trx_access.h” and “trx_access.c”.

If the customer wants to add any new test, follow the instructions in Chapter 5 “Add a Custom Test” to add a
new custom test to the application.

Software Overview

WPTR software contains a Windows command line tool, which controls the hardware modules and executes test cases
against DUT. Following are the requirements for running the software:

Windows XP or later (Win 7, Win 8)
Microsoft® Visual C++® 2008 Redistributable Package (vcredist_x86.exe)

Running Production Tests

WPTR software is bundled in a zip file called ‘pdt_runner.zip’. Extracting the zip file leads to a folder structure as shown
in Figure 4-10.

Wireless Production Test Reference [USER GUIDE] 14

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.microsoft.com/en-us/download/details.aspx?id=29
http://www.arrow.com

Figure 4-10. Folder Structure

Mame Date rmodified Type Size

| out 20-01-2014 16:29 File folder

| SrC 29-01-2014 16:29 File folder

| tests 29-01-2014 16:29 File folder

, xml 29-01-2014 16:29 File folder
|| config.cfg 17-01-2014 10:58 CFG File 1KE
[m pdt_runner.exe 17-01-2014 12:05 Application 10,087 KE

‘pdt_runner.exe’ is the command-line tool. It depends on ‘config.cfg’ for all the configurations required for its execution.
Folders present inside the zip file are organized with respect to contents, for example the ‘tests’ folder contains all the
test cases written in Python. These folders and their contents will be explained in detailed in the following sections.

441 Configuration

‘config.cfg’ has configurations in JSON format and is being used by ‘pdt_runner.exe’. It should be provided with required
information before executing pdt_runner. The following sections will explain configurations in detail.

4.41.1 Configuration of ZigBit USB and Xplained Pro

The configuration details pertaining to ZigBit USB stick and ATmega256RFR2 Xplained Pro boards in the config.cfg file
should be updated, for the pdt_runner.exe to identify and connect to them. The configuration is as shown in Figure 4-11.

Figure 4-11. Configuration

0 =pro:

1 {

2 PortHame : TCoMa™

3 BaudEate : 9600

. TimeQOut : 1

5 wverbose : 2

& ExtCla=zs=s : "rpro controller.XproControllerExc”
T H

zigbit usb:

[= I]

oG Lo L L L G MR ORI R PRI ORI R R BRI

{
1 PortHame : TooM2™
2 BaudRate : 9600
3 Timelut : 1
g verbose : 2
2 ExtClaszs : "zighit usk.ZigbitlUsbExt"
6 1}
In Figure 4-11:

e ‘xpro’ corresponds to the configuration of ATmega256RFR2 Xplained Pro board

e ‘PortName’ corresponds to the EDBG Virtual COM Port enumerated by the embedded debugger present on
ATmega256RFR2 Xplained Pro board. This can be obtained from the “Device Manager” in Windows as shown
in Figure 4-12

AtmeL Wireless Production Test Reference [USER GUIDE] 15

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Figure 4-12. Device Manager

;) MONITers

. ¥ Network adapters
. KB Portable Devices

. ‘? Ports (COM & LPT)

|5 EDBG Virtual COM Port (COMI0)
- Processors

. j Smart card readers
- -4 Sound, video and game controllers

e ‘BaudRate’ refers to the speed with which the pdt_runner.exe communicates with the Xplained Pro board
through the COM port

e ‘TimeOut corresponds to the read timeout (in seconds) of the serial communication. Internally, the

pdt_runner.exe has a retry of 20, so the read timeout is multiplied twenty times resulting in total read timeout of
20 seconds, which is far enough for any test cases to respond properly

e ‘Verbose’ controls the verbosity of the logs pertaining to the communication with the ATmega256RFR2
Xplained Pro. It ranges from 0 to 5, with 5 being most verbose. A verbose value of 0 or 1 is recommended for
production run. Verbose values greater than 2 can be used during debugging

e ‘ExtClass’ an extension class which extends the API available for the ‘xpro’ object. In order to control the
Xplained Pro board, there is an object called ‘xpro’ provided for each test case. The test case can in turn call
the functions/methods available under the xpro object. An extension class should be specified as follows

“<python file name>.<class name>"

Where ‘python file name’ is the name of the Python file without the “.py’ extension and this file should be placed in the
‘src’ folder and ‘class name’ is the name of the class defined in that file. To get an understanding of how an extension
class looks like, refer to ‘xpro_controller.py’ available in ‘src’ folder. ‘xpro_controller.py’ is the default extension Python

file provided for Xplained Pro board. More information on extension class will be discussed under the section <Add a
Custom Test>

‘zigbit_usb’ corresponds to the configuration of ZigBit USB Stick.

e ‘PortName’ — ZigBit USB also enumerates as Virtual COM port on windows. Figure 4-13 shows how it looks
on ‘device manger’

Figure 4-13. Device Manager

> BonItors

> -EF Metwork adapters

473 Ports (COM & LPT)

I L ?’ Communications Port (COM1)

2 D Prncessurs
j Srnart card readers
» -4y Sound, video and game controllers

AtmeL Wireless Production Test Reference [USER GUIDE] 16

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

e ‘ExtClass’ — Similar to Xplained Pro board, the ZigBit USB is controlled from each test case using the object
‘zigbit_usb’. The extension class specified under ZigBit USB configuration extends the functions available in
the ‘zigbit_usb’ object. By default a file called ‘zigbit_dut.py’ is provided as extension file for ZigBit USB Stick
under the ‘src’ folder. More information on extension class will be discussed in Chapter 5 ‘Add a Custom Test’

Other properties found under ‘zigbit_usb’ configuration are similar to Xplained Pro boards’ and the explanation provided
for ‘xpro’ configuration applies to it.

4.4.1.2 Configuration of Tests
Configurations pertaining to tests are ‘test path’ and ‘test suite’ information. Figure 4-14 shows a typical example.

Figure 4-14. Typical Example of Test Configuration

38 testpath: " Stestcs/"

EE

40 testsuite:

41 {

42 Suitel:

43 {

44 SetlUp : "zigbit_ setup.py"

45 CleanlUp : "zigbit cleanup.py"

46

47 Testcs : ["zigbit selftest.py"

(13

"zigkhit demo fw test.py"

[T T T T
(LT T S e T T -
Rl

n

e ‘testpath’ — Folder path where all test cases (*.py files) exists. By default it refers to the ‘tests’ folder which
exists in the same path as pdt_runner.exe

e ‘testsuite’ — Test suite option describes the tests to be executed against the DUT. A test suite is defined as a
group of test cases along with setup and cleanup functions:

e ‘Setup’ test file is executed once before running any of the test cases, if the setup encounters any error
the whole test suite will be aborted

e ‘Cleanup’ test file is executed after all the test cases are run, it will be run even if any of the test cases
encounters error thereby cleaning up the test session

e ‘Tests’ corresponds to list of test cases and each test case is a Python file existing under ‘testpath’
As shown in Figure 4-14, the ‘Suite1’ is the name of the test suite, under which ‘SetUp’, ‘CleanUp’, and ‘Tests’ options
are available. ‘SetUp’ and ‘CleanUp’ are optional, so if no setup or cleanup function is available, they can be left blank
like “” (empty double quotes). Each test case is a Python file and has to be written by following a specific format. This is
discussed in detail under Section 5.4 ‘Writing Test Case’.

4.4.2 Running Command-line Tool

pdt_runner.exe is the command line tool that interacts with ZigBit USB Stick and ATmega256RFR2 Xplained Pro board
and executes all test cases (Python files) against the DUT. Invoking pdt_runner.exe with ‘-h’ options prints out all the
options supported by it. Figure 4-15 shows the invocation of help (‘-h’) option.

AtmeL Wireless Production Test Reference [USER GUIDE] 17

42253A-WIRELESS-03/2014

Downloaded from AFFOW.Com.

http://www.arrow.com

Figure 4-15. pdt_runner command line options

BY Administrator: Chwindows\system32hcmd.exe l — | (=] |ﬁ]

Dz~pdt_runner>pdt_ruanner.exe —h

mi m

Uzage: pdt_runner.exe [OPTIONS]

show this help message and exit
—¢ “config file*, ———config—file=<config file>

Configuration info in a file; Default is ‘config.cfg’
—p <tests path>, ——test—path=<{tests path>

Directory containing test files;: Default iz ' .~ testsr’
—q, ——generate—api Generates API files from Mzgszet HML data

—t {testr», —test={test>
Single test to he executed
—& <geprial numher>, —serial-number=<serial numher>
Serial numbersUnigue ID of the DUT
—y UERBOSE, ——verhose=UERBOSE
Uerbhosity, <8-3» 3 being more verhose

Example: pdt_runner —c config.cfg —v 3

D=~pdt_runnerr_

When invoked without options pdt_runner.exe uses ‘config.cfg’ as the default configuration file found in the same path
and runs with verbosity of 1. A custom configuration file can be provided using the ‘-¢’ option. The configuration file
should have all the properties discussed in Section 4.4.1 ‘Configuration’.

Option *-s’ can be used to provide serial number of the DUT. It is used to log test output against a particular DUT.

AtmeL Wireless Production Test Reference [USER GUIDE] 18

42253A-WIRELESS-03/2014

Downloaded from AFFOW.Com.

http://www.arrow.com

Figure 4-16. Typical Example of Running Test

© N

BY Administrator: Chwindowshsystem32emd.exe

>
» RBunning test — ‘zighit_power_test’
Mame: ZigBit Power Test
> Description: Checks DUT's current consumption
>
Measuring DUT'=s current
Current consumption in limits
Test 0Ok
» Time taken: B.81 seconds
‘zighit_power_test’

¥ Running test — ‘zighit_selftest’
> Mame: ZigBit Selftest
Description: Tests peripheral, GPIO,. crystal and

Crystal calibration...

RSSI Test...
REESI withing limits
0k
> Time taken: B.01 =seconds
‘zighit_selftest’ ... pass

¥ RBunning test — ‘zighit_demo_fw_test’
Mame: ZigBit Demo Fw Test
> Description: Programs the demo firmware and te
>
Programming demo firmware...
0k

Testing demo firmware...

» Time taken: B.81 seconds
‘zighit_demo_fw_test’

» Bunning cleanup — *‘zighit_cleanup’
Cleaning up...

> Test Result:
> Buite - ‘EZigBitTestSuite’
> Tests:
‘zighit_power_test' ... pass
‘zighit_selftest® ... pass
‘zighit_demo_fw_test’ ... pass
» Gleanup:
‘zighit_cleanup’ ... pass

TEST PASSED

D=pdt_runner>

The standard console output shows execution steps and the debug prints from the test cases. At the end the
consolidated test report is displayed.

Instead of running the whole test suite provided in the configuration file, the user can choose to run a single test case
(test file) by using the ‘-t’ option. This test case file must be present in the test path, which is provided in the
configuration file or in the command line option ‘—p’ <test path>.

A typical example of running single test case is as follows:

pdt_runner.exe —t “zigbit_selftest.py”

AtmeL Wireless Production Test Reference [USER GUIDE] 19

42253A-WIRELESS-03/2014

Downloaded from AFFOW.Com.

http://www.arrow.com

5. Add a Custom Test

Adding a custom test to production test reference involves the following steps:

e Modifying/appending firmware for ATmega256RFR2 Xplained Pro and DUT
e Modifying Xplained Pro specific XML file
e Writing test cases following a specific format

Figure 5-1 gives an insight of the interaction between ‘pdt_runner.exe’, test cases, and the WPTR hardware modules for
adding a custom test case.

Figure 5-1. Interaction Between ‘pdt_runner.exe’, Test Cases, and the WPTR Hardware Modules

Test case python file contains test class which
has access to ‘xpro’ & ‘zigbit_usb’ object.

test_case.py

xpro’ object —used to } ‘ ‘zigbit_usb’ object — used to
control the Xplained Pro control the Zigbit USB stick
board ,

Xpro pdt_runner.exe zigbit_usb

Wrapper / xml files — contains Wrapper /

Extension file command response Extension file
definitions _
xpro_controller.py zigbit_usb.py
xpro_msgdef.xml

Automated

xpro_msgset.xml
API file

Xpro_mcoder.py

API file

‘ zigbit_usb_msgdef.xml ‘ Automated
Generation of iabit dut d
mcoder.py file ZIgoit_dut_mcoder.py

‘ Zigbit_usb_msgset.xml

USB Virtual
COM
Test PC

ATmega256RFR2 Xplained ZigBit USB Stick
Pro Board

!

Production Xplained Pro
Board

¢

Adapter Board
+

DUT

AtmeL Wireless Production Test Reference [USER GUIDE] 20

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Here pdt_runner communicates with ATmega256RFR2 Xplained Pro and ZigBit USB stick using commands and
responses called messages. These messages follow a simple protocol structure, which is discussed in detail in a
separate document “WPTR Protocol Specification Document”.

There are two types of messages called ‘request’ and ‘confirm’:
e ‘Request’ refers to commands sent to hardware
e ‘Confirm’ refers to responses received from hardware

Adding new test requires new messages to be defined both in Xplained Pro firmware and in the XML files of software
framework. The following sections explain the sequence of steps in detail.

5.1 Modifying Firmware

e ‘“wptr_msg_const.h” under “src/inc” in WPTR_Xplained_PRO_RFR2 and WPTR_RFR2_SoC should be
appended with new message ID used for communication between Test PC and Xplained Pro, and between
Xplained Pro and the DUT.

Figure 5-2. Wptr_msg_const.h Containing Hardware Test Request and Confirm Messages

—lenum msg_code {
/* Command requests */

/* From Test PC to Xplained PRO */

HWTEST_REQ = {(8x59),
/* Xplained PRO & DUT*/
RUN_HWTEST_REQ = {exa3),

/* Confirms and Indications */

/* Xplained PRO to Test PC */

HWTEST_CONFIRM = {(@x79),
/* DUT to Xplained PRO*/
RUN_HWTEST_CONFIRM = {(@x13),
¥
SHORTENUM;

e Add support for this new message ID in “serial_handler.c” under function “handle_incoming_msg()” for both
WPTR_Xplained_PRO_RFR2 and WPTR_RFR2_SoC

AtmeL Wireless Production Test Reference [USER GUIDE] 21

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Figure 5-3. handle_incoming_msg() in serial_handler.c

il
* \brief Parses the Received Data in the Buffer and Process the Commands
* accordingly.
*/
—]static inline wvoid handle_incoming_msg(woid)
{
/* Check for protocol id is Egggfgmgggg Analyzer */
if (PROTOCOL_ID != sio_rx buf[1])
{ /* protocol id */
return;
L ¥
/* Process the commands */
switch (sio rx_buf[MESSAGE_ID POS])
{ /* message id */
=l case HWTEST_REQ:
1
/* Run the HW test including UART, TWI, 32kHz crystal test */
test_functions.func_hwtest();
L 1
break;
= default:
1
L 1
}
¥

e These below files in the WPTR_Xplained_Pro_RFR2 are to be modified accordingly:

mcudut_tests.c: Include functions related to the tests executed in MCU of the DUT. production_xpro_1284p_tests.c:
Include functions related to the tests executed in ATmega1284P of Production XPRO.

rfonly_dut_tests.c: Include functions related to the RF only-DUT tests.
e Depending on the test that is being executed, the relevant functions should be added in the files mentioned
above

Figure 5-4. Example Test Case for MCU DUT

El ‘f**
* ‘\brief Write the RF Register power and channel
* \param rf_channel - Channel
* ‘\param rf_power - Power value of the register
*
*f
Fweid mcu_config_rf_param(uint8_t channel, uint8_t power)
1
/* Create the command format with msg id & payload*/
cmd_dut.msg_id = SET_RFPARAM_REQ;
*cmd_dut.ptr_payload++ = power;
*cmd_dut.ptr_payleoad++ = channel;
cmd_dut.ptr_payload -= 2;
/* Update the length in the protocol format */
cmd_dut.length = PROTOCOL ID LEN + MSG_ID LEN + 2;
/* Send the command via SPI */
spi_send_cmd(&cmd_dut, &spi_dut_device_conf);
/* Get the response back from SPI */
get_response(&response_dut, &spi dut_device_conf);
/* send the data via serial interface */
send_response (RF_PARAM_CONFIRM, response_dut.ptr payload, response_dut.length - PROTOCOL_ID LEN - MSG_ID _LEN);
'}
AtmeL Wireless Production Test Reference [USER GUIDE] 22
42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

5.2 Modifying XML Files
Python API file, ‘xpro_mcoder.py’ in ‘out’ folder is used to send or receive messages to and from ATmega256RFR2
Xplained Pro board. This file, which is generated automatically from message set XML files (present in ‘xml’ folder) has
the definition of messages (commands and responses). ‘xpro_msgdef.xml’ and ‘xpro_msgset.xml’ are the message set
files pertaining to ATmega256RFR2 Xplained Pro.

e The xpro_msgset.xml’ should be appended with new message name and its ID (offset)

Figure 5-5. A Typical Example of the HW_TEST Request and Confirm Messages in xpro_msgset.xml

<code>
<name>HWTEST REQ</name:>
<offset»89</offzet>

</code>

<code>
<name>HWTEST CONFIEM</name>
<offset>121</offset>

</ code>

<code>

Where,
<name>- wraps the name of the request/response message and

<offset> - wraps the unique ID (0-255) assigned for that message.

e The xpro_msgdef.xml’ file should be appended with message definition, which involves providing the
parameters of the message

AtmeL Wireless Production Test Reference [USER GUIDE] 23

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Figure 5-6. Example of HW_TEST Messages Definitions in xpro_msgdef.xml

<messagex
<name>HWTEST REQ</name>
<description>Thi=s is HWTEST.reqmest message structure</description>
<Lyperreds/ tyvpe>
<iltems>
<item>
<name>startup_param<fname>
<type>uintd t</type>
<description»Start up parameter to identify the reqmest.«</description>
</fitem>
<fitems>
</message>
<messagex
<name>HWTEST CONFIRM</name>
<description>Thizs is HWTEST.confirm message strocture</description>
<typeronf</types>
<iltems>
<item>
<name>statos</name>
<type>uintd_t</type>
<description>
* Statun= of the regmest: This can take the following values,
* Ox00 - SUCCESS
* Ox01 - FATLURE
</description>
<fitem>
</items>
</messages

Where,
<message> - the whole message definition.

<name> - the name of the message which is provided in ‘xpro_msgset.xml’. This name in small letters is regarded as
the API function name.

<description> - brief description of the message.

<type> - defines the type of message (request or response).

‘req’- represents request messages.

‘cnf’ — represents confirm messages.

<items> - group of parameters sent or received in the message.

<item> - definition of single parameter.

<name> - name of the parameter. This name is used as argument for the API function.
<description> - brief description of the parameter.

<type> - type of the parameter. It also defines the number of bytes to be considered as the parameter in the message
byte stream. Following are the possible values of the <type> tag.

uint8_t, uint16_t, uint32_t, uint64_t, int8_t, int16_t, int32_t, int64_t, float, octetstr_t.

XML Schema files ‘msgdef.xsd’ and ‘msgset.xsd’ present in ‘xml’ folder provides more information on structure of the
message set XML files.

AtmeL Wireless Production Test Reference [USER GUIDE] 24

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

5.3

5.4

Once the new message is added in the message set files, the API file can be auto generated using the pdt_runner.exe.
Invoking pdt_runner.exe with ‘-g’ option transforms the message set XML files of ATmega256RFR2 Xplained Pro and
ZigBit USB into API files called ‘xpro_mcoder.py’ and ‘zigbit_usb_mcoder.py’.

pdt_runner.exe —g

Modifying Extension Class

Extension classes are defined to provide more API functions to control hardware boards. Default extension classes for
ATmega256RFR2 Xplained Pro and ZigBit USB are defined in ‘xpro_controller.py’ and ‘zigbit_usb.py’ files. The
functions created under extension classes can consume the API functions exposed by the auto generated mcoder files
thereby acting as wrappers. Figure 5-7 shows the default extension class containing a wrapper function for the HW
TEST message discussed in above sections.

Figure 5-7. Default Extension Class
~la== XproControllerExt:

def test hw(self):
self.hwtest_req(DEFAULT STARTUP PARAM)
val = self.hwtest confirm()
if wal.status != self.5UCCES5S:
raize Exception, ERROR CODE.get (val.status, val.status)
return val

‘XproControllerExt’ is the extension class name and ‘test_hw’ is the function. ‘test_hw’ calls the ‘hwtest_req’ and
‘hwtest_confirm’ functions, which are found in xpro_mcoder.py API file. This provides better abstraction and helps to
write test cases very clearly.

Writing Test Case

A test case here refers to a Python source file placed in the ‘tests’ folder. A basic understanding of Python is a pre-
requisite for writing a test case. The test case must follow a template, for pdt_runner to read it and execute it properly.
‘template.py’ available in ‘tests’ folder acts as the starting point for custom tests cases. Figure 5-8 shows the template
test case file.

AtmeL Wireless Production Test Reference [USER GUIDE] 25

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Figure 5-8. Template Test Case File

Template Test Case file for Wireless Production Test Reference (WETE) .
MOTE: Please use this file for writing custom test cases.

Following wariables should not be deleted.
testname = "<Test Case Hame>"
testdescription = "«<Cne line description of Test>"

Template test case class; The class name should not be modified.
class Test:

This function can be appended for any intialization.
def dnit (self, info):

gelf.info = info

self.message = ""

self.testlogger = info['testlogger']

self.xpro = info['xpro']

self.golden dut = info['golden dut']

[*}
Hh

getMessage (self) :
return self.message

[*3

setMessage (self, message):
self.message = message

[*3

run (self) :
Test case code goes here

If the test case fails the following should be done.
self.secMessage ("FAIL™)
return False

If the test case passes the following should be done.
self.setMessage ("PASS™)
return True

The template test case file is self explanatory. All the test code goes inside the function ‘run’ found under ‘Test’ class.

Any initializations have to be appended in the *__init__’ function. ‘xpro’ and ‘zigbit_usb’ objects created in the *__init_’
function provides access to ATmega256RFR2 Xplained Pro and ZigBit USB Stick respectively. These objects have the
functions exposed by the API files ‘xpro_mcoder.py’ and ‘zigbit_usb_mcoder.py’ and also by the extension files
‘xpro_controller.py’ and ‘zigbit_usb.py’. The ‘run’ function must return a Boolean saying the status of test (True — Pass;
False — Fail). Users can explore existing test cases files to gain more insight.

After a test case file is added, the config.cfg file should be updated to provide the test case name in the ‘testsuite’
options, so that pdt_runner can find it and execute it.

AtmeL Wireless Production Test Reference [USER GUIDE] 26

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

6. Customize Test Logger

A test logger is created for logging test parameters of DUT, like measured current, RSSI value in RF test, crystal
calibration value, etc. The test logger here is not used for logging the standard console output.

‘testlogger.py’ residing in ‘src’ folder contains classes of test loggers. Based on the configuration of test logger in
‘config.cfg’, the pdt_runner creates a test logger object and provides it to every test case. Each test case has access to
the logger using the object ‘self.testlogger’.

Figure 6-5. Typical Test Logger Configuration

67 testlogger:

68 {
g LoggerFile ", /erc/testlogger.py"™
0 Class= : "FileParameterLogger™
T1 Config
72 {
T3 Hame : "Template Logger™
T4 CutputLogFile : "parameter log.csv"
75
T6E

‘LoggerFile’ refers to the source that contains the implementation of test logger class.
‘Class’ refers to the name of test logger’s class found in the ‘LoggerFile’.

‘Config’ refers to the argument passed during creation of test logger object. This enables user defined arguments to be
passed on to the class during object creation.

By default, the ‘FileParameterLogger’ is used and it logs the parameters and their values in a CSV file
‘parameter_log.csv’ provided in ‘OuputLogFile’ option.

Figure 6-6. Typical Usage of Test Logger Object Inside a Test Case

self.testlogger.add parameter (parameter = "DIOT Cu nt",
value = result['current'],
status = "'fail',
info = "Current consumed is not within limics™,

minlimit = MIN DUT CURRENT,
maxlimit MAX DUT CURREMNT)

Users can log this information not only to a file but also to a database, so that the test information of a DUT can be
accessed remotely. In order to achieve this, the test logger class should be extended by following these steps:

e Create a new test logger class by inheriting ‘ParameterLogger’ or ‘FileParameterLogger’

e Override ‘new_record’ function to do any activity that has to be done before the logging starts

e Override ‘close_record’ function to do any activity that has to be done after the test session is finished. In this
function, the logged parameters are available in the ‘param’ variable and it can be pushed into a server or can
be stored wherever required. ‘close_record’ function implemented in ‘FileParameterLogger’ class shows, how
the parameters are stored in a CSV file.

If pdt_runner is invoked with DUT serial number option (-s), the test logger can log parameters along with
serial_number. This helps to identify test output pertaining to any specific DUT.

e Update config.cfg with the new test logger class

AtmeL Wireless Production Test Reference [USER GUIDE] 27

42253A-WIRELESS-03/2014

Downloaded from AFFOW.Com.

http://www.arrow.com

Appendix A. Reference Links
e Atmel ATmega256RFR2 Xplained Pro Evaluation Kit
e WPTR Protocol Specification Document
e Atmel ATxmega256A3 and AT86RF233 ZigBit USB Stick
e SAMTEC - TFM-115-02-L-D-LC — HEADER: https://www.samtec.com/ftppub/pdf/TFM_SM.PDF
e SAMTEC - SFM-115-L2-S-D-LC — SOCKET: https://www.samtec.com/ftppub/pdf/SFML_sm.PDF

AtmeL Wireless Production Test Reference [USER GUIDE] 28

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://store.atmel.com/PartDetail.aspx?q=p:10500338
http://store.atmel.com/PartDetail.aspx?q=p:10500367#tc:description
https://www.samtec.com/ftppub/pdf/TFM_SM.PDF
https://www.samtec.com/ftppub/pdf/SFML_sm.PDF
http://www.arrow.com

Appendix B. Revision History

Doc. Rev. Date Comments
42253A 03/2014 Initial document release

AtmeL Wireless Production Test Reference [USER GUIDE] 29

42253A-WIRELESS-03/2014

Downloaded from AFFOW.COmM.

http://www.arrow.com

Atmel

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA

Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Enabling Unlimited Possibilities®

Atmel Asia Limited

Unit 01-5 & 16, 19F

BEA Tower, Millennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus

Parkring 4

D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

© 2014 Atmel Corporation. All rights reserved. / Rev.: 42253A-WIRELESS-03/2014

Atmel Japan G.K.

16F Shin-Osaki Kangyo Building
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032

JAPAN

Tel: (+81)(3) 6417-0300

Fax: (+81)(3) 6417-0370

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, ZigBit®, and others are registered trademarks or trademarks of Atmel Corporation
or its subsidiaries. Windows® is a registered trademark of Microsoft Corporation in U.S. and or other countries. Other terms and product names may be

trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,

automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Downloaded from AFFOW.COmM.

http://www.atmel.com/
http://www.arrow.com

	1. Overview
	2. Features
	3. Abbreviations
	4. Production Test Setup
	4.1 Hardware Overview
	4.1.1 Guidelines for Designing a Customer Adapter Board
	4.1.1.1 Hardware Guidelines
	4.1.1.2 Mechanical Guidelines

	4.1.2 Configure the Hardware for Production Test
	4.1.2.1 Prepare the Production Xplained Pro for Crystal Calibration
	4.1.2.2 Characterize Golden DUT’s used for RF Path Verification of Test Setup:

	4.2 Firmware Overview
	4.2.1 Firmware Architecture
	4.2.2 Production Tests Supported in the WPTR Setup
	4.2.2.1 Hardware Test
	4.2.2.2 Current Measurement
	4.2.2.3 Crystal Calibration
	4.2.2.4 RF Test
	4.2.2.5 GPIO Test

	4.2.3 Porting Application Firmware to Customer Board

	4.3 Software Overview
	4.4 Running Production Tests
	4.4.1 Configuration
	4.4.1.1 Configuration of ZigBit USB and Xplained Pro
	4.4.1.2 Configuration of Tests

	4.4.2 Running Command-line Tool

	5. Add a Custom Test
	5.1 Modifying Firmware
	5.2 Modifying XML Files
	5.3 Modifying Extension Class
	5.4 Writing Test Case

	6. Customize Test Logger

