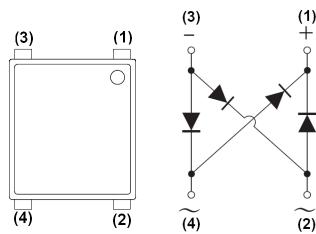


**GLASS PASSIVATED
SURFACE MOUNT BRIDGE RECTIFIERS**

**REVERSE VOLTAGE – 1000 Volts
FORWARD CURRENT – 2.5 Ampere**

GENERAL DESCRIPTION


Suitable for AC-to-DC bridge full wave rectification for SMPS, LED lighting, adapter, battery charger, home appliances, office equipment, and telecommunication applications.

FEATURES

- Rated at 1000V PRV
- Compact, thin profile package design
- Ideal for SMT manufacturing
- Reliable robust construction
- UL recognized file#E364304

Pin Assignment

MECHANICAL DATA

- Molding compound meets UL 94 V-0 flammability rating, Halogen-free, RoHS-compliant, and commercial grade
- Polarity indicator: As marked on body
- Marking : MB25MH
- Weight: 216 mg

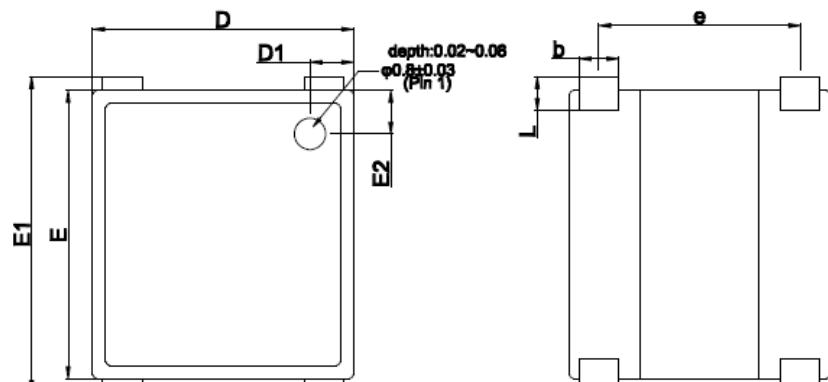
Maximum Ratings & Thermal Characteristics @ $T_A = 25^\circ\text{C}$ unless otherwise specified

Characteristics	Symbol	Limit			Unit
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	1000			V
Maximum DC Blocking Voltage	V_{DC}	1000			V
Maximum Average Forward Rectified Current @ $T_c = 110^\circ\text{C}$	$I_{(AV)}$	2.5			A
Peak Forward Surge Current 8.3ms single half sine-wave	I_{FSM}	80 64			A
Peak Forward Surge Current 1.0ms single half sine-wave	I_{FSM}	160 128			A
$I^2 t$ Rating for fusing (1ms < t < 8.3ms)	$I^2 t$	26.5			A^2s
Operating and Storage Temperature Range	T_J, T_{STG}	-55 to +150			$^\circ\text{C}$

Electrical Characteristics @ $T_A = 25^\circ\text{C}$ unless otherwise specified

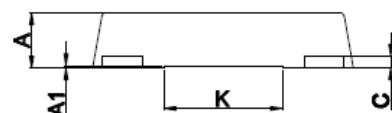
Characteristics	Test Condition	Symbol	Min	Typ.	Max	Unit
Maximum Forward Voltage @ $T_J=25^\circ\text{C}$ @ $T_J=125^\circ\text{C}$	$IF = 1.25\text{A}$	V_F	--	--- 0.78	1.02 ---	V
Maximum Forward Voltage @ $T_J=25^\circ\text{C}$ @ $T_J=125^\circ\text{C}$	$IF = 2.5\text{A}$	V_F	--	--- 0.86	1.1 --	V
Maximum DC Reverse Current at Rated DC Blocking Voltage @ $T_J=25^\circ\text{C}$ @ $T_J=125^\circ\text{C}$	$VR = 1000\text{V}$	I_R	--	--	5 500	μA
Typical junction capacitance per element	Note(1)	C_J	--	30	--	pF

Thermal Characteristics


Characteristics	Symbol	Min	Typ.	Max	Unit
Typical thermal resistance (Note 2)	$R_{\theta JC}$ $R_{\theta JL}$ $R_{\theta JA}$	-- -- --	7.8 16 35	-- -- --	$^\circ\text{C/W}$

Note :

- (1) Measured at 1.0MHz and applied reverse voltage of 4.0V DC.
- (2) Thermal Resistance test performed in accordance with JESD-51. Unit mounted on glass-epoxy substrate with 1oz/ft²_30x30 mm copper pad per pin.

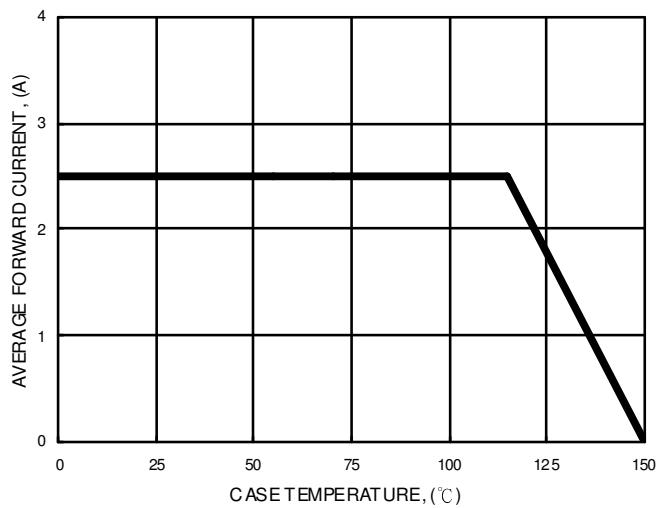

REV. 1, May-2016, KBDA38

Package Dimension

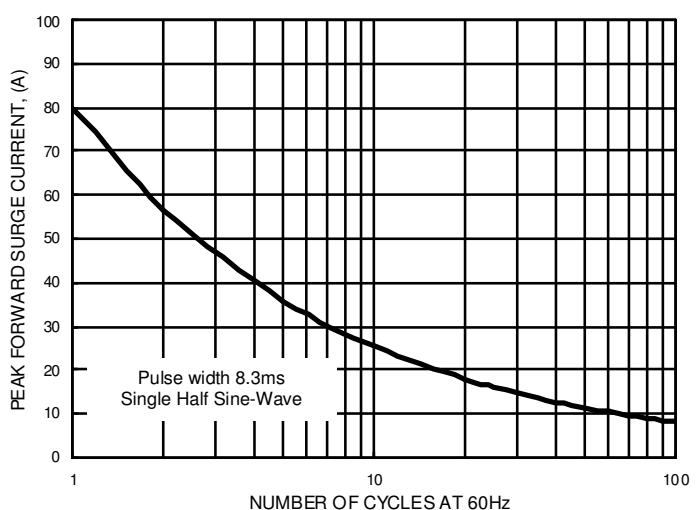
Top View

Bottom View

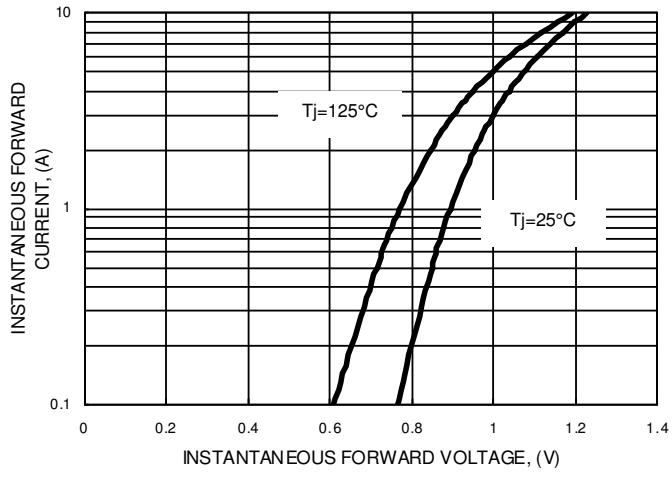
Side View

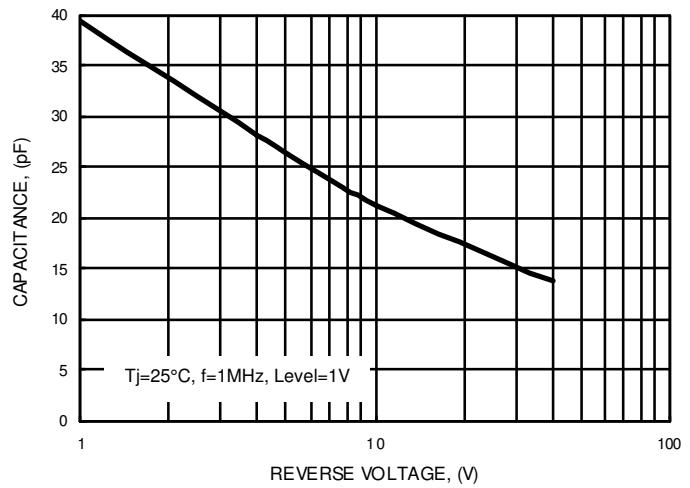

MSBL			
Dim.	Min.	Typ.	Max.
A	1.30	1.40	1.50
A1	0.04	0.06	0.08
C	0.27	0.30	0.40
D	6.50	6.60	6.70
D1	0.95	1.10	1.25
E	7.20	7.30	7.40
E1	7.90	8.30	8.60
E2	0.95	1.10	1.25
L	0.80	1.00	1.05
b	0.95	1.00	1.15
e	5.00	5.10	5.20
K	2.90	3.00	3.10

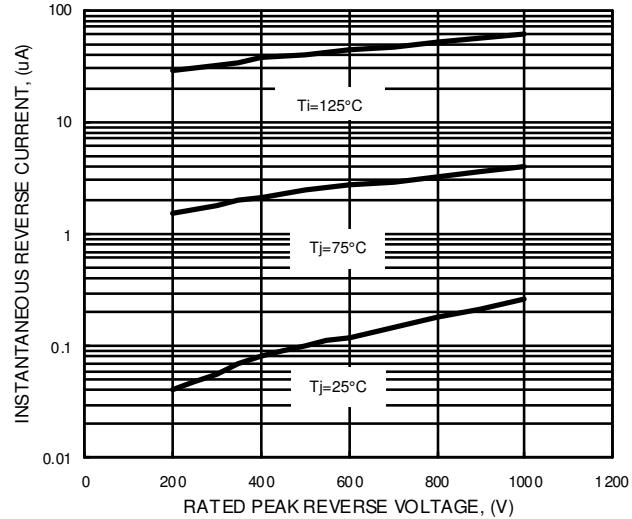
All dimensions in millimeter


RATING AND CHARACTERISTIC CURVES
MSB25MH

LITEON


FIG.1-FORWARD CURRENT DERATING CURVE


FIG.2- MAXIMUM NON-REPETITIVE SURGE CURRENT


FIG.3- TYPICAL FORWARD CHARACTERISTICS

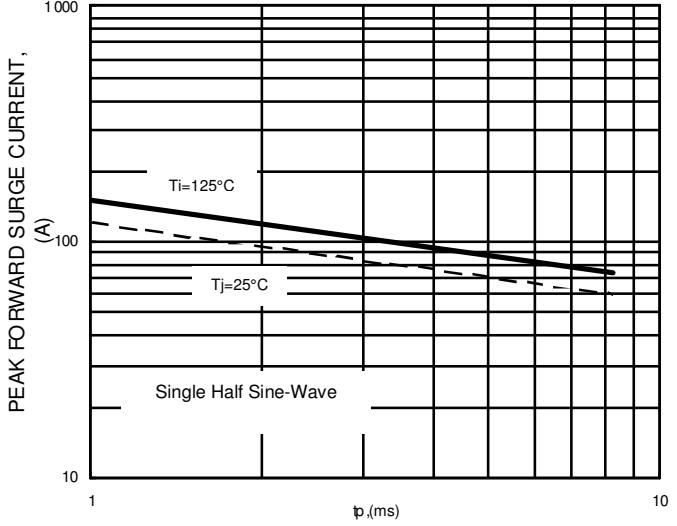
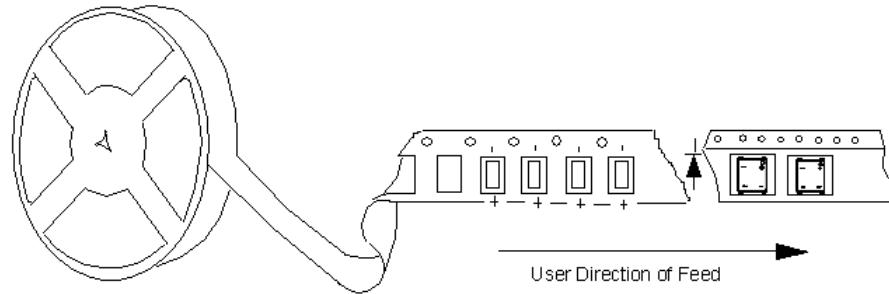
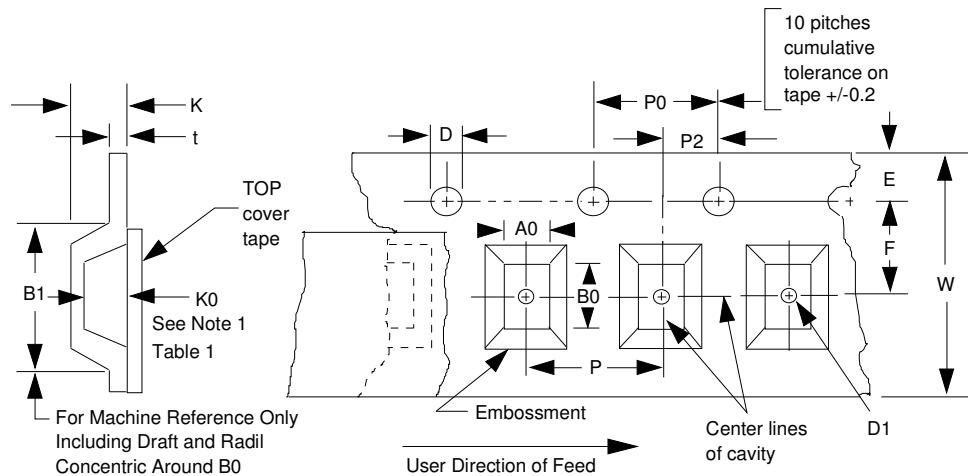

FIG.4- TYPICAL JUNCTION CAPACITANCE

FIG.5- TYPICAL REVERSE CHARACTERISTICS


FIG.6- NON-REPETITIVE SURGE CURRENT


Packaging Information

DEVICE	Q'TY/REEL (PCS)	REEL DIA. (mm)	Liner (mm)	CARTON SIZE (mm)	Q'TY/CARTON (PCS)	MOQ
MSB25MH	2500	330	1300x200	355x245x350	25K	25K

Polar Units

Embossed Carrier Dimension

TAPE SIZE	D	E	P0	t (MAX)	A0	B0	K0
16	1.55+0.10/-0.0	1.75+/-0.10	4.0+/-0.10	0.4	7.0+/-0.1	8.4+/-0.1	1.7+/-0.1
	B1 (MAX)	B2 (MAX)	F	K (MAX)	P2	W	P
	8.2	1.5	5.5+/-0.1	2.2	2.0+/-0.05	16.0+/-30	12.0+/-1

Unit:mm

Typical IR Reflow Soldering Thermal Profile

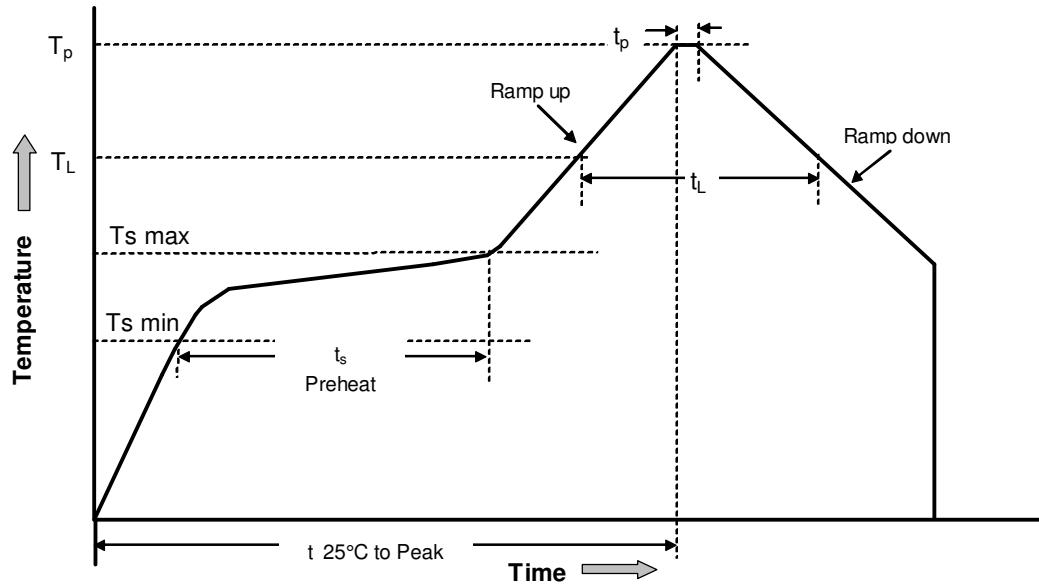


Table 1- Reflow profile

Reflow condition	Sn-Pb assembly	Pb-free assembly
Average ramp-up rate (Liquidus Temperautre (TL) to Peak)	3 °C/second max.	3 °C/second max.
Preheat		
--Tempautre Min, Ts (Min)	100 °C	150 °C
--Temperature Max, Ts (Max)	150 °C	200 °C
--Time (min to max, t_s)	60-120 seconds	60-180 seconds
Ts(max) to TL		3 °C/second max.
- Ramp-up Rate		
Time maintained above:		
--Temperature(TL)	183 °C	217 °C
--Time(t_L)	60-150 seconds	60-150 seconds
Peak Temperature (T_p)	240 +0/-5 °C	260 +0/-5 °C
Time within 5 °C of actual Peak Temperature(t_p)	10-30 seconds	20-40 seconds
Ramp-down Rate	6 °C/second max.	6 °C/second max.
Time 25 °C to Peak Temperature.	6 minutes max.	8 minutes max.

Note: All temperatures refer to topside of the package, measured on the package body surface

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.