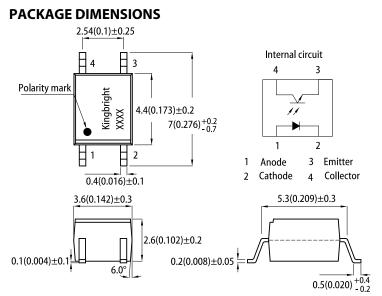
AB356N6T

Photocoupler

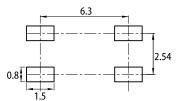
FEATURES

- High collector-emitter Voltage
- Opaque type, mini-flat package
- · Subminiature type (The volume is smaller than that of our conventional DIP type by as far as 30%)
- Maximum working isolation voltage V_{IOWM} = 450 V_{RMS}
- Maximum repetitive peak isolation voltage V_{IORM} = 630 V_{peak}
- Maximum transient isolation voltage V_{IOTM} = 6 kV_{peak}
- Maximum withstanding isolation voltage V_{ISO} = 3750 V_{RMS}
- Employs double transfer mold technology
- Recognized by UL and CUL, file NO.E225308
- Package: 1000 pcs/reel
- Moisture sensitivity level : 4
- RoHS compliant


APPLICATIONS

- · Hybrid substrates that require high density mounting
- Programmable controllers

NOTES ON HANDLING


Cautions regarding electrical noise

Please ensure the power supply is stable at all times. Even if the designed operating voltage is within specification limits, sudden voltage spikes at startup may damage the component.

RECOMMENDED SOLDERING PATTERN

(units : mm; tolerance : ± 0.15)

- Notes:
 1. All dimensions are in millimeters (inches).
 2. Tolerance is ±0.5(0.02') unless otherwise noted.
 3. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.
 4. The device has a single mounting surface. The device must be mounted according to the specifications.

ELECTRICAL / OPTICAL CHARACTERISTICS at T_A=25°C

Parameter		Symbol	Value			Unit	Test Canditions	
			Min.	Тур.	Max.	Unit	Test Conditions	
Input	Forward Voltage		V _F	-	1.2	1.4	V	I _F =20mA
	Peak Forward Voltage		V _{FM}	-	-	3.0	V	I _{FM} =0.5A
	Reverse Current		I _R	-	-	10	μA	V _R =4V
Output	Collector Dark Current		I _{CEO}	-	-	10 ⁻⁷	А	I _F =0mA,V _{CE} =20V
	Collector-Emitter Breakdown Voltage		BV _{CEO}	80	-	-	V	I _F =0mA,I _C =0.1mA
	Emitter-Collector Breakdown Voltage		BV _{ECO}	6	-	-	V	I _F =0mA,I _E =10μA
Transfer Characteristics	Current Transfer Ratio		CTR	130	-	400	%	I _⊧ =5mA,V _{CE} =5V
	Collector-Emitter Saturation Voltage		V _{CE(sat)}	-	0.1	0.2	V	I _F =20mA,I _C =1mA
	Response Time	Rise Time	t _r	-	6	-	μs	$V_{CE}=2V, I_{C}=2mA$ $R_{L}=100 \Omega$
		Fall Time	t _f	-	8	-	μs	

Note: 1. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

ABSOLUTE MAXIMUM RATINGS at $T_A=25^{\circ}C$

Parameter		Symbol	Rating	Unit
Input	Forward Current	l _F	50	mA
	Reverse Voltage	V _R	6	V
	Power Dissipation	PD	70	mW
Output	Collector-Emitter Voltage	V _{CEO}	80	V
	Emitter-Collector Voltage	V _{ECO}	6	V
	Collector Current	Ι _C	50	mA
	Collector Power Dissipation	Pc	150	mW
Total Power Dissipation		P _{tot}	170	mW
Isolation Voltage [1]		V _{iso}	3750	Vrms
Operating Temperature		T _{opr}	-30~+100	°C
Storage Temperature		T _{stg}	-40~+125	°C

Notes: 1.40 to 60% RH,AC for 1 minute. 2.Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity – Ref JEDEC/JESD625-A and JEDEC/J-STD-033.

MAXIMUM SAFETY RATINGS

Parameter	Symbol	Value			Unit	Test Condition
Falameter		Min.	Тур.	Max.	Onic	Test condition
Input Current	I _{SI}	-	-	200	mA	-
Output Power Dissipation	P _{so}	-	-	300	mW	-
Ambient Safety Temperature	Ts	-	-	150	°C	-

Note:

1. This optocoupler is designed for electrical isolation only when operating within its specified safety ratings. Compliance with these ratings must be guaranteed by implementing appropriate protective circuits.

F=5mA

TECHNICAL DATA

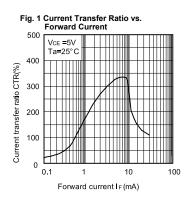
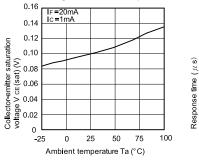



Fig. 5 Collector-Emitter Saturation Voltage vs. Ambient Temperature

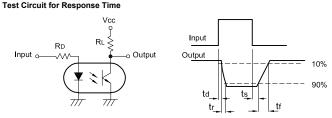


Fig. 2 Forward Current vs.

500

200

100

50

20

10

5

2

1

500

200

100

50

20

10

5

2

1

0.1 L

0.5 0.2

0

0.5

Fig. 6 Response Time vs. Load Resistance

VCE=2

IC=2mA

Ta=25°0

ts

0 1

1 10

Load resistance $RL(K\Omega)$

Forward current IF (mA)

Forward Voltage

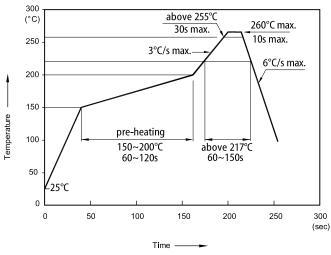
Ta=75°(

·50°0

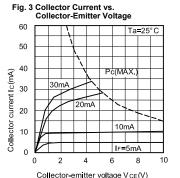
-25° (

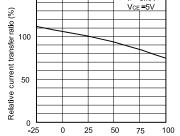
-0° C

1.0 1.5 2.0 2.5 3.0


Forward voltage V F (V)

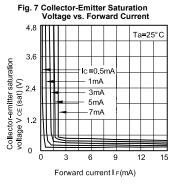
-25°C


3.5


100

REFLOW SOLDERING PROFILE for LEAD-FREE SMD PROCESS

Don't cause stress to the LEDs while it is exposed to high temperature.
 The maximum number of reflow soldering passes is 2 times.
 Reflow soldering is recommended. Other soldering methods are not recommended as they might cause damage to the product.



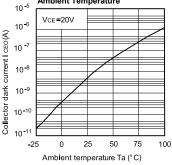
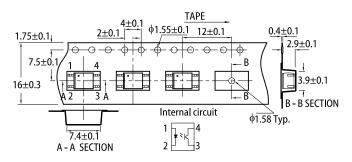
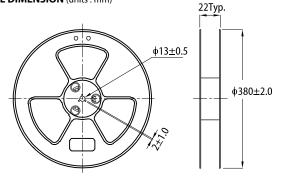
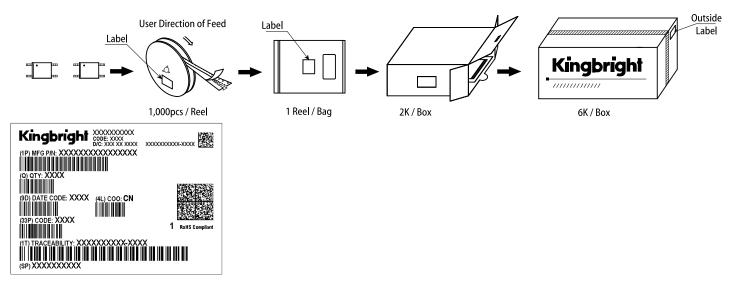

Ambient temperature Ta (°C)

Fig. 4 Relative Current Transfer Ratio vs. Ambient Temperature


150



TAPE SPECIFICATIONS (units : mm)



REEL DIMENSION (units : mm)

O Konger State Content of the Conten

PACKING & LABEL SPECIFICATIONS

RESTRICTIONS ON PRODUCT USE

1. 2.

- 3.
- ESTRICTIONS ON PRODUCTOSE The information in this document represents typical usage and is provided for technical reference. The information in this document is subject to change without notice. Please refer to the latest version of this document for the most updated information. Please ensure this product is used in accordance with the electrical and environmental specifications and tolerances listed in this document. If the usage exceeds the specification range, Kingbright will not be responsible for any subsequent issues. Semiconductor components may be damaged by electrical or physical stresses. The buyer of Kingbright products is responsible to use them in accordance with all safety regulations. During development and design, the user should insure Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products are used within the latest specification tolerances and avoid any situations when the failure of Kingbright products are physical to any situations when the failure of Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products are used within the latest specification tolerances are used within the latest 4 products might cause physical harm, death, or property loss. The information in this document may not be reproduced or retransmitted without Kingbright's permission.

5.

Sec No: DSAQ1958 / 1205000174 Rev No: V.2 Date: 12/28/2024 Control Rev No: V.2 Date: 12/28/2024