General Description

PSoC® 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system controllers with an ARM® Cortex®-M0 CPU. It combines programmable and reconfigurable analog and digital blocks with flexible automatic routing. The PSoC 4XX8 BLE 4.2 product family, based on this platform, is a combination of a microcontroller with an integrated Bluetooth Low Energy (BLE), also known as Bluetooth Smart, radio and subsystem (BLESS). The other features include digital programmable logic, high-performance analog-to-digital conversion (ADC), opamps with Comparator mode, and standard communication and timing peripherals. The programmable analog and digital subsystems allow flexibility and in-field tuning of the design.

Features

32-bit MCU Subsystem
■ 48-MHz ARM Cortex-M0 CPU with single-cycle multiply and DMA
■ Up to 256 KB of flash with Read Accelerator
■ Up to 32 KB of SRAM

BLE Radio and Subsystem
■ BLE 4.2 support
■ 2.4-GHz RF transceiver with 50-Ω antenna drive
■ Digital PHY
■ Link-Layer engine supporting master and slave modes
■ RF output power: –18 dBm to +3 dBm
■ RX sensitivity: –92 dBm
■ RX current: 18.7 mA
■ TX current: 16.5 mA at 0 dBm
■ RSSI: 1-dB resolution

Programmable Analog
■ Four opamps with reconfigurable high-drive external and high-bandwidth internal drive, Comparator modes, and ADC input buffering capability. Can operate in Deep Sleep mode.
■ 12-bit, 1-MspS SAR ADC with differential and single-ended modes; Channel Sequencer with signal averaging
■ Two current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin
■ Two low-power comparators that operate in Deep Sleep mode

Programmable Digital
■ Four programmable logic blocks called universal digital blocks, (UDBs), each with eight macrocells and data path
■ Cypress-provided peripheral component library, user-defined state machines, and Verilog input

Power Management
■ Active mode: 1.7 mA at 3-MHz flash program execution
■ Deep Sleep mode: 1.5 µA with watch crystal oscillator (WCO) on
■ Hibernate mode: 150 nA with RAM retention
■ Stop mode: 60 nA

Capacitive Sensing
■ Cypress Capacitive Sigma-Delta (CSD) provides best-in-class SNR (>5:1) and liquid tolerance
■ Cypress-supplied software component makes capacitive sensing design easy
■ Automatic hardware tuning algorithm (SmartSense™)

Segment LCD Drive
■ LCD drive supported on all pins (common or segment)
■ Operates in Deep Sleep mode with four bits per pin memory

Serial Communication
■ Two independent run-time reconfigurable serial communication blocks (SCBs) with reconfigurable I²C, SPI, or UART functionality

Timing and Pulse-Width Modulation
■ Four 16-bit timer/counter pulse-width modulator (TCPWM) blocks
■ Center-aligned, Edge, and Pseudo-random modes
■ Comparator-based triggering of Kill signals for motor drive and other high-reliability digital logic applications

Up to 36 Programmable GPIOs
■ 7 mm × 7 mm 56-pin QFN package
■ 76-ball CSP package
■ Any GPIO pin can be CapSense, LCD, analog, or digital
■ Two overvoltage-tolerant (OVT) pins; drive modes, strengths, and slew rates are programmable

PSoC Creator™ Design Environment
■ Integrated Design Environment (IDE) provides schematic design entry and build (with analog and digital automatic routing)
■ API components for all fixed-function and programmable peripherals

Industry-Standard Tool Compatibility
■ After schematic entry, development can be done with ARM-based industry-standard development tools
More Information

Cypress provides a wealth of data at http://www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the introduction page for Bluetooth® Low Energy (BLE) Products. Following is an abbreviated list for PRoC BLE:

- **Overview**: PSoC Portfolio, PSoC Roadmap
- **Product Selectors**: PSoC 1, PSoC 3, PSoC 4, PRoC BLE, PSoC 4 BLE, PSoC 5LP
- **Application Notes**: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PRoC BLE are:
 - AN94020: Getting Started with PRoC BLE
 - AN97060: PSoC 4 BLE and PRoC BLE - Over-The-Air (OTA) Device Firmware Upgrade (DFU) Guide
 - AN91184: PSoC 4 BLE - Designing BLE Applications
 - AN91162: Creating a BLE Custom Profile
 - AN91445: Antenna Design and RF Layout Guidelines
 - AN96841: Getting Started with EZ-BLE Module
 - AN85951: PSoC 4 CapSense Design Guide

- **Technical Reference Manual (TRM)** is in two documents:
 - **Architecture TRM** details each PRoC BLE functional block
 - **Registers TRM** describes each of the PRoC BLE registers

- **Development Kits**:
 - CY8CKIT-042-BLE Pioneer Kit, is a flexible, Arduino-compatible, Bluetooth LE development kit for PSoC 4 BLE and PRoC BLE.
 - CY5676, PRoC BLE 256KB Module, features a PRoC BLE 256KB device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - CY8CKIT-142, PSoC 4 BLE Module, features a PSoC 4 BLE device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - CY8CKIT-143, PSoC 4 BLE 256KB Module, features a PSoC 4 BLE 256KB device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

1. Drag and drop component icons to build your hardware system design in the main design workspace
2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
3. Configure components using the configuration tools
4. Explore the library of 100+ components
5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator Contents
Contents

Functional Definition .. 5
- CPU and Memory Subsystem .. 5
- System Resources ... 5
- BLE Radio and Subsystem .. 6
- Analog Blocks .. 7
- Programmable Digital .. 8
- Fixed-Function Digital ... 9
- GPIO .. 9
- Special-Function Peripherals .. 10

Pinouts .. 11

Power ... 16

Development Support .. 17
- Documentation ... 17
- Online .. 17
- Tools .. 17

Electrical Specifications .. 18
- Absolute Maximum Ratings .. 18
- Device-Level Specifications .. 18
- Analog Peripherals ... 23
- Digital Peripherals ... 27
- Memory ... 29
- System Resources ... 30

Ordering Information ... 37
- Ordering Code Definitions .. 38
- Packaging .. 39
- WLCSP Compatibility ... 41
- Acronyms .. 43

Document Conventions .. 45
- Units of Measure ... 45

Revision History .. 46

Sales, Solutions, and Legal Information 47
- Worldwide Sales and Design Support 47
- Products .. 47
- PSoC® Solutions ... 47
- Cypress Developer Community ... 47
- Technical Support ... 47

Document Number: 002-09848 Rev. *D*
The PSoC 4XX8 BLE 4.2 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM SWD interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debugging.

The PSoC Creator IDE provides fully integrated programming and debugging support for the PSoC 4XX8 BLE 4.2 devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4XX8 BLE 4.2 family provides a level of security not possible with multi-chip application solutions or with microcontrollers.

Debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with the new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4XX8 BLE 4.2 with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4XX8 BLE 4.2 allows the customer to make.
Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4XX8 BLE 4.2 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher-performance processors such as Cortex-M3 and M4. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and a wake up interrupt controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to the main processor to be switched off when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a nonmaskable interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes an SWD interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4X8 BLE 4.2 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4XX8 BLE 4.2 device has a flash module with either 128 KB or 256 KB of flash memory, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 2 wait-state (WS) access time at 48 MHz and with 1-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required. Maximum erase and program time is 20 ms per row (256 bytes). This also applies to the emulated EEPROM.

SRAM

SRAM memory is retained during Hibernate.

SROM

The 8-KB supervisory ROM contains a library of executable functions for flash programming. These functions are accessed through supervisory calls (SVC) and enable in-system programming of the flash memory.

DMA

A DMA engine, with eight channels, is provided that can do 32-bit transfers and has chainable ping-pong descriptors.

System Resources

Power System

The power system is described in detail in the section Power on page 16. It provides an assurance that the voltage levels are as required for the respective modes, and can either delay the mode entry (on power-on reset (POR), for example) until voltage levels are as required or generate resets (brownout detect (BOD)) or interrupts when the power supply reaches a particular programmable level between 1.8 and 4.5 V (low voltage detect (LVD)). PSoC 4XX8 BLE 4.2 operates with a single external supply (1.71 to 5.5 V without radio, and 1.9 V to 5.5 V with radio). The device has five different power modes; transitions between these modes are managed by the power system. PSoC 4XX8 BLE 4.2 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes. Refer to the Technical Reference Manual for more details.

Clock System

The PSoC 4XX8 BLE 4.2 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for PSoC 4XX8 BLE 4.2 consists of the internal main oscillator (IMO), the internal low-speed oscillator (ILO), the 24-MHz external crystal oscillator (ECO) and the 32-kHz watch crystal oscillator (WCO). In addition, an external clock may be supplied from a pin.

IMO Clock Source

The IMO is the primary source of internal clocking in PSoC 4XX8 BLE 4.2. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of 1 MHz. The IMO tolerance with Cypress-provided calibration settings is ±2%.

ILO Clock Source

The ILO is a very low-power oscillator, which is primarily used to generate clocks for the peripheral operation in the Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

External Crystal Oscillator (ECO)

The ECO is used as the active clock for the BLE subsystem to meet the ±50-ppm clock accuracy of the Bluetooth 4.2 Specification. PSoC 4XX8 BLE 4.2 includes a tunable load capacitor to tune the crystal clock frequency by measuring the actual clock frequency. The high-accuracy ECO clock can also be used as a system clock.

Watch Crystal Oscillator (WCO)

The WCO is used as the sleep clock for the BLE subsystem to meet the ±500-ppm clock accuracy for the Bluetooth 4.2 Specification. The sleep clock provides an accurate sleep timing and enables wakeup at the specified advertisement and connection intervals. The WCO output can be used to realize the real-time clock (RTC) function in firmware.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO or from the WCO; this allows the watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register. With the WCO and firmware, an accurate real-time clock (within the bounds of the 32-kHz crystal accuracy) can be realized.
Figure 3. PSoC 4XX8 BLE 4.2 MCU Clocking Architecture

BLE Radio and Subsystem
PSoC 4XX8 BLE 4.2 incorporates a Bluetooth Smart subsystem that contains the Physical Layer (PHY) and Link Layer (LL) engines with an embedded AES-128 security engine. The physical layer consists of the digital PHY and the RF transceiver that transmits and receives GFSK packets at 1 Mbps over a 2.4-GHz ISM band, which is compliant with Bluetooth Smart Bluetooth Specification 4.2. The baseband controller is a composite hardware and firmware implementation that supports both master and slave modes. Key protocol elements, such as HCI and link control, are implemented in firmware. Time-critical functional blocks, such as encryption, CRC, data whitening, and access code correlation, are implemented in hardware (in the LL engine).

The RF transceiver contains an integrated balun, which provides a single-ended RF port pin to drive a 50-Ω antenna via a matching/filtering network. In the receive direction, this block converts the RF signal from the antenna to a digital bit stream after performing GFSK demodulation. In the transmit direction, this block performs GFSK modulation and then converts a digital baseband signal to a radio frequency before transmitting it to air through the antenna.

The Bluetooth Smart Radio and Subsystem (BLESS) requires a 1.9-V minimum supply (the range varies from 1.9 V to 5.5 V).

Key features of BLESS are as follows:

- Master and slave single-mode protocol stack with logical link control and adaptation protocol (L2CAP), attribute (ATT), and security manager (SM) protocols
- API access to generic attribute profile (GATT), generic access profile (GAP), and L2CAP
- L2CAP connection-oriented channel
- GAP features
 - Broadcaster, Observer, Peripheral, and Central roles
 - Security mode 1: Level 1, 2, 3, and 4
 - Security mode 2: Level 1 and 2
 - User-defined advertising data
 - Multiple bond support
- GATT features
 - GATT client and server
 - Supports GATT sub-procedures
 - 32-bit universally unique identifier (UUID)
- Security Manager (SM)
 - Pairing methods: Just works, Passkey Entry, Out of Band and Numeric Comparison
 - Authenticated man-in-the-middle (MITM) protection and data signing
 - LE Secure Connections (Bluetooth 4.2 feature)
- Link Layer (LL)
 - Master and Slave roles
 - 128-bit AES engine
 - Encryption
 - Low-duty cycle advertising
 - LE Ping
 - LE Data Packet Length Extension (Bluetooth 4.2 feature)
 - Link Layer Privacy (with extended scanning filter policy, Bluetooth 4.2 feature)
- Supports all SIG-adopted BLE profiles
Analog Blocks

12-bit SAR ADC

The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion (up to 806 Ksps for the PSoC 41X8_BLE derivatives).

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to ±1%) and by providing the choice of three internal voltage references, V_DD, V_DD/2, and VREF (nominally 1.024 V), as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable; it allows the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it. To improve the performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is the buffering of each channel to reduce CPU interrupt-service requirements. To accommodate signals with varying source impedances and frequencies, it is possible to have different sample times programmable for each channel. Also, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-chip temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.

Opamps (CTBm Block)

PSoC 42X8_BLE has four opamps with Comparator modes, which allow most common analog functions to be performed on-chip, eliminating external components. PGAs, voltage buffers, filters, transimpedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the sample-and-hold circuit of the ADC without requiring external buffering.

Temperature Sensor

PSoC 4XX8 BLE 4.2 has an on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value by using a Cypress-supplied software that includes calibration and linearization.

Low-Power Comparators

PSoC 4XX8 BLE 4.2 has a pair of low-power comparators, which can also operate in Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator-switch event.
Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4XX8 BLE 4.2 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control.

Figure 5. UDB Array

UDBs can be clocked from a clock-divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows a faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over the DSI and used to register other inputs (see Figure 6).

Figure 6. Port Interface

UDBs can generate interrupts (one UDB at a time) to the interrupt controller. UDBs retain the ability to connect to any pin on the chip through the DSI.
Fixed-Function Digital

Timer/Counter/PWM Block

The timer/counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow the use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor-drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSOC 4XX8 BLE 4.2 has two SCBs, each of which can implement an I²C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multимaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce the interrupt overhead and latency for the CPU. It also supports Ezi²C that creates a mailbox address range in the memory of PSoC 4XX8 BLE 4.2 and effectively reduces the I²C communication to reading from and writing to an array in the memory. In addition, the block supports an 8-deep FIFO for receive and transmit, which, by increasing the time given for the CPU to read the data, greatly reduces the need for clock stretching caused by the CPU not having read the data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with I²C Standard-mode, Fast-mode, and Fast-Mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

SCB1 is fully compliant with Standard mode (100 kHz), Fast mode (400 kHz), and Fast-Mode Plus (1 MHz) I²C signaling specifications when routed to GPIO pins P5[0] and P5[1], except for hot-swap capability during I²C active communication. The remaining GPIOs do not meet the hot-swap specification (VDD off; draw < 10-μA current) for Fast mode and Fast-Mode Plus, IOL Spec (20 mA) for Fast-Mode Plus, hysteresis spec (0.05 VDD) for Fast-Mode Plus and minimum fall time spec for Fast mode and Fast-Mode Plus.

- GPIO cells, including P5.0 and P5.1, cannot be hot-swapped or powered up independent of the rest of the I²C system.
- The GPIO pins P5.0 and P5.1 are overvoltage-tolerant but cannot be hot-swapped or powered up independent of the rest of the I²C system.
- Fast-Mode Plus has an IOL specification of 20 mA at a VOL of 0.4 V. The GPIO cells can sink a maximum of 8 mA IOL with a VOL maximum of 0.6 V.
- Fast-mode and Fast-Mode Plus specify minimum Fall times, which are not met with the GPIO cell; the Slow-Mode strong mode can help meet this spec depending on the bus load.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.

SPI Mode: The SPI mode supports full Motorola SPI, TI Secure Simple Pairing (SSSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO for transmit and receive.

GPIO

PSOC 4XX8 BLE 4.2 has 36 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - Analog input mode (input and output buffers disabled)
 - Input only
 - Weak pull-up with strong pull-down
 - Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with weak pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTTL)
- Pins 0 and 1 of Port 5 are overvoltage-tolerant pins
- Individual control of input and output buffer enabling/disabling in addition to drive-strength modes
- Hold mode for latching previous state (used for retaining the I/O state in Deep Sleep and Hibernate modes)
- Selectable slew rates for dV/dt-related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix (HSIO/M) is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin-state registers store, respectively, the values to be driven on the pins and the states of the pins themselves. Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4XX8 BLE 4.2).
Special-Function Peripherals

LCD Segment Drive

PSoC 4XX8 BLE 4.2 has an LCD controller, which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

The digital correlation method modulates the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

The PWM method drives the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep mode, refreshing a small display buffer (four bits; one 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4XX8 BLE 4.2 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A Component is provided for the CapSense block to make it easy for the user.

The shield voltage can be driven on another mux bus to provide liquid-tolerance capability. Liquid tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without liquid tolerance (one IDAC is available).
Table 1 shows the pin list for the PSoC 4XX8 BLE 4.2 device. Port 3 consists of the high-speed analog inputs for the SAR mux. All pins support CSD CapSense and analog mux bus connections.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDDD</td>
<td>POWER</td>
<td>1.71-V to 5.5-V digital supply</td>
</tr>
<tr>
<td>2</td>
<td>XTAL32O/P6.0</td>
<td>CLOCK</td>
<td>32.768-kHz crystal</td>
</tr>
<tr>
<td>3</td>
<td>XTAL32I/P6.1</td>
<td>CLOCK</td>
<td>32.768-kHz crystal or external clock input</td>
</tr>
<tr>
<td>4</td>
<td>XRES</td>
<td>RESET</td>
<td>Reset, active LOW</td>
</tr>
<tr>
<td>5</td>
<td>P4.0</td>
<td>GPIO</td>
<td>Port 4 Pin 0, lcd, csd</td>
</tr>
<tr>
<td>6</td>
<td>P4.1</td>
<td>GPIO</td>
<td>Port 4 Pin 1, lcd, csd</td>
</tr>
<tr>
<td>7</td>
<td>P5.0</td>
<td>GPIO</td>
<td>Port 5 Pin 0, lcd, csd</td>
</tr>
<tr>
<td>8</td>
<td>P5.1</td>
<td>GPIO</td>
<td>Port 5 Pin 1, lcd, csd</td>
</tr>
<tr>
<td>9</td>
<td>VSSD</td>
<td>GROUND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>10</td>
<td>VDDR</td>
<td>POWER</td>
<td>1.9-V to 5.5-V radio supply</td>
</tr>
<tr>
<td>11</td>
<td>GANT1</td>
<td>GROUND</td>
<td>Antenna shielding ground</td>
</tr>
<tr>
<td>12</td>
<td>ANT</td>
<td>ANTENNA</td>
<td>Antenna pin</td>
</tr>
<tr>
<td>13</td>
<td>GANT2</td>
<td>GROUND</td>
<td>Antenna shielding ground</td>
</tr>
<tr>
<td>14</td>
<td>VDDR</td>
<td>POWER</td>
<td>1.9-V to 5.5-V radio supply</td>
</tr>
<tr>
<td>15</td>
<td>VDDR</td>
<td>POWER</td>
<td>1.9-V to 5.5-V radio supply</td>
</tr>
<tr>
<td>16</td>
<td>XTAL24I</td>
<td>CLOCK</td>
<td>24-MHz crystal or external clock input</td>
</tr>
<tr>
<td>17</td>
<td>XTAL24O</td>
<td>CLOCK</td>
<td>24-MHz crystal</td>
</tr>
<tr>
<td>18</td>
<td>VDDR</td>
<td>POWER</td>
<td>1.9-V to 5.5-V radio supply</td>
</tr>
<tr>
<td>19</td>
<td>P0.0</td>
<td>GPIO</td>
<td>Port 0 Pin 0, lcd, csd</td>
</tr>
<tr>
<td>20</td>
<td>P0.1</td>
<td>GPIO</td>
<td>Port 0 Pin 1, lcd, csd</td>
</tr>
<tr>
<td>21</td>
<td>P0.2</td>
<td>GPIO</td>
<td>Port 0 Pin 2, lcd, csd</td>
</tr>
<tr>
<td>22</td>
<td>P0.3</td>
<td>GPIO</td>
<td>Port 0 Pin 3, lcd, csd</td>
</tr>
<tr>
<td>23</td>
<td>VDDD</td>
<td>POWER</td>
<td>1.71-V to 5.5-V digital supply</td>
</tr>
<tr>
<td>24</td>
<td>P0.4</td>
<td>GPIO</td>
<td>Port 0 Pin 4, lcd, csd</td>
</tr>
<tr>
<td>25</td>
<td>P0.5</td>
<td>GPIO</td>
<td>Port 0 Pin 5, lcd, csd</td>
</tr>
<tr>
<td>26</td>
<td>P0.6</td>
<td>GPIO</td>
<td>Port 0 Pin 6, lcd, csd</td>
</tr>
<tr>
<td>27</td>
<td>P0.7</td>
<td>GPIO</td>
<td>Port 0 Pin 7, lcd, csd</td>
</tr>
<tr>
<td>28</td>
<td>P1.0</td>
<td>GPIO</td>
<td>Port 1 Pin 0, lcd, csd</td>
</tr>
<tr>
<td>29</td>
<td>P1.1</td>
<td>GPIO</td>
<td>Port 1 Pin 1, lcd, csd</td>
</tr>
<tr>
<td>30</td>
<td>P1.2</td>
<td>GPIO</td>
<td>Port 1 Pin 2, lcd, csd</td>
</tr>
<tr>
<td>31</td>
<td>P1.3</td>
<td>GPIO</td>
<td>Port 1 Pin 3, lcd, csd</td>
</tr>
<tr>
<td>32</td>
<td>P1.4</td>
<td>GPIO</td>
<td>Port 1 Pin 4, lcd, csd</td>
</tr>
<tr>
<td>33</td>
<td>P1.5</td>
<td>GPIO</td>
<td>Port 1 Pin 5, lcd, csd</td>
</tr>
<tr>
<td>34</td>
<td>P1.6</td>
<td>GPIO</td>
<td>Port 1 Pin 6, lcd, csd</td>
</tr>
<tr>
<td>35</td>
<td>P1.7</td>
<td>GPIO</td>
<td>Port 1 Pin 7, lcd, csd</td>
</tr>
<tr>
<td>36</td>
<td>VDDA</td>
<td>POWER</td>
<td>1.71-V to 5.5-V analog supply</td>
</tr>
<tr>
<td>37</td>
<td>P2.0</td>
<td>GPIO</td>
<td>Port 2 Pin 0, lcd, csd</td>
</tr>
<tr>
<td>38</td>
<td>P2.1</td>
<td>GPIO</td>
<td>Port 2 Pin 1, lcd, csd</td>
</tr>
<tr>
<td>39</td>
<td>P2.2</td>
<td>GPIO</td>
<td>Port 2 Pin 2, lcd, csd</td>
</tr>
</tbody>
</table>
Table 1. PSoC 4XX8 BLE 4.2 Pin List (QFN Package) (continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>P2.3</td>
<td>GPIO</td>
<td>Port 2 Pin 3, lcd, csd</td>
</tr>
<tr>
<td>41</td>
<td>P2.4</td>
<td>GPIO</td>
<td>Port 2 Pin 4, lcd, csd</td>
</tr>
<tr>
<td>42</td>
<td>P2.5</td>
<td>GPIO</td>
<td>Port 2 Pin 5, lcd, csd</td>
</tr>
<tr>
<td>43</td>
<td>P2.6</td>
<td>GPIO</td>
<td>Port 2 Pin 6, lcd, csd</td>
</tr>
<tr>
<td>44</td>
<td>P2.7</td>
<td>GPIO</td>
<td>Port 2 Pin 7, lcd, csd</td>
</tr>
<tr>
<td>45</td>
<td>VREF</td>
<td>REF</td>
<td>1.024-V reference</td>
</tr>
<tr>
<td>46</td>
<td>VDDA</td>
<td>POWER</td>
<td>1.71-V to 5.5-V analog supply</td>
</tr>
<tr>
<td>47</td>
<td>P3.0</td>
<td>GPIO</td>
<td>Port 3 Pin 0, lcd, csd</td>
</tr>
<tr>
<td>48</td>
<td>P3.1</td>
<td>GPIO</td>
<td>Port 3 Pin 1, lcd, csd</td>
</tr>
<tr>
<td>49</td>
<td>P3.2</td>
<td>GPIO</td>
<td>Port 3 Pin 2, lcd, csd</td>
</tr>
<tr>
<td>50</td>
<td>P3.3</td>
<td>GPIO</td>
<td>Port 3 Pin 3, lcd, csd</td>
</tr>
<tr>
<td>51</td>
<td>P3.4</td>
<td>GPIO</td>
<td>Port 3 Pin 4, lcd, csd</td>
</tr>
<tr>
<td>52</td>
<td>P3.5</td>
<td>GPIO</td>
<td>Port 3 Pin 5, lcd, csd</td>
</tr>
<tr>
<td>53</td>
<td>P3.6</td>
<td>GPIO</td>
<td>Port 3 Pin 6, lcd, csd</td>
</tr>
<tr>
<td>54</td>
<td>P3.7</td>
<td>GPIO</td>
<td>Port 3 Pin 7, lcd, csd</td>
</tr>
<tr>
<td>55</td>
<td>VSSA</td>
<td>GROUND</td>
<td>Analog ground</td>
</tr>
<tr>
<td>56</td>
<td>VCCD</td>
<td>POWER</td>
<td>Regulated 1.8-V supply, connect to 1.3-µF capacitor.</td>
</tr>
<tr>
<td>57</td>
<td>EPAD</td>
<td>GROUND</td>
<td>Ground paddle for the QFN package</td>
</tr>
</tbody>
</table>

Table 2. PSoC 4XX8 BLE 4.2 Pin List (WLCSP Package)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>A2</td>
<td>VREF</td>
<td>REF</td>
<td>1.024-V reference</td>
</tr>
<tr>
<td>A3</td>
<td>VSSA</td>
<td>GROUND</td>
<td>Analog ground</td>
</tr>
<tr>
<td>A4</td>
<td>P3.3</td>
<td>GPIO</td>
<td>Port 3 Pin 3, analog/digital/lcd/csdd</td>
</tr>
<tr>
<td>A5</td>
<td>P3.7</td>
<td>GPIO</td>
<td>Port 3 Pin 7, analog/digital/lcd/csdd</td>
</tr>
<tr>
<td>A6</td>
<td>VSSD</td>
<td>GROUND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>A7</td>
<td>VSSA</td>
<td>GROUND</td>
<td>Analog ground</td>
</tr>
<tr>
<td>A8</td>
<td>VCCD</td>
<td>POWER</td>
<td>Regulated 1.8-V supply, connect to 1-µF capacitor.</td>
</tr>
<tr>
<td>A9</td>
<td>VDDD</td>
<td>POWER</td>
<td>1.71-V to 5.5-V digital supply</td>
</tr>
<tr>
<td>B1</td>
<td>NB</td>
<td>NO BALL</td>
<td>No Ball</td>
</tr>
<tr>
<td>B2</td>
<td>P2.3</td>
<td>GPIO</td>
<td>Port 2 Pin 3, analog/digital/lcd/csdd</td>
</tr>
<tr>
<td>B3</td>
<td>VSSA</td>
<td>GROUND</td>
<td>Analog ground</td>
</tr>
<tr>
<td>B4</td>
<td>P2.7</td>
<td>GPIO</td>
<td>Port 2 Pin 7, analog/digital/lcd/csdd</td>
</tr>
<tr>
<td>B5</td>
<td>P3.4</td>
<td>GPIO</td>
<td>Port 3 Pin 4, analog/digital/lcd/csdd</td>
</tr>
<tr>
<td>B6</td>
<td>P3.5</td>
<td>GPIO</td>
<td>Port 3 Pin 5, analog/digital/lcd/csdd</td>
</tr>
<tr>
<td>B7</td>
<td>P3.6</td>
<td>GPIO</td>
<td>Port 3 Pin 6, analog/digital/lcd/csdd</td>
</tr>
<tr>
<td>B8</td>
<td>XTAL32I/P6.1</td>
<td>CLOCK</td>
<td>32.768-kHz crystal or external clock input</td>
</tr>
<tr>
<td>B9</td>
<td>XTAL32O/P6.0</td>
<td>CLOCK</td>
<td>32.768-kHz crystal</td>
</tr>
<tr>
<td>C1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
</tbody>
</table>
Table 2. PSoC 4XX8 BLE 4.2 Pin List (WLCSP Package) (continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>VSSA</td>
<td>GROUND</td>
<td>Analog ground</td>
</tr>
<tr>
<td>C3</td>
<td>P2.2</td>
<td>GPIO</td>
<td>Port 2 Pin 2, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>C4</td>
<td>P2.6</td>
<td>GPIO</td>
<td>Port 2 Pin 6, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>C5</td>
<td>P3.0</td>
<td>GPIO</td>
<td>Port 3 Pin 0, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>C6</td>
<td>P3.1</td>
<td>GPIO</td>
<td>Port 3 Pin 1, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>C7</td>
<td>P3.2</td>
<td>GPIO</td>
<td>Port 3 Pin 2, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>C8</td>
<td>XRES</td>
<td>RESET</td>
<td>Reset, active LOW</td>
</tr>
<tr>
<td>C9</td>
<td>P4.0</td>
<td>GPIO</td>
<td>Port 4 Pin 0, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>D1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>D2</td>
<td>P1.7</td>
<td>GPIO</td>
<td>Port 1 Pin 7, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>D3</td>
<td>VDDA</td>
<td>POWER</td>
<td>1.71-V to 5.5-V analog supply</td>
</tr>
<tr>
<td>D4</td>
<td>P2.0</td>
<td>GPIO</td>
<td>Port 2 Pin 0, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>D5</td>
<td>P2.1</td>
<td>GPIO</td>
<td>Port 2 Pin 1, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>D6</td>
<td>P2.5</td>
<td>GPIO</td>
<td>Port 2 Pin 5, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>D7</td>
<td>VSSD</td>
<td>GROUND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>D8</td>
<td>P4.1</td>
<td>GPIO</td>
<td>Port 4 Pin 1, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>D9</td>
<td>P5.0</td>
<td>GPIO</td>
<td>Port 5 Pin 0, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>E2</td>
<td>P1.2</td>
<td>GPIO</td>
<td>Port 1 Pin 2, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E3</td>
<td>P1.3</td>
<td>GPIO</td>
<td>Port 1 Pin 3, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E4</td>
<td>P1.4</td>
<td>GPIO</td>
<td>Port 1 Pin 4, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E5</td>
<td>P1.5</td>
<td>GPIO</td>
<td>Port 1 Pin 5, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E6</td>
<td>P1.6</td>
<td>GPIO</td>
<td>Port 1 Pin 6, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E7</td>
<td>P2.4</td>
<td>GPIO</td>
<td>Port 2 Pin 4, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E8</td>
<td>P5.1</td>
<td>GPIO</td>
<td>Port 5 Pin 1, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>E9</td>
<td>VSSD</td>
<td>GROUND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>F1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>F2</td>
<td>VSSD</td>
<td>GROUND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>F3</td>
<td>P0.7</td>
<td>GPIO</td>
<td>Port 0 Pin 7, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>F4</td>
<td>P0.3</td>
<td>GPIO</td>
<td>Port 0 Pin 3, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>F5</td>
<td>P1.0</td>
<td>GPIO</td>
<td>Port 1 Pin 0, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>F6</td>
<td>P1.1</td>
<td>GPIO</td>
<td>Port 1 Pin 1, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>F7</td>
<td>VSSR</td>
<td>GROUND</td>
<td>Radio ground</td>
</tr>
<tr>
<td>F8</td>
<td>VSSR</td>
<td>GROUND</td>
<td>Radio ground</td>
</tr>
<tr>
<td>F9</td>
<td>VDDR</td>
<td>POWER</td>
<td>1.9-V to 5.5-V radio supply</td>
</tr>
<tr>
<td>G1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>G2</td>
<td>P0.6</td>
<td>GPIO</td>
<td>Port 0 Pin 6, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>G3</td>
<td>VDDD</td>
<td>POWER</td>
<td>1.71-V to 5.5-V digital supply</td>
</tr>
<tr>
<td>G4</td>
<td>P0.2</td>
<td>GPIO</td>
<td>Port 0 Pin 2, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>G5</td>
<td>VSSD</td>
<td>GROUND</td>
<td>Digital ground</td>
</tr>
</tbody>
</table>
High-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the resources inside the device. These resources include CapSense, TCPWMs, I²C, SPI, UART, and LCD. HSIOM_PORT_SELx are 32-bit-wide registers that control the routing of GPIOs. Each register controls one port; four dedicated bits are assigned to each GPIO in the port. This provides up to 16 different options for GPIO routing as shown in Table 3.

Table 2. PSoC 4XX8 BLE 4.2 Pin List (WLCSP Package) (continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G6</td>
<td>VSSR</td>
<td>GROUND</td>
<td>Radio ground</td>
</tr>
<tr>
<td>G7</td>
<td>VSSR</td>
<td>GROUND</td>
<td>Radio ground</td>
</tr>
<tr>
<td>G8</td>
<td>GANT</td>
<td>GROUND</td>
<td>Antenna shielding ground</td>
</tr>
<tr>
<td>G9</td>
<td>VSSR</td>
<td>GROUND</td>
<td>Radio ground</td>
</tr>
<tr>
<td>H1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>H2</td>
<td>P0.5</td>
<td>GPIO</td>
<td>Port 0 Pin 5, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>H3</td>
<td>P0.1</td>
<td>GPIO</td>
<td>Port 0 Pin 1, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>H4</td>
<td>XTAL24O</td>
<td>CLOCK</td>
<td>24-MHz crystal</td>
</tr>
<tr>
<td>H5</td>
<td>XTAL24I</td>
<td>CLOCK</td>
<td>24-MHz crystal or external clock input</td>
</tr>
<tr>
<td>H6</td>
<td>VSSR</td>
<td>GROUND</td>
<td>Radio ground</td>
</tr>
<tr>
<td>H7</td>
<td>VSSR</td>
<td>GROUND</td>
<td>Radio ground</td>
</tr>
<tr>
<td>H8</td>
<td>ANT</td>
<td>ANTENNA</td>
<td>Antenna pin</td>
</tr>
<tr>
<td>J1</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>J2</td>
<td>P0.4</td>
<td>GPIO</td>
<td>Port 0 Pin 4, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>J3</td>
<td>P0.0</td>
<td>GPIO</td>
<td>Port 0 Pin 0, analog/digital/lcd/csd</td>
</tr>
<tr>
<td>J4</td>
<td>VDDR</td>
<td>POWER</td>
<td>1.9-V to 5.5-V radio supply</td>
</tr>
<tr>
<td>J7</td>
<td>VDDR</td>
<td>POWER</td>
<td>1.9-V to 5.5-V radio supply</td>
</tr>
<tr>
<td>J8</td>
<td>NO CONNECT</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 3. HSIOM Port Settings (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>Pin is an LCD common pin</td>
</tr>
<tr>
<td>13</td>
<td>Pin is an LCD segment pin</td>
</tr>
<tr>
<td>14</td>
<td>Pin-specific Deep-Sleep function #0</td>
</tr>
<tr>
<td>15</td>
<td>Pin-specific Deep-Sleep function #1</td>
</tr>
</tbody>
</table>
The selection of peripheral function for different GPIO pins is given in Table 4.

Table 4. Port Pin Connections

<table>
<thead>
<tr>
<th>Name</th>
<th>Analog</th>
<th>GPIO</th>
<th>Active #0</th>
<th>Active #1</th>
<th>Digital #0</th>
<th>Digital #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0.0</td>
<td>COMP0_INP</td>
<td>GPIO</td>
<td>TCPWM0_P[3]</td>
<td>SCB1_UART_RX[1]</td>
<td>–</td>
<td>SCB1_SPI_MOSI[1]</td>
</tr>
<tr>
<td>P0.1</td>
<td>COMP0_INN</td>
<td>GPIO</td>
<td>TCPWM0_N[3]</td>
<td>SCB1_UART_TX[1]</td>
<td>–</td>
<td>SCB1_SPI_SCLK[1]</td>
</tr>
<tr>
<td>P0.2</td>
<td>–</td>
<td>GPIO</td>
<td>TCPWM1_P[3]</td>
<td>SCB1_UART_RTS[1]</td>
<td>–</td>
<td>SCB1_SPI_SS0[1]</td>
</tr>
<tr>
<td>P0.4</td>
<td>COMP1_INP</td>
<td>GPIO</td>
<td>TCPWM1_P[0]</td>
<td>SCB0_UART_RX[1]</td>
<td>EX_TCLK[0]/</td>
<td>SCB0_SPI_SCLK[1]</td>
</tr>
<tr>
<td>P0.5</td>
<td>COMP1_INN</td>
<td>GPIO</td>
<td>TCPWM1_N[0]</td>
<td>SCB0_UART_TX[1]</td>
<td>–</td>
<td>SCB0_SPI_MOSI[1]</td>
</tr>
<tr>
<td>P0.6</td>
<td>–</td>
<td>GPIO</td>
<td>TCPWM2_P[0]</td>
<td>SCB0_UART_RTS[1]</td>
<td>–</td>
<td>SCB0_SPI_SS0[1]</td>
</tr>
<tr>
<td>P0.7</td>
<td>–</td>
<td>GPIO</td>
<td>TCPWM2_N[0]</td>
<td>SCB0_UART_CTS[1]</td>
<td>–</td>
<td>SCB0_SPI_SCLK[1]</td>
</tr>
<tr>
<td>P1.0</td>
<td>CTBm1_OA0_INP</td>
<td>GPIO</td>
<td>TCPWM0_P[1]</td>
<td>–</td>
<td>–</td>
<td>SCB1_SPI_SS1</td>
</tr>
<tr>
<td>P1.1</td>
<td>CTBm1_OA0_INN</td>
<td>GPIO</td>
<td>TCPWM0_N[1]</td>
<td>–</td>
<td>–</td>
<td>SCB1_SPI_SS1</td>
</tr>
<tr>
<td>P1.2</td>
<td>CTBm1_OA0_OUT</td>
<td>GPIO</td>
<td>TCPWM1_P[1]</td>
<td>–</td>
<td>–</td>
<td>SCB1_SPI_SS3</td>
</tr>
<tr>
<td>P1.3</td>
<td>CTBm1_OA1_INOUT</td>
<td>GPIO</td>
<td>TCPWM1_N[1]</td>
<td>–</td>
<td>–</td>
<td>SCB1_SPI_SS3</td>
</tr>
<tr>
<td>P1.4</td>
<td>CTBm1_OA1_INP</td>
<td>GPIO</td>
<td>TCPWM2_P[1]</td>
<td>SCB0_UART_RX[0]</td>
<td>–</td>
<td>SCB0_SPI_SCLK[1]</td>
</tr>
<tr>
<td>P1.5</td>
<td>CTBm1_OA1_INN</td>
<td>GPIO</td>
<td>TCPWM2_N[1]</td>
<td>SCB0_UART_TX[0]</td>
<td>–</td>
<td>SCB0_SPI_MOSI[1]</td>
</tr>
<tr>
<td>P1.6</td>
<td>CTBm1_OA0_INP</td>
<td>GPIO</td>
<td>TCPWM3_P[1]</td>
<td>SCB0_UART_RTS[0]</td>
<td>–</td>
<td>SCB0_SPI_SS0[1]</td>
</tr>
<tr>
<td>P1.7</td>
<td>CTBm1_OA1_INP</td>
<td>GPIO</td>
<td>TCPWM3_N[1]</td>
<td>SCB0_UART_CTS[0]</td>
<td>–</td>
<td>SCB0_SPI_SCLK[1]</td>
</tr>
<tr>
<td>P2.0</td>
<td>CTBm0_OA0_INP</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SCB0_SPI_SS1</td>
</tr>
<tr>
<td>P2.1</td>
<td>CTBm0_OA0_INN</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SCB0_SPI_SS2</td>
</tr>
<tr>
<td>P2.2</td>
<td>CTBm0_OA0_OUT</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SCB1_SPI_SS3</td>
</tr>
<tr>
<td>P2.3</td>
<td>CTBm0_OA1_INOUT</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SCB1_SPI_SS3</td>
</tr>
<tr>
<td>P2.4</td>
<td>CTBm0_OA1_INP</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>P2.5</td>
<td>CTBm0_OA1_INN</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>P2.6</td>
<td>CTBm0_OA0_INP</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>P2.7</td>
<td>CTBm0_OA1_INP</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>P4.0</td>
<td>CMOD</td>
<td>GPIO</td>
<td>TCPWM0_P[0]</td>
<td>SCB1_UART_RTS[0]</td>
<td>–</td>
<td>SCB1_SPI_MOSI[0]</td>
</tr>
<tr>
<td>P4.1</td>
<td>CTANK</td>
<td>GPIO</td>
<td>TCPWM0_N[0]</td>
<td>SCB1_UART_CTS[0]</td>
<td>–</td>
<td>SCB1_SPI_MOSI[0]</td>
</tr>
<tr>
<td>P5.0</td>
<td>–</td>
<td>GPIO</td>
<td>TCPWM3_P[0]</td>
<td>SCB1_UART_RX[0]</td>
<td>–</td>
<td>SCB1_SPI_SCLK[0]</td>
</tr>
<tr>
<td>P5.1</td>
<td>–</td>
<td>GPIO</td>
<td>TCPWM3_N[0]</td>
<td>SCB1_UART_TX[0]</td>
<td>–</td>
<td>SCB1_SPI_SCLK[0]</td>
</tr>
<tr>
<td>P6.0_XTAL32O</td>
<td>–</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>P6.1_XTAL32I</td>
<td>–</td>
<td>GPIO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
The possible pin connections are shown for all analog and digital peripherals (except the radio, LCD, and CSD blocks, which were shown in Table 1). A typical system application connection diagram is shown in Figure 7.

Figure 7. System Application Connection Diagram

Power

The PSoC 4XX8 BLE 4.2 device can be supplied from batteries with a voltage range of 1.9 V to 5.5 V by directly connecting to the digital supply (VDDD), analog supply (VDDA), and radio supply (VDDR) pins. Internal LDOs in the device regulate the supply voltage to the required levels for different blocks. The device has one regulator for the digital circuitry and separate regulators for radio circuitry for noise isolation. Analog circuits run directly from the analog supply (VDDA) input. The device uses separate regulators for Deep Sleep and Hibernate (lowered power supply and retention) modes to minimize the power consumption. The radio stops working below 1.9 V, but the device continues to function down to 1.71 V without RF.

Bypass capacitors must be used from VDDx (x = A, D, or R) to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1-μF range in parallel with a smaller capacitor (for example, 0.1 μF). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Power Supply and Bypass Capacitors

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Bypass Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDDD</td>
<td>The internal bandgap may be bypassed with a 1-μF to 10-μF.</td>
</tr>
<tr>
<td>VDDA</td>
<td>0.1-μF ceramic at each pin plus bulk capacitor 1-μF to 10-μF.</td>
</tr>
<tr>
<td>VDDR</td>
<td>0.1-μF ceramic at each pin plus bulk capacitor 1-μF to 10-μF.</td>
</tr>
<tr>
<td>VCCD</td>
<td>1.3-μF ceramic capacitor at the VCCD pin.</td>
</tr>
<tr>
<td>VREF (optional)</td>
<td>The internal bandgap may be bypassed with a 1-μF to 10-μF capacitor.</td>
</tr>
</tbody>
</table>
Development Support

The PSoC 4XX8 BLE 4.2 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4ble to find out more.

Documentation

A suite of documentation supports the PSoC 4XX8 BLE 4.2 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (Components) long after the device has gone into production. Component datasheets provide all of the information needed to select and use a particular Component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include creating standard and custom BLE profiles. Application notes often include example projects in addition to the application note document.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4XX8 BLE 4.2 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psocc on for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.
Electrical Specifications

Absolute Maximum Ratings

Table 5. Absolute Maximum Ratings\(^1\)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID1</td>
<td>V(_{\text{DDD,ABS}})</td>
<td>Analog, digital, or radio supply relative to V({\text{SS}}) (V({\text{SSD}}) = V(_{\text{SSA}}))</td>
<td>–0.5</td>
<td>–</td>
<td>6</td>
<td>V</td>
<td>Absolute max</td>
</tr>
<tr>
<td>SID2</td>
<td>V(_{\text{CCD,ABS}})</td>
<td>Direct digital core voltage input relative to V(_{\text{SSD}})</td>
<td>–0.5</td>
<td>–</td>
<td>1.95</td>
<td>V</td>
<td>Absolute max</td>
</tr>
<tr>
<td>SID3</td>
<td>V(_{\text{GPIO,ABS}})</td>
<td>GPIO voltage</td>
<td>–0.5</td>
<td>–</td>
<td>V(_{\text{DD}}) +0.5</td>
<td>V</td>
<td>Absolute max</td>
</tr>
<tr>
<td>SID4</td>
<td>I(_{\text{GPIO,ABS}})</td>
<td>Maximum current per GPIO</td>
<td>–25</td>
<td>–</td>
<td>25</td>
<td>mA</td>
<td>Absolute max</td>
</tr>
<tr>
<td>SID5</td>
<td>I(_{\text{GPIO, injection}})</td>
<td>GPIO injection current, Max for V({\text{IH}}) > V({\text{DDD}}), and Min for V({\text{IL}}) < V({\text{SS}})</td>
<td>–0.5</td>
<td>–</td>
<td>0.5</td>
<td>mA</td>
<td>Absolute max, current injected per pin</td>
</tr>
<tr>
<td>BID57</td>
<td>ESD(_{\text{HBM}})</td>
<td>Electrostatic discharge human body model</td>
<td>2200</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>BID58</td>
<td>ESD(_{\text{CDM}})</td>
<td>Electrostatic discharge charged device model</td>
<td>500</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>BID61</td>
<td>LU</td>
<td>Pin current for latch-up</td>
<td>–200</td>
<td>–</td>
<td>200</td>
<td>mA</td>
<td>–</td>
</tr>
</tbody>
</table>

Device-Level Specifications

All specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 6. DC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID6</td>
<td>V(_{\text{DD}})</td>
<td>Power supply input voltage (V({\text{DDA}}) = V({\text{DDD}}) = V(_{\text{DD}}))</td>
<td>1.8</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>With regulator enabled</td>
</tr>
<tr>
<td>SID7</td>
<td>V(_{\text{DD}})</td>
<td>Power supply input voltage unregulated (V({\text{DDA}}) = V({\text{DDD}}) = V(_{\text{DD}}))</td>
<td>1.71</td>
<td>1.8</td>
<td>1.89</td>
<td>V</td>
<td>Internally unregulated Supply</td>
</tr>
<tr>
<td>SID8</td>
<td>V(_{\text{DDR}})</td>
<td>Radio supply voltage (Radio ON)</td>
<td>1.9</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID8A</td>
<td>V(_{\text{DDR}})</td>
<td>Radio supply voltage (Radio OFF)</td>
<td>1.71</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID9</td>
<td>V(_{\text{CCD}})</td>
<td>Digital regulator output voltage (for core logic)</td>
<td>–</td>
<td>1.8</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID10</td>
<td>C(_{\text{VCCD}})</td>
<td>Digital regulator output bypass capacitor</td>
<td>1</td>
<td>1.3</td>
<td>1.6</td>
<td>µF</td>
<td>X5R ceramic or better</td>
</tr>
</tbody>
</table>

Active Mode, V\(_{\text{DD}}\) = 1.71 V to 5.5 V

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID13</td>
<td>I(_{\text{DD3}})</td>
<td>Execute from flash; CPU at 3 MHz</td>
<td>–</td>
<td>2.1</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, V(_{\text{DD}}) = 3.3 V</td>
</tr>
<tr>
<td>SID14</td>
<td>I(_{\text{DD4}})</td>
<td>Execute from flash; CPU at 3 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 C to 85 °C</td>
</tr>
<tr>
<td>SID15</td>
<td>I(_{\text{DD5}})</td>
<td>Execute from flash; CPU at 6 MHz</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, V(_{\text{DD}}) = 3.3 V</td>
</tr>
<tr>
<td>SID16</td>
<td>I(_{\text{DD6}})</td>
<td>Execute from flash; CPU at 6 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>SID17</td>
<td>I(_{\text{DD7}})</td>
<td>Execute from flash; CPU at 12 MHz</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, V(_{\text{DD}}) = 3.3 V</td>
</tr>
<tr>
<td>SID18</td>
<td>I(_{\text{DD8}})</td>
<td>Execute from flash; CPU at 12 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
</tbody>
</table>

Note

1. Usage above the absolute maximum conditions listed in Table 5 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.
<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID19</td>
<td>I\textsubscript{DD9}</td>
<td>Execute from flash; CPU at 24 MHz</td>
<td>–</td>
<td>7.1</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, V\textsubscript{DD} = 3.3 V</td>
</tr>
<tr>
<td>SID20</td>
<td>I\textsubscript{DD10}</td>
<td>Execute from flash; CPU at 24 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>SID21</td>
<td>I\textsubscript{DD11}</td>
<td>Execute from flash; CPU at 48 MHz</td>
<td>–</td>
<td>13.4</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, V\textsubscript{DD} = 3.3 V</td>
</tr>
<tr>
<td>SID22</td>
<td>I\textsubscript{DD12}</td>
<td>Execute from flash; CPU at 48 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
</tbody>
</table>

Sleep Mode, V\textsubscript{DD} = 1.8 to 5.5 V

| SID23 | I\textsubscript{DD13} | IMO on | – | – | – | mA | T = 25 °C, V\textsubscript{DD} = 3.3 V, SYSCLK = 3 MHz |
| SID24 | I\textsubscript{DD14} | ECO on | – | – | – | mA | T = 25 °C, V\textsubscript{DD} = 3.3 V, SYSCLK = 3 MHz |

Sleep Mode, V\textsubscript{DD} and V\textsubscript{DDR} = 1.9 to 5.5 V

| SID25 | I\textsubscript{DD15} | WDT with WCO on | – | 1.5 | – | µA | T = 25 °C, V\textsubscript{DD} = 3.3 V |
| SID26 | I\textsubscript{DD16} | WDT with WCO on | – | – | – | µA | T = –40 °C to 85 °C |

Deep Sleep Mode, V\textsubscript{DD} = 1.8 to 3.6 V

| SID27 | I\textsubscript{DD17} | WDT with WCO on | – | – | – | µA | T = 25 °C, V\textsubscript{DD} = 5 V |
| SID28 | I\textsubscript{DD18} | WDT with WCO on | – | – | – | µA | T = –40 °C to 85 °C |

Deep Sleep Mode, V\textsubscript{DD} = 1.71 to 1.89 V (Regulator Bypassed)

| SID29 | I\textsubscript{DD19} | WDT with WCO on | – | – | – | µA | T = 25 °C |
| SID30 | I\textsubscript{DD20} | WDT with WCO on | – | – | – | µA | T = –40 °C to 85 °C |

Deep Sleep Mode, V\textsubscript{DD} = 1.8 to 3.6 V

| SID31 | I\textsubscript{DD21} | Opamp on | – | – | – | µA | T = 25 °C, V\textsubscript{DD} = 3.3 V |
| SID32 | I\textsubscript{DD22} | Opamp on | – | – | – | µA | T = –40 °C to 85 °C |

Deep Sleep Mode, V\textsubscript{DD} = 3.6 to 5.5 V

| SID33 | I\textsubscript{DD23} | Opamp on | – | – | – | µA | T = 25 °C, V\textsubscript{DD} = 5 V |
| SID34 | I\textsubscript{DD24} | Opamp on | – | – | – | µA | T = –40 °C to 85 °C |

Deep Sleep Mode, V\textsubscript{DD} = 1.71 to 1.89 V (Regulator Bypassed)

| SID35 | I\textsubscript{DD25} | Opamp on | – | – | – | µA | T = 25 °C |
| SID36 | I\textsubscript{DD26} | Opamp on | – | – | – | µA | T = –40 °C to 85 °C |

Hibernate Mode, V\textsubscript{DD} = 1.8 to 3.6 V

| SID37 | I\textsubscript{DD27} | GPIO and reset active | – | 150 | – | nA | T = 25 °C, V\textsubscript{DD} = 3.3 V |
| SID38 | I\textsubscript{DD28} | GPIO and reset active | – | – | – | nA | T = –40 °C to 85 °C |

Hibernate Mode, V\textsubscript{DD} = 3.6 to 5.5 V

| SID39 | I\textsubscript{DD29} | GPIO and reset active | – | – | – | nA | T = 25 °C, V\textsubscript{DD} = 5 V |
| SID40 | I\textsubscript{DD30} | GPIO and reset active | – | – | – | nA | T = –40 °C to 85 °C |
Table 6. DC Specifications (continued)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID41</td>
<td>I_{DD31}</td>
<td>GPIO and reset active</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = 25 °C</td>
</tr>
<tr>
<td>SID42</td>
<td>I_{DD32}</td>
<td>GPIO and reset active</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>Stop Mode, V_{DD} = 1.8 to 3.6 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID43</td>
<td>I_{DD33}</td>
<td>Stop mode current (V_{DD})</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>nA</td>
<td>T = 25 °C, $V_{DD} = 3.3$ V</td>
</tr>
<tr>
<td>SID44</td>
<td>I_{DD34}</td>
<td>Stop mode current (V_{DDR})</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>nA</td>
<td>T = 25 °C, $V_{DDR} = 3.3$ V</td>
</tr>
<tr>
<td>SID45</td>
<td>I_{DD35}</td>
<td>Stop mode current (V_{DD})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>SID46</td>
<td>I_{DD36}</td>
<td>Stop mode current (V_{DDR})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = –40 °C to 85 °C, $V_{DDR} = 1.9$ V to 3.6 V</td>
</tr>
<tr>
<td>Stop Mode, V_{DD} = 3.6 to 5.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID47</td>
<td>I_{DD37}</td>
<td>Stop mode current (V_{DD})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = 25 °C, $V_{DD} = 5$ V</td>
</tr>
<tr>
<td>SID48</td>
<td>I_{DD38}</td>
<td>Stop mode current (V_{DDR})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = 25 °C, $V_{DDR} = 5$ V</td>
</tr>
<tr>
<td>SID49</td>
<td>I_{DD39}</td>
<td>Stop mode current (V_{DD})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>SID50</td>
<td>I_{DD40}</td>
<td>Stop mode current (V_{DDR})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>Stop Mode, V_{DD} = 1.71 to 1.89 V (Regulator Bypassed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID51</td>
<td>I_{DD41}</td>
<td>Stop mode current (V_{DD})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = 25 °C</td>
</tr>
<tr>
<td>SID52</td>
<td>I_{DD42}</td>
<td>Stop mode current (V_{DD})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>nA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
</tbody>
</table>

Table 7. AC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID53</td>
<td>F_{CPU}</td>
<td>CPU frequency</td>
<td>DC</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td>1.71 V_{DD} ≤ 5.5 V_{DD}</td>
</tr>
<tr>
<td>SID54</td>
<td>T_{SLEEP}</td>
<td>Wakeup from Sleep mode</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>µs</td>
<td>Guaranteed by characterization</td>
</tr>
<tr>
<td>SID55</td>
<td>$T_{DEEPSLEEP}$</td>
<td>Wakeup from Deep Sleep mode</td>
<td>–</td>
<td>–</td>
<td>25</td>
<td>µs</td>
<td>24-MHz IMO. Guaranteed by characterization</td>
</tr>
<tr>
<td>SID56</td>
<td>$T_{HIBERNATE}$</td>
<td>Wakeup from Hibernate mode</td>
<td>–</td>
<td>–</td>
<td>0.7</td>
<td>ms</td>
<td>Guaranteed by characterization</td>
</tr>
<tr>
<td>SID57</td>
<td>T_{STOP}</td>
<td>Wakeup from Stop mode</td>
<td>–</td>
<td>–</td>
<td>2.2</td>
<td>ms</td>
<td>Guaranteed by characterization</td>
</tr>
</tbody>
</table>
GPIO

Table 8. GPIO DC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID58</td>
<td>V_{IH}</td>
<td>Input voltage HIGH threshold</td>
<td>0.7 $\times V_{DD}$</td>
<td>--</td>
<td>--</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td>SID59</td>
<td>V_{IL}</td>
<td>Input voltage LOW threshold</td>
<td>--</td>
<td>--</td>
<td>0.3 $\times V_{DD}$</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td>SID60</td>
<td>V_{IH}</td>
<td>LVTTL input, $V_{DD} < 2.7$ V</td>
<td>0.7 $\times V_{DD}$</td>
<td>--</td>
<td>--</td>
<td>V</td>
<td>--</td>
</tr>
<tr>
<td>SID61</td>
<td>V_{IL}</td>
<td>LVTTL input, $V_{DD} < 2.7$ V</td>
<td>--</td>
<td>--</td>
<td>0.3 $\times V_{DD}$</td>
<td>V</td>
<td>--</td>
</tr>
<tr>
<td>SID62</td>
<td>V_{IH}</td>
<td>LVTTL input, $V_{DD} \geq 2.7$ V</td>
<td>2.0</td>
<td>--</td>
<td>--</td>
<td>V</td>
<td>--</td>
</tr>
<tr>
<td>SID63</td>
<td>V_{IL}</td>
<td>LVTTL input, $V_{DD} \geq 2.7$ V</td>
<td>--</td>
<td>--</td>
<td>0.8</td>
<td>V</td>
<td>--</td>
</tr>
<tr>
<td>SID64</td>
<td>V_{OH}</td>
<td>Output voltage HIGH level</td>
<td>$V_{DD} - 0.6$</td>
<td>--</td>
<td>--</td>
<td>V</td>
<td>Ioh = 4-mA at 3.3-V V_{DD}</td>
</tr>
<tr>
<td>SID65</td>
<td>V_{OH}</td>
<td>Output voltage HIGH level</td>
<td>$V_{DD} - 0.5$</td>
<td>--</td>
<td>--</td>
<td>V</td>
<td>Ioh = 1-mA at 1.8-V V_{DD}</td>
</tr>
<tr>
<td>SID66</td>
<td>V_{OL}</td>
<td>Output voltage LOW level</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>V</td>
<td>Iol = 8-mA at 3.3-V V_{DD}</td>
</tr>
<tr>
<td>SID67</td>
<td>V_{OL}</td>
<td>Output voltage LOW level</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>V</td>
<td>Iol = 4-mA at 1.8-V V_{DD}</td>
</tr>
<tr>
<td>SID68</td>
<td>V_{OL}</td>
<td>Output voltage LOW level</td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
<td>Iol = 3-mA at 3.3-V V_{DD}</td>
</tr>
<tr>
<td>SID69</td>
<td>R_{pullup}</td>
<td>Pull-up resistor</td>
<td>3.5</td>
<td>5.6</td>
<td>8.5</td>
<td>kΩ</td>
<td>--</td>
</tr>
<tr>
<td>SID70</td>
<td>$R_{pulldown}$</td>
<td>Pull-down resistor</td>
<td>3.5</td>
<td>5.6</td>
<td>8.5</td>
<td>kΩ</td>
<td>--</td>
</tr>
<tr>
<td>SID71</td>
<td>I_{IL}</td>
<td>Input leakage current (absolute value)</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>nA</td>
<td>25 °C, $V_{DD} = 3.3$ V</td>
</tr>
<tr>
<td>SID72</td>
<td>$I_{IL, CTBM}$</td>
<td>Input leakage on CTBm input pins</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>nA</td>
<td>--</td>
</tr>
<tr>
<td>SID73</td>
<td>C_{IN}</td>
<td>Input capacitance</td>
<td>--</td>
<td>--</td>
<td>7</td>
<td>pF</td>
<td>--</td>
</tr>
<tr>
<td>SID74</td>
<td>V_{hysttl}</td>
<td>Input hysteresis LVTTL</td>
<td>25</td>
<td>40</td>
<td></td>
<td>mV</td>
<td>$V_{DD} > 2.7$ V</td>
</tr>
<tr>
<td>SID75</td>
<td>$V_{hystcmos}$</td>
<td>Input hysteresis CMOS</td>
<td>0.05 $\times V_{DD}$</td>
<td>--</td>
<td>--</td>
<td>mV</td>
<td>--</td>
</tr>
<tr>
<td>SID76</td>
<td>Idiode</td>
<td>Current through protection diode to V_{DD}/V_{SS}</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>µA</td>
<td>--</td>
</tr>
<tr>
<td>SID77</td>
<td>I_{TOT_GPIO}</td>
<td>Maximum total source or sink chip current</td>
<td>--</td>
<td>--</td>
<td>200</td>
<td>mA</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 9. GPIO AC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID78</td>
<td>T_{RISE}</td>
<td>Rise time in Fast-Strong mode</td>
<td>2</td>
<td>--</td>
<td>12</td>
<td>ns</td>
<td>3.3-V V_{DDD}, $C_{LOAD} = 25$-pF</td>
</tr>
<tr>
<td>SID79</td>
<td>T_{FALL}</td>
<td>Fall time in Fast-Strong mode</td>
<td>2</td>
<td>--</td>
<td>12</td>
<td>ns</td>
<td>3.3-V V_{DDD}, $C_{LOAD} = 25$-pF</td>
</tr>
<tr>
<td>SID80</td>
<td>T_{RISE}</td>
<td>Rise time in Slow-Strong mode</td>
<td>10</td>
<td>--</td>
<td>60</td>
<td>--</td>
<td>3.3-V V_{DDD}, $C_{LOAD} = 25$-pF</td>
</tr>
<tr>
<td>SID81</td>
<td>T_{FALL}</td>
<td>Fall time in Slow-Strong mode</td>
<td>10</td>
<td>--</td>
<td>60</td>
<td>--</td>
<td>3.3-V V_{DDD}, $C_{LOAD} = 25$-pF</td>
</tr>
<tr>
<td>SID82</td>
<td>$F_{GPIOOUT}$</td>
<td>GPIO Fout; 3.3 V $\leq V_{DD} \leq 5.5$ V. Fast-Strong mode</td>
<td>--</td>
<td>--</td>
<td>33</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
</tbody>
</table>

Note:
2. V_{IH} must not exceed $V_{DDD} + 0.2$ V.
Table 9. GPIO AC Specifications (continued)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID83</td>
<td>F_GPIOOUT2</td>
<td>GPIO Fout; 1.7 V ≤ VDD ≤ 3.3 V Fast-Strong mode</td>
<td>–</td>
<td>–</td>
<td>16.7</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>SID84</td>
<td>F_GPIOOUT3</td>
<td>GPIO Fout; 3.3 V ≤ VDD ≤ 5.5 V Slow-Strong mode</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>SID85</td>
<td>F_GPIOOUT4</td>
<td>GPIO Fout; 1.7 V ≤ VDD ≤ 3.3 V Slow-Strong mode</td>
<td>–</td>
<td>–</td>
<td>3.5</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>SID86</td>
<td>F_GPIOIN</td>
<td>GPIO input operating frequency; 1.71 V ≤ VDD ≤ 5.5 V</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td>90/10% VIO</td>
</tr>
</tbody>
</table>

Table 10. OVT GPIO DC Specifications (P5_0 and P5_1 Only)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID71A</td>
<td>IIL</td>
<td>Input leakage current (absolute value), VIH > VDD</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>µA</td>
<td>25 °C, VDD = 0 V, VIH = 3.0 V</td>
</tr>
<tr>
<td>SID66A</td>
<td>VOL</td>
<td>Output voltage LOW level</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
<td>IOL = 20-mA, VDD > 2.9-V</td>
</tr>
</tbody>
</table>

Table 11. OVT GPIO AC Specifications (P5_0 and P5_1 Only)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID78A</td>
<td>T_RISE_OVFS</td>
<td>Output rise time in Fast-Strong mode</td>
<td>1.5</td>
<td>–</td>
<td>12</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD=3.3-V</td>
</tr>
<tr>
<td>SID79A</td>
<td>T_FALL_OVFS</td>
<td>Output fall time in Fast-Strong mode</td>
<td>1.5</td>
<td>–</td>
<td>12</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD=3.3-V</td>
</tr>
<tr>
<td>SID80A</td>
<td>T_RISSS</td>
<td>Output rise time in Slow-Strong mode</td>
<td>10</td>
<td>–</td>
<td>60</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD=3.3-V</td>
</tr>
<tr>
<td>SID81A</td>
<td>T_FALLSS</td>
<td>Output fall time in Slow-Strong mode</td>
<td>10</td>
<td>–</td>
<td>60</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD=3.3-V</td>
</tr>
<tr>
<td>SID82A</td>
<td>F_GPIOOUT1</td>
<td>GPIO FOUT; 3.3 V ≤ VDD ≤ 5.5 V Fast-Strong mode</td>
<td>–</td>
<td>–</td>
<td>24</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>SID83A</td>
<td>F_GPIOOUT2</td>
<td>GPIO FOUT; 1.71 V ≤ VDD ≤ 3.3 V Fast-Strong mode</td>
<td>–</td>
<td>–</td>
<td>16</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
</tbody>
</table>

XRES

Table 12. XRES DC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID87</td>
<td>V_H</td>
<td>Input voltage HIGH threshold</td>
<td>0.7 × VDDD</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td>SID88</td>
<td>V_L</td>
<td>Input voltage LOW threshold</td>
<td>–</td>
<td>–</td>
<td>0.3 × VDDD</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td>SID89</td>
<td>Rpullup</td>
<td>Pull-up resistor</td>
<td>3.5</td>
<td>5.6</td>
<td>8.5</td>
<td>kΩ</td>
<td>–</td>
</tr>
<tr>
<td>SID90</td>
<td>C_IN</td>
<td>Input capacitance</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID91</td>
<td>V_HYSXRES</td>
<td>Input voltage hysteresis</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>mV</td>
<td>–</td>
</tr>
<tr>
<td>SID92</td>
<td>I_DIODE</td>
<td>Current through protection diode to VDDD/VSS</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>
Analog Peripherals

Opamp

Table 13. XRES AC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID93</td>
<td>T_RESETWIDTH</td>
<td>Reset pulse width</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 14. Opamp Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID94</td>
<td>I_DD_HI</td>
<td>Power = high</td>
<td>–</td>
<td>–</td>
<td>1000</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID95</td>
<td>I_DD_MED</td>
<td>Power = medium</td>
<td>–</td>
<td>–</td>
<td>500</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID96</td>
<td>I_DD_LOW</td>
<td>Power = low</td>
<td>–</td>
<td>–</td>
<td>250</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>GBW (Load = 20 pF, 0.1 mA, V_DDA = 2.7 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID97</td>
<td>GBW_HI</td>
<td>Power = high</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID98</td>
<td>GBW_MED</td>
<td>Power = medium</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID99</td>
<td>GBW_LO</td>
<td>Power = low</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>I_OUT_MAX (V_DDA ≥ 2.7 V, 500 mV From Rail)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID100</td>
<td>I_OUT_MAX_HI</td>
<td>Power = high</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID101</td>
<td>I_OUT_MAX_MID</td>
<td>Power = medium</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID102</td>
<td>I_OUT_MAX_LO</td>
<td>Power = low</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>I_OUT (V_DDA = 1.71 V, 500 mV From Rail)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID103</td>
<td>I_OUT_MAX_HI</td>
<td>Power = high</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID104</td>
<td>I_OUT_MAX_MID</td>
<td>Power = medium</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID105</td>
<td>I_OUT_MAX_LO</td>
<td>Power = low</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID106</td>
<td>V_IN</td>
<td>Charge pump on, V_DDA ≥ 2.7 V</td>
<td>–0.05</td>
<td>–</td>
<td>V_DDA – 0.2</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID107</td>
<td>V_CM</td>
<td>Charge pump on, V_DDA ≥ 2.7 V</td>
<td>–0.05</td>
<td>–</td>
<td>V_DDA – 0.2</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>V_OUT (V_DDA ≥ 2.7 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID108</td>
<td>V_OUT_1</td>
<td>Power = high, I_LOAD=10 mA</td>
<td>0.5</td>
<td>–</td>
<td>V_DDA – 0.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID109</td>
<td>V_OUT_2</td>
<td>Power = high, I_LOAD=1 mA</td>
<td>0.2</td>
<td>–</td>
<td>V_DDA – 0.2</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID110</td>
<td>V_OUT_3</td>
<td>Power = medium, I_LOAD=1 mA</td>
<td>0.2</td>
<td>–</td>
<td>V_DDA – 0.2</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID111</td>
<td>V_OUT_4</td>
<td>Power = low, I_LOAD=0.1 mA</td>
<td>0.2</td>
<td>–</td>
<td>V_DDA – 0.2</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID112</td>
<td>V_OS_TR</td>
<td>Offset voltage, trimmed</td>
<td>1</td>
<td>±0.5</td>
<td>1</td>
<td>mV</td>
<td>High mode</td>
</tr>
<tr>
<td>SID113</td>
<td>V_OS_TR</td>
<td>Offset voltage, trimmed</td>
<td>–</td>
<td>±1</td>
<td>–</td>
<td>mV</td>
<td>Medium mode</td>
</tr>
<tr>
<td>SID114</td>
<td>V_OS_TR</td>
<td>Offset voltage, trimmed</td>
<td>–</td>
<td>±2</td>
<td>–</td>
<td>mV</td>
<td>Low mode</td>
</tr>
<tr>
<td>SID115</td>
<td>V_OS_DR_TR</td>
<td>Offset voltage drift, trimmed</td>
<td>–10</td>
<td>±3</td>
<td>10</td>
<td>µV/C</td>
<td>High mode</td>
</tr>
<tr>
<td>SID116</td>
<td>V_OS_DR_TR</td>
<td>Offset voltage drift, trimmed</td>
<td>–</td>
<td>±10</td>
<td>–</td>
<td>µV/C</td>
<td>Medium mode</td>
</tr>
<tr>
<td>SID117</td>
<td>V_OS_DR_TR</td>
<td>Offset voltage drift, trimmed</td>
<td>–</td>
<td>±10</td>
<td>–</td>
<td>µV/C</td>
<td>Low mode</td>
</tr>
<tr>
<td>SID118</td>
<td>CMRR</td>
<td>DC</td>
<td>70</td>
<td>80</td>
<td>–</td>
<td>dB</td>
<td>V_DDD = 3.6-V</td>
</tr>
<tr>
<td>SID119</td>
<td>PSRR</td>
<td>At 1 kHz, 100-mV ripple</td>
<td>70</td>
<td>85</td>
<td>–</td>
<td>dB</td>
<td>V_DDD = 3.6-V</td>
</tr>
</tbody>
</table>

Noise

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID120</td>
<td>V_N1</td>
<td>Input referred, 1 Hz–1 GHz, power = high</td>
<td>–</td>
<td>94</td>
<td>–</td>
<td>µVrms</td>
<td>–</td>
</tr>
<tr>
<td>SID121</td>
<td>V_N2</td>
<td>Input referred, 1-kHz, power = high</td>
<td>–</td>
<td>72</td>
<td>–</td>
<td>nV/rtHz</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 14. Opamp Specifications (continued)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID122</td>
<td>V_N3</td>
<td>Input referred, 10-kHz, power = high</td>
<td></td>
<td>28</td>
<td></td>
<td>nV/rtHz</td>
<td>–</td>
</tr>
<tr>
<td>SID123</td>
<td>V_N4</td>
<td>Input referred, 100-kHz, power = high</td>
<td></td>
<td>15</td>
<td></td>
<td>nV/rtHz</td>
<td>–</td>
</tr>
<tr>
<td>SID124</td>
<td>C_LOAD</td>
<td>Stable up to maximum load. Performance specs at 50 pF</td>
<td></td>
<td></td>
<td>125</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID125</td>
<td>Slew_rate</td>
<td>Cload = 50 pF, Power = High, V_DDA ≥ 2.7 V</td>
<td>6</td>
<td></td>
<td></td>
<td>V/µsec</td>
<td>–</td>
</tr>
<tr>
<td>SID126</td>
<td>T_op_wake</td>
<td>From disable to enable, no external RC dominating</td>
<td></td>
<td>300</td>
<td></td>
<td>µsec</td>
<td>–</td>
</tr>
</tbody>
</table>

Comp_mode (Comparator Mode; 50-mV Drive, _TRISE_ = _TFALL_ (Approx.)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID127</td>
<td>T_PD1</td>
<td>Response time; power = high</td>
<td></td>
<td>150</td>
<td></td>
<td>nsec</td>
<td>–</td>
</tr>
<tr>
<td>SID128</td>
<td>T_PD2</td>
<td>Response time; power = medium</td>
<td></td>
<td>400</td>
<td></td>
<td>nsec</td>
<td>–</td>
</tr>
<tr>
<td>SID129</td>
<td>T_PD3</td>
<td>Response time; power = low</td>
<td></td>
<td>2000</td>
<td></td>
<td>nsec</td>
<td>–</td>
</tr>
<tr>
<td>SID130</td>
<td>V_hyst_op</td>
<td>Hysteresis</td>
<td></td>
<td>10</td>
<td></td>
<td>mV</td>
<td>–</td>
</tr>
</tbody>
</table>

Deep Sleep (Deep Sleep mode operation is only guaranteed for _V_DDA_ > 2.5 V)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID131</td>
<td>GBW_DS</td>
<td>Gain bandwidth product</td>
<td></td>
<td>50</td>
<td></td>
<td>kHz</td>
<td>–</td>
</tr>
<tr>
<td>SID132</td>
<td>IDD_DS</td>
<td>Current</td>
<td></td>
<td>15</td>
<td></td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID133</td>
<td>Vos_DS</td>
<td>Offset voltage</td>
<td></td>
<td>5</td>
<td></td>
<td>mV</td>
<td>–</td>
</tr>
<tr>
<td>SID134</td>
<td>V_os_dr_DS</td>
<td>Offset voltage drift</td>
<td></td>
<td>20</td>
<td></td>
<td>µV/°C</td>
<td>–</td>
</tr>
<tr>
<td>SID135</td>
<td>Vout_DS</td>
<td>Output voltage</td>
<td>0.2</td>
<td></td>
<td>V_DDD−0.2</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID136</td>
<td>Vcm_DS</td>
<td>Common mode voltage</td>
<td>0.2</td>
<td></td>
<td>V_DDD−1.8</td>
<td>V</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 15. Comparator DC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID140</td>
<td>V_OFFSET1</td>
<td>Input offset voltage, Factory trim</td>
<td></td>
<td></td>
<td>±10</td>
<td>mV</td>
<td>–</td>
</tr>
<tr>
<td>SID141</td>
<td>V_OFFSET2</td>
<td>Input offset voltage, Custom trim</td>
<td></td>
<td></td>
<td>±6</td>
<td>mV</td>
<td>–</td>
</tr>
<tr>
<td>SID141A</td>
<td>V_OFFSET3</td>
<td>Input offset voltage, ultra-low-power mode</td>
<td></td>
<td>±12</td>
<td></td>
<td>mV</td>
<td>–</td>
</tr>
<tr>
<td>SID142</td>
<td>V_HYST</td>
<td>Hysteresis when enabled. Common Mode voltage range from 0 to VDD −1</td>
<td></td>
<td>10</td>
<td>35</td>
<td>mV</td>
<td>–</td>
</tr>
<tr>
<td>SID143</td>
<td>V_ICM1</td>
<td>Input common mode voltage in normal mode</td>
<td>0</td>
<td></td>
<td>V_DDD−0.1</td>
<td>V</td>
<td>Modes 1 and 2</td>
</tr>
<tr>
<td>SID144</td>
<td>V_ICM2</td>
<td>Input common mode voltage in low power mode</td>
<td>0</td>
<td></td>
<td>V_DDD</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID145</td>
<td>V_ICM3</td>
<td>Input common mode voltage in ultra low power mode</td>
<td>0</td>
<td></td>
<td>V_DDD−1.15</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID146</td>
<td>CMRR</td>
<td>Common mode rejection ratio</td>
<td>50</td>
<td></td>
<td></td>
<td>dB</td>
<td>–</td>
</tr>
<tr>
<td>SID147</td>
<td>CMRR</td>
<td>Common mode rejection ratio</td>
<td>42</td>
<td></td>
<td></td>
<td>dB</td>
<td>–</td>
</tr>
<tr>
<td>SID148</td>
<td>I_CMP1</td>
<td>Block current, normal mode</td>
<td></td>
<td>400</td>
<td></td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID149</td>
<td>I_CMP2</td>
<td>Block current, low power mode</td>
<td></td>
<td>100</td>
<td></td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Note
3. ULP LCOMP operating conditions:
- V_DDD ≥ 2.6 V for datasheet temp range < 0 °C
- V_DDD ≥ 1.8 V for datasheet temp range ≥ 0 °C
Table 15. Comparator DC Specifications\[3\] (continued)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID150</td>
<td>I_{CMP3}</td>
<td>Block current in ultra low-power mode</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>µA</td>
<td>$V_{\text{DD}} \geq 2.6 \text{ V}$ for Temp $< 0 \degree \text{C}$, $V_{\text{DD}} \geq 1.8 \text{ V}$ for Temp $> 0 \degree \text{C}$</td>
</tr>
<tr>
<td>SID151</td>
<td>Z_{CMP}</td>
<td>DC input impedance of comparator</td>
<td>35</td>
<td>–</td>
<td>–</td>
<td>MΩ</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 16. Comparator AC Specifications\[4\]

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID152</td>
<td>T_{RESP1}</td>
<td>Response time, normal mode, 50-mV overdrive</td>
<td>–</td>
<td>38</td>
<td>–</td>
<td>ns</td>
<td>50-mV overdrive</td>
</tr>
<tr>
<td>SID153</td>
<td>T_{RESP2}</td>
<td>Response time, low power mode, 50-mV overdrive</td>
<td>–</td>
<td>70</td>
<td>–</td>
<td>ns</td>
<td>50-mV overdrive</td>
</tr>
<tr>
<td>SID154</td>
<td>T_{RESP3}</td>
<td>Response time, ultra-low-power mode, 50-mV overdrive</td>
<td>–</td>
<td>2.3</td>
<td>–</td>
<td>µs</td>
<td>200-mV overdrive. $V_{\text{DD}} \geq 2.6 \text{ V}$ for Temp $< 0 \degree \text{C}$, $V_{\text{DD}} \geq 1.8 \text{ V}$ for Temp $> 0 \degree \text{C}$</td>
</tr>
</tbody>
</table>

Temperature Sensor

Table 17. Temperature Sensor Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID155</td>
<td>T_{SENSACC}</td>
<td>Temperature sensor accuracy</td>
<td>–5</td>
<td>±1</td>
<td>5</td>
<td>°C</td>
<td>–40 to +85 °C</td>
</tr>
</tbody>
</table>

SAR ADC

Table 18. SAR ADC DC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID156</td>
<td>A_RES</td>
<td>Resolution</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>bits</td>
<td>–</td>
</tr>
<tr>
<td>SID157</td>
<td>A_CHNIS_S</td>
<td>Number of channels - single-ended</td>
<td>–</td>
<td>–</td>
<td>16</td>
<td>–</td>
<td>8 full-speed</td>
</tr>
<tr>
<td>SID158</td>
<td>A_CHNKS_D</td>
<td>Number of channels - differential</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>Diff inputs use neighboring I/O</td>
</tr>
<tr>
<td>SID159</td>
<td>A_MONO</td>
<td>Monotonicity</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>SID160</td>
<td>A_GAINERR</td>
<td>Gain error</td>
<td>–</td>
<td>–</td>
<td>±0.1</td>
<td>%</td>
<td>With external reference.</td>
</tr>
<tr>
<td>SID161</td>
<td>A_OFFSET</td>
<td>Input offset voltage</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>mV</td>
<td>Measured with 1-V V_{REF}</td>
</tr>
<tr>
<td>SID162</td>
<td>A_ISAR</td>
<td>Current consumption</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID163</td>
<td>A_VINS</td>
<td>Input voltage range - single-ended</td>
<td>V_{SS}</td>
<td>–</td>
<td>V_{DDA}</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID164</td>
<td>A_VIND</td>
<td>Input voltage range - differential</td>
<td>V_{SS}</td>
<td>–</td>
<td>V_{DDA}</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID165</td>
<td>A_INRES</td>
<td>Input resistance</td>
<td>–</td>
<td>–</td>
<td>2.2</td>
<td>kΩ</td>
<td>–</td>
</tr>
<tr>
<td>SID166</td>
<td>A_INCAP</td>
<td>Input capacitance</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID312</td>
<td>VREFSAR</td>
<td>Trimmed internal reference to SAR</td>
<td>–1</td>
<td>–</td>
<td>1</td>
<td>%</td>
<td>Percentage of Vbg (1.024-V)</td>
</tr>
</tbody>
</table>

Note

4. ULP LCOMP operating conditions:
- $V_{\text{DD}} 2.6 \text{ V}$ to 5.5 V for datashet temp range $< 0 \degree \text{C}$
- $V_{\text{DD}} 1.8 \text{ V}$ to 5.5 V for datashet temp range $\geq 0 \degree \text{C}$
Table 19. SAR ADC AC Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID167</td>
<td>A_psrr</td>
<td>Power supply rejection ratio</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>dB</td>
<td>Measured at 1-V reference</td>
</tr>
<tr>
<td>SID168</td>
<td>A_cmrr</td>
<td>Common mode rejection ratio</td>
<td>66</td>
<td>-</td>
<td>-</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>SID169</td>
<td>A_samp</td>
<td>Sample rate</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Msps</td>
<td>806 Ksps for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSoC 41X8_BLE devices</td>
</tr>
<tr>
<td>SID313</td>
<td>Fsarintref</td>
<td>SAR operating speed without external ref. bypass</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>Ksps</td>
<td>12-bit resolution</td>
</tr>
<tr>
<td>SID170</td>
<td>A_sn</td>
<td>Signal-to-noise ratio (SNR)</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td>dB</td>
<td>Fin = 10 kHz</td>
</tr>
<tr>
<td>SID171</td>
<td>A_bw</td>
<td>Input bandwidth without aliasing</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>SID172</td>
<td>A_inl</td>
<td>Integral non linearity. V_DD = 1.71 to 5.5 V, 1 Msps</td>
<td>-1.7</td>
<td>-</td>
<td>2</td>
<td>LSB</td>
<td>Vref = 1 V to V_DD</td>
</tr>
<tr>
<td>SID173</td>
<td>A_INL</td>
<td>Integral non linearity. V_DD = 1.71 to 3.6 V, 1 Msps</td>
<td>-1.5</td>
<td>-</td>
<td>1.7</td>
<td>LSB</td>
<td>Vref = 1.71 V to V_DD</td>
</tr>
<tr>
<td>SID174</td>
<td>A_INL</td>
<td>Integral non linearity. V_DD = 1.71 to 5.5 V, 500 Ksps</td>
<td>-1.5</td>
<td>-</td>
<td>1.7</td>
<td>LSB</td>
<td>Vref = 1 V to V_DD</td>
</tr>
<tr>
<td>SID175</td>
<td>A_dnl</td>
<td>Differential non linearity. V_DD = 1.71 to 5.5 V, 1 Msps</td>
<td>-1</td>
<td>-</td>
<td>2.2</td>
<td>LSB</td>
<td>Vref = 1 V to V_DD</td>
</tr>
<tr>
<td>SID176</td>
<td>A_DNL</td>
<td>Differential non linearity. V_DD = 1.71 to 3.6 V, 1 Msps</td>
<td>-1</td>
<td>-</td>
<td>2</td>
<td>LSB</td>
<td>Vref = 1.71 V to V_DD</td>
</tr>
<tr>
<td>SID177</td>
<td>A_DNL</td>
<td>Differential non linearity. V_DD = 1.71 to 5.5 V, 500 Ksps</td>
<td>-1</td>
<td>-</td>
<td>2.2</td>
<td>LSB</td>
<td>Vref = 1 V to V_DD</td>
</tr>
<tr>
<td>SID178</td>
<td>A_thd</td>
<td>Total harmonic distortion</td>
<td>-</td>
<td>-</td>
<td>-65</td>
<td>dB</td>
<td>Fin = 10 kHz</td>
</tr>
</tbody>
</table>

CSD

Table 20. CSD Block Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID179</td>
<td>V_CSD</td>
<td>Voltage range of operation</td>
<td>1.71</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>SID180</td>
<td>IDAC1</td>
<td>DNL for 8-bit resolution</td>
<td>-1</td>
<td>-</td>
<td>1</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>SID181</td>
<td>IDAC1</td>
<td>INL for 8-bit resolution</td>
<td>-3</td>
<td>-</td>
<td>3</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>SID182</td>
<td>IDAC2</td>
<td>DNL for 7-bit resolution</td>
<td>-1</td>
<td>-</td>
<td>1</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>SID183</td>
<td>IDAC2</td>
<td>INL for 7-bit resolution</td>
<td>-3</td>
<td>-</td>
<td>3</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>SID184</td>
<td>SNR</td>
<td>Ratio of counts of finger to noise</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>Ratio</td>
<td>Capacitance range of 9 to 35 pF, 0.1 pF sensitivity. Radio is not operating during the scan</td>
</tr>
<tr>
<td>SID185</td>
<td>I_DAC1_CRT1</td>
<td>Output current of IDAC1 (8 bits) in High range</td>
<td>-</td>
<td>612</td>
<td>-</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>SID186</td>
<td>I_DAC1_CRT2</td>
<td>Output current of IDAC1 (8 bits) in Low range</td>
<td>-</td>
<td>306</td>
<td>-</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>SID187</td>
<td>I_DAC2_CRT1</td>
<td>Output current of IDAC2 (7 bits) in High range</td>
<td>-</td>
<td>305</td>
<td>-</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>SID188</td>
<td>I_DAC2_CRT2</td>
<td>Output current of IDAC2 (7 bits) in Low range</td>
<td>-</td>
<td>153</td>
<td>-</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>
Digital Peripherals

Timer

Table 21. Timer DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID189</td>
<td>T\text{TIM}1</td>
<td>Block current consumption at 3 MHz</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>µA</td>
<td>16-bit timer</td>
</tr>
<tr>
<td>SID190</td>
<td>T\text{TIM}2</td>
<td>Block current consumption at 12 MHz</td>
<td>–</td>
<td>–</td>
<td>175</td>
<td>µA</td>
<td>16-bit timer</td>
</tr>
<tr>
<td>SID191</td>
<td>T\text{TIM}3</td>
<td>Block current consumption at 48 MHz</td>
<td>–</td>
<td>–</td>
<td>712</td>
<td>µA</td>
<td>16-bit timer</td>
</tr>
</tbody>
</table>

Table 22. Timer AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID192</td>
<td>T\text{TIMFREQ}</td>
<td>Operating frequency</td>
<td>F\text{CLK}</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID193</td>
<td>T\text{CAPPWINT}</td>
<td>Capture pulse width (internal)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID194</td>
<td>T\text{CAPPWEXT}</td>
<td>Capture pulse width (external)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID195</td>
<td>T\text{TIMRES}</td>
<td>Timer resolution</td>
<td>T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID196</td>
<td>T\text{TENWIDINT}</td>
<td>Enable pulse width (internal)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID197</td>
<td>T\text{TENWIDEXT}</td>
<td>Enable pulse width (external)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID198</td>
<td>T\text{TIMRESWINT}</td>
<td>Reset pulse width (internal)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID199</td>
<td>T\text{TIMRESEXT}</td>
<td>Reset pulse width (external)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
</tbody>
</table>

Counter

Table 23. Counter DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID200</td>
<td>T\text{CTR}1</td>
<td>Block current consumption at 3 MHz</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>µA</td>
<td>16-bit counter</td>
</tr>
<tr>
<td>SID201</td>
<td>T\text{CTR}2</td>
<td>Block current consumption at 12 MHz</td>
<td>–</td>
<td>–</td>
<td>175</td>
<td>µA</td>
<td>16-bit counter</td>
</tr>
<tr>
<td>SID202</td>
<td>T\text{CTR}3</td>
<td>Block current consumption at 48 MHz</td>
<td>–</td>
<td>–</td>
<td>712</td>
<td>µA</td>
<td>16-bit counter</td>
</tr>
</tbody>
</table>

Table 24. Counter AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID203</td>
<td>T\text{CTRFFREQ}</td>
<td>Operating frequency</td>
<td>F\text{CLK}</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID204</td>
<td>T\text{CTRFPWINT}</td>
<td>Capture pulse width (internal)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID205</td>
<td>T\text{CTRFPWEXT}</td>
<td>Capture pulse width (external)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID206</td>
<td>T\text{CTRES}</td>
<td>Counter Resolution</td>
<td>T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID207</td>
<td>T\text{CENWIDINT}</td>
<td>Enable pulse width (internal)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID208</td>
<td>T\text{CENWIDEXT}</td>
<td>Enable pulse width (external)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID209</td>
<td>T\text{CTRESWINT}</td>
<td>Reset pulse width (internal)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID210</td>
<td>T\text{CTRESWEXT}</td>
<td>Reset pulse width (external)</td>
<td>2 × T\text{CLK}</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
</tbody>
</table>

Pulse Width Modulation (PWM)

Table 25. PWM DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID211</td>
<td>T\text{PWM}1</td>
<td>Block current consumption at 3 MHz</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>µA</td>
<td>16-bit PWM</td>
</tr>
<tr>
<td>SID212</td>
<td>T\text{PWM}2</td>
<td>Block current consumption at 12 MHz</td>
<td>–</td>
<td>–</td>
<td>175</td>
<td>µA</td>
<td>16-bit PWM</td>
</tr>
<tr>
<td>SID213</td>
<td>T\text{PWM}3</td>
<td>Block current consumption at 48 MHz</td>
<td>–</td>
<td>–</td>
<td>741</td>
<td>µA</td>
<td>16-bit PWM</td>
</tr>
</tbody>
</table>
Table 26. PWM AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID214</td>
<td>(T_{PWMFREQ})</td>
<td>Operating frequency (F_{CLK})</td>
<td>–</td>
<td></td>
<td>48</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID215</td>
<td>(T_{PWMWFINT})</td>
<td>Pulse width (internal) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID216</td>
<td>(T_{PWMPMEXT})</td>
<td>Pulse width (external) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID217</td>
<td>(T_{PWMKILLINT})</td>
<td>Kill pulse width (internal) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID218</td>
<td>(T_{PWMKILLEXT})</td>
<td>Kill pulse width (external) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID219</td>
<td>(T_{PWMIENT})</td>
<td>Enable pulse width (internal) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID220</td>
<td>(T_{PWMENEXT})</td>
<td>Enable pulse width (external) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID221</td>
<td>(T_{PWMRESWINT})</td>
<td>Reset pulse width (internal) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID222</td>
<td>(T_{PWMRESWEXT})</td>
<td>Reset pulse width (external) (2 \times T_{CLK})</td>
<td>–</td>
<td></td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
</tbody>
</table>

\(\text{I}^2\text{C} \)

Table 27. Fixed \(\text{I}^2\text{C} \) DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID223</td>
<td>(I_{I^2C1})</td>
<td>Block current consumption at 100 kHz</td>
<td>–</td>
<td></td>
<td>50</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID224</td>
<td>(I_{I^2C2})</td>
<td>Block current consumption at 400 kHz</td>
<td>–</td>
<td></td>
<td>155</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID225</td>
<td>(I_{I^2C3})</td>
<td>Block current consumption at 1 Mbps</td>
<td>–</td>
<td></td>
<td>390</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID226</td>
<td>(I_{I^2C4})</td>
<td>I²C enabled in Deep Sleep mode</td>
<td>–</td>
<td></td>
<td>1.4</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 28. Fixed \(\text{I}^2\text{C} \) AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID227</td>
<td>(F_{I^2C1})</td>
<td>Bit rate</td>
<td>–</td>
<td></td>
<td>1</td>
<td>Mbps</td>
<td>–</td>
</tr>
</tbody>
</table>

LCD Direct Drive

Table 29. LCD Direct Drive DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID228</td>
<td>(I_{LCDLOW})</td>
<td>Operating current in low-power mode</td>
<td>–</td>
<td>17.5</td>
<td>–</td>
<td>µA</td>
<td>16 × 4 small segment display at 50 Hz</td>
</tr>
<tr>
<td>SID229</td>
<td>(C_{LDCAP})</td>
<td>LCD capacitance per segment/common driver</td>
<td>–</td>
<td>500</td>
<td>5000</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID230</td>
<td>(LCDOFFSET)</td>
<td>Long-term segment offset</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>mV</td>
<td>–</td>
</tr>
<tr>
<td>SID231</td>
<td>(I_{LCDOP1})</td>
<td>LCD system operating current (V_{BIAS} = 5 \text{ V})</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>mA</td>
<td>32 × 4 segments. 50 Hz at 25 °C</td>
</tr>
<tr>
<td>SID232</td>
<td>(I_{LCDOP2})</td>
<td>LCD system operating current (V_{BIAS} = 3.3 \text{ V})</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>mA</td>
<td>32 × 4 segments. 50 Hz at 25 °C</td>
</tr>
</tbody>
</table>

Table 30. LCD Direct Drive AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID233</td>
<td>(F_{LCD})</td>
<td>LCD frame rate</td>
<td>10</td>
<td>50</td>
<td>150</td>
<td>Hz</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 31. Fixed UART DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID234</td>
<td>(I_{UART1})</td>
<td>Block current consumption at 100 kbps</td>
<td>–</td>
<td></td>
<td>55</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID235</td>
<td>(I_{UART2})</td>
<td>Block current consumption at 1000 kbps</td>
<td>–</td>
<td></td>
<td>360</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>
SPI Specifications

Table 32. Fixed UART AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID236</td>
<td>F_{UART}</td>
<td>Bit rate</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>Mbps</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 33. Fixed SPI DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID237</td>
<td>I_{SPI1}</td>
<td>Block current consumption at 1 Mbps</td>
<td>–</td>
<td>–</td>
<td>360</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID238</td>
<td>I_{SPI2}</td>
<td>Block current consumption at 4 Mbps</td>
<td>–</td>
<td>–</td>
<td>560</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID239</td>
<td>I_{SPI3}</td>
<td>Block current consumption at 8 Mbps</td>
<td>–</td>
<td>–</td>
<td>600</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 34. Fixed SPI AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID240</td>
<td>F_{SPI}</td>
<td>SPI operating frequency (master; 6X oversampling)</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>MHz</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 35. Fixed SPI Master Mode AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID241</td>
<td>T_{DMO}</td>
<td>MOSI valid after Sclock driving edge</td>
<td>–</td>
<td>–</td>
<td>18</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID242</td>
<td>T_{DSI}</td>
<td>MISO valid before Sclock capturing edge. Full clock, late MISO sampling used</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>Full clock, late MISO sampling</td>
</tr>
<tr>
<td>SID243</td>
<td>T_{HMO}</td>
<td>Previous MOSI data hold time</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>Referred to Slave capturing edge</td>
</tr>
</tbody>
</table>

Table 36. Fixed SPI Slave Mode AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID244</td>
<td>T_{DMI}</td>
<td>MOSI valid before Sclock capturing edge</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID245</td>
<td>T_{DSO}</td>
<td>MISO valid after Sclock driving edge</td>
<td>–</td>
<td>–</td>
<td>42 + 3 \times T_{CPU}</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID246</td>
<td>T_{DSO_ext}</td>
<td>MISO valid after Sclock driving edge in external clock mode</td>
<td>–</td>
<td>–</td>
<td>53</td>
<td>ns</td>
<td>V_{DD} < 3.0 V</td>
</tr>
<tr>
<td>SID247</td>
<td>T_{HSO}</td>
<td>Previous MISO data hold time</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID248</td>
<td>T_{SSEL_SCK}</td>
<td>SSEL valid to first SCK valid edge</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
</tbody>
</table>

Memory

Table 37. Flash DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID249</td>
<td>V_{PE}</td>
<td>Erase and program voltage</td>
<td>1.71</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID309</td>
<td>T_{WS48}</td>
<td>Number of Wait states at 32–48 MHz</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>CPU execution from flash</td>
</tr>
<tr>
<td>SID310</td>
<td>T_{WS32}</td>
<td>Number of Wait states at 16–32 MHz</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>CPU execution from flash</td>
</tr>
<tr>
<td>SID311</td>
<td>T_{WS16}</td>
<td>Number of Wait states for 0–16 MHz</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>CPU execution from flash</td>
</tr>
</tbody>
</table>
System Resources

Power-on-Reset (POR)

Table 38. Flash AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID250</td>
<td>T_ROWWRITE⁴</td>
<td>Row (block) write time (erase and program)</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>ms</td>
<td>Row (block) = 256 bytes</td>
</tr>
<tr>
<td>SID251</td>
<td>T_ROWERASE⁴</td>
<td>Row erase time</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>SID252</td>
<td>T_ROWPROGRAM⁴</td>
<td>Row program time after erase</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>SID253</td>
<td>T_BULKERASE⁴</td>
<td>Bulk erase time (256 KB)</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>SID254</td>
<td>T_DEVPKG⁴</td>
<td>Total device program time</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>seconds</td>
<td>For 256 KB</td>
</tr>
<tr>
<td>SID255</td>
<td>F END</td>
<td>Flash endurance</td>
<td>100 K</td>
<td>–</td>
<td>–</td>
<td>cycles</td>
<td>–</td>
</tr>
<tr>
<td>SID256</td>
<td>F RET</td>
<td>Flash retention. T A ≤ 55 °C, 100 K P/E cycles</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>years</td>
<td>–</td>
</tr>
<tr>
<td>SID257</td>
<td>F RET2</td>
<td>Flash retention. T A ≤ 85 °C, 10 K P/E cycles</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>years</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 39. POR DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID258</td>
<td>V RISEIPOR</td>
<td>Rising trip voltage</td>
<td>0.80</td>
<td>–</td>
<td>1.45</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID259</td>
<td>V FALLIPOR</td>
<td>Falling trip voltage</td>
<td>0.75</td>
<td>–</td>
<td>1.40</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID260</td>
<td>V IPORHYST</td>
<td>Hysteresis</td>
<td>15</td>
<td>–</td>
<td>200</td>
<td>mV</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 40. POR AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID264</td>
<td>T PPOR TR</td>
<td>PPOR response time in Active and Sleep modes</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 41. Brown-Out Detect

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID261</td>
<td>V FALLPPOR</td>
<td>BOD trip voltage in Active and Sleep modes</td>
<td>1.64</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID262</td>
<td>V FALLDPSLP</td>
<td>BOD trip voltage in Deep Sleep mode</td>
<td>1.4</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 42. Hibernate Reset

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID263</td>
<td>V HBRTRIP</td>
<td>BOD trip voltage in Hibernate mode</td>
<td>1.1</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
</tbody>
</table>

Note

5. It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.
Voltage Monitors

Table 43. Voltage Monitor DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID265</td>
<td>V_LVI1</td>
<td>LVI_A/D_SEL[3:0] = 0000b</td>
<td>1.71</td>
<td>1.75</td>
<td>1.79</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID266</td>
<td>V_LVI2</td>
<td>LVI_A/D_SEL[3:0] = 0001b</td>
<td>1.76</td>
<td>1.80</td>
<td>1.85</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID267</td>
<td>V_LVI3</td>
<td>LVI_A/D_SEL[3:0] = 0010b</td>
<td>1.85</td>
<td>1.90</td>
<td>1.95</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID268</td>
<td>V_LVI4</td>
<td>LVI_A/D_SEL[3:0] = 0011b</td>
<td>1.95</td>
<td>2.00</td>
<td>2.05</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID269</td>
<td>V_LVI5</td>
<td>LVI_A/D_SEL[3:0] = 0100b</td>
<td>2.05</td>
<td>2.10</td>
<td>2.15</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID270</td>
<td>V_LVI6</td>
<td>LVI_A/D_SEL[3:0] = 0101b</td>
<td>2.15</td>
<td>2.20</td>
<td>2.26</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID271</td>
<td>V_LVI7</td>
<td>LVI_A/D_SEL[3:0] = 0110b</td>
<td>2.24</td>
<td>2.30</td>
<td>2.36</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID272</td>
<td>V_LVI8</td>
<td>LVI_A/D_SEL[3:0] = 0111b</td>
<td>2.34</td>
<td>2.40</td>
<td>2.46</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID273</td>
<td>V_LVI9</td>
<td>LVI_A/D_SEL[3:0] = 1000b</td>
<td>2.44</td>
<td>2.50</td>
<td>2.56</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID274</td>
<td>V_LVI10</td>
<td>LVI_A/D_SEL[3:0] = 1001b</td>
<td>2.54</td>
<td>2.60</td>
<td>2.67</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID275</td>
<td>V_LVI11</td>
<td>LVI_A/D_SEL[3:0] = 1010b</td>
<td>2.63</td>
<td>2.70</td>
<td>2.77</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID276</td>
<td>V_LVI12</td>
<td>LVI_A/D_SEL[3:0] = 1011b</td>
<td>2.73</td>
<td>2.80</td>
<td>2.87</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID277</td>
<td>V_LVI13</td>
<td>LVI_A/D_SEL[3:0] = 1100b</td>
<td>2.83</td>
<td>2.90</td>
<td>2.97</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID278</td>
<td>V_LVI14</td>
<td>LVI_A/D_SEL[3:0] = 1101b</td>
<td>2.93</td>
<td>3.00</td>
<td>3.08</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID279</td>
<td>V_LVI15</td>
<td>LVI_A/D_SEL[3:0] = 1110b</td>
<td>3.12</td>
<td>3.20</td>
<td>3.28</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID280</td>
<td>V_LVI16</td>
<td>LVI_A/D_SEL[3:0] = 1111b</td>
<td>4.39</td>
<td>4.50</td>
<td>4.61</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>SID281</td>
<td>LVI_IDD</td>
<td>Block current</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 44. Voltage Monitor AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID282</td>
<td>T_MONTRIP</td>
<td>Voltage monitor trip time</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

SWD Interface

Table 45. SWD Interface Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID283</td>
<td>F_SWDClk1</td>
<td>3.3 V ≤ V_DD ≤ 5.5 V</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>MHz</td>
<td>SWDCLK ≤ 1/3 CPU clock frequency</td>
</tr>
<tr>
<td>SID284</td>
<td>F_SWDClk2</td>
<td>1.71 V ≤ V_DD ≤ 3.3 V</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>MHz</td>
<td>SWDCLK ≤ 1/3 CPU clock frequency</td>
</tr>
<tr>
<td>SID285</td>
<td>T_SWDI_SET</td>
<td>T = 1/f SWDCLK</td>
<td>0.25 × T</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID286</td>
<td>T_SWDI_HOLD</td>
<td>T = 1/f SWDCLK</td>
<td>0.25 × T</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID287</td>
<td>T_SWDI_VALID</td>
<td>T = 1/f SWDCLK</td>
<td>–</td>
<td>–</td>
<td>0.5 × T</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>SID288</td>
<td>T_SWDI_HOLD</td>
<td>T = 1/f SWDCLK</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
</tbody>
</table>

Internal Main Oscillator

Table 46. IMO DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID289</td>
<td>IMO1</td>
<td>IMO operating current at 48 MHz</td>
<td>–</td>
<td>–</td>
<td>1000</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID290</td>
<td>IMO2</td>
<td>IMO operating current at 24 MHz</td>
<td>–</td>
<td>–</td>
<td>325</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID291</td>
<td>IMO3</td>
<td>IMO operating current at 12 MHz</td>
<td>–</td>
<td>–</td>
<td>225</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID292</td>
<td>IMO4</td>
<td>IMO operating current at 6 MHz</td>
<td>–</td>
<td>–</td>
<td>180</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID293</td>
<td>IMO5</td>
<td>IMO operating current at 3 MHz</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>
Internal Low-Speed Oscillator

Table 47. IMO AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID296</td>
<td>F\textsubscript{IMOTOL3}</td>
<td>Frequency variation from 3 to 48 MHz</td>
<td>–</td>
<td>–</td>
<td>±2</td>
<td>%</td>
<td>With API-called calibration</td>
</tr>
<tr>
<td>SID297</td>
<td>F\textsubscript{IMOTOL3}</td>
<td>IMO startup time</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 48. ILO DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID298</td>
<td>I\textsubscript{ILO2}</td>
<td>ILO operating current at 32 kHz</td>
<td>–</td>
<td>0.3</td>
<td>1.05</td>
<td>µA</td>
</tr>
</tbody>
</table>

Table 49. ILO AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID299</td>
<td>T\textsubscript{STARTILO1}</td>
<td>ILO startup time</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>ms</td>
</tr>
<tr>
<td>SID300</td>
<td>F\textsubscript{ILOTTRIM1}</td>
<td>32-kHz trimmed frequency</td>
<td>15</td>
<td>32</td>
<td>50</td>
<td>kHz</td>
</tr>
</tbody>
</table>

Table 50. External Clock Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID301</td>
<td>ExtClkFreq</td>
<td>External clock input frequency</td>
<td>0</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td>CMOS input level only</td>
</tr>
<tr>
<td>SID302</td>
<td>ExtClkDuty</td>
<td>Duty cycle; Measured at V\textsubscript{DD/2}</td>
<td>45</td>
<td>–</td>
<td>55</td>
<td>%</td>
<td>CMOS input level only</td>
</tr>
</tbody>
</table>

Table 51. UDB AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID303</td>
<td>F\textsubscript{MAX-TIMER}</td>
<td>Max frequency of 16-bit timer in a UDB pair</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
</tr>
<tr>
<td>SID304</td>
<td>F\textsubscript{MAX-ADDER}</td>
<td>Max frequency of 16-bit adder in a UDB pair</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
</tr>
<tr>
<td>SID305</td>
<td>F\textsubscript{MAX_CRC}</td>
<td>Max frequency of 16-bit CRC/PRS in a UDB pair</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
</tr>
</tbody>
</table>

PLD Performance in UDB

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID306</td>
<td>F\textsubscript{MAX_PLLD}</td>
<td>Max frequency of 2-pass PLD function in a UDB pair</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
</tr>
</tbody>
</table>

Clock to Output Performance

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID307</td>
<td>T\textsubscript{CLK_OUT_UDB1}</td>
<td>Prop. delay for clock in to data out at 25 °C, Typical</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>SID308</td>
<td>T\textsubscript{CLK_OUT_UDB2}</td>
<td>Prop. delay for clock in to data out, Worst case</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 52. BLE Subsystem

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RF Receiver Specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID340</td>
<td>RXS, IDLE</td>
<td>RX sensitivity with idle transmitter</td>
<td>–</td>
<td>–89</td>
<td>–</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>SID340A</td>
<td>RXS, IDLE</td>
<td>RX sensitivity with idle transmitter excluding Balun loss</td>
<td>–</td>
<td>–91</td>
<td>–</td>
<td>dBm</td>
<td>Guaranteed by design simulation</td>
</tr>
<tr>
<td>SID341</td>
<td>RXS, DIRTY</td>
<td>RX sensitivity with dirty transmitter</td>
<td>–</td>
<td>–87</td>
<td>–70</td>
<td>dBm</td>
<td>(RCV-LE/CA/01/C)</td>
</tr>
<tr>
<td>SID342</td>
<td>RXS, HIGHGAIN</td>
<td>RX sensitivity in high-gain mode with idle transmitter</td>
<td>–</td>
<td>–91</td>
<td>–</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>SID343</td>
<td>PRXMAX</td>
<td>Maximum input power</td>
<td>–10</td>
<td>–1</td>
<td>–</td>
<td>dBm</td>
<td>(RCV-LE/CA/06/C)</td>
</tr>
<tr>
<td>SID344</td>
<td>CI1</td>
<td>Co-channel interference, Wanted signal at –67 dBm and Interferer at FRX</td>
<td>9</td>
<td>21</td>
<td></td>
<td>dB</td>
<td>(RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>SID345</td>
<td>CI2</td>
<td>Adjacent channel interference Wanted signal at –67 dBm and Interferer at FRX ±1 MHz</td>
<td>–</td>
<td>3</td>
<td>15</td>
<td>dB</td>
<td>(RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>SID346</td>
<td>CI3</td>
<td>Adjacent channel interference Wanted signal at –67 dBm and Interferer at FRX ±2 MHz</td>
<td>–</td>
<td>–29</td>
<td>–</td>
<td>dB</td>
<td>(RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>SID347</td>
<td>CI4</td>
<td>Adjacent channel interference Wanted signal at –67 dBm and Interferer at ≥FRX ±3 MHz</td>
<td>–</td>
<td>–39</td>
<td>–</td>
<td>dB</td>
<td>(RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>SID348</td>
<td>CI5</td>
<td>Adjacent channel interference Wanted Signal at –67 dBm and Interferer at Image frequency (FIMAGE)</td>
<td>–</td>
<td>–20</td>
<td>–</td>
<td>dB</td>
<td>(RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>SID349</td>
<td>CI6</td>
<td>Adjacent channel interference Wanted signal at –67 dBm and Interferer at Image frequency (FIMAGE ± 1 MHz)</td>
<td>–</td>
<td>–30</td>
<td>–</td>
<td>dB</td>
<td>(RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>SID351</td>
<td>OBB2</td>
<td>Out-of-band blocking, Wanted signal at –67 dBm and Interferer at F = 2003–2399 MHz</td>
<td>–35</td>
<td>–27</td>
<td>–</td>
<td>dBm</td>
<td>(RCV-LE/CA/04/C)</td>
</tr>
<tr>
<td>SID352</td>
<td>OBB3</td>
<td>Out-of-band blocking, Wanted signal at –67 dBm and Interferer at F = 2484–2997 MHz</td>
<td>–35</td>
<td>–27</td>
<td>–</td>
<td>dBm</td>
<td>(RCV-LE/CA/04/C)</td>
</tr>
<tr>
<td>SID353</td>
<td>OBB4</td>
<td>Out-of-band blocking, Wanted signal at –67 dBm and Interferer at F = 3000–12750 MHz</td>
<td>–30</td>
<td>–27</td>
<td>–</td>
<td>dBm</td>
<td>(RCV-LE/CA/04/C)</td>
</tr>
<tr>
<td>SID354</td>
<td>IMD</td>
<td>Intermodulation performance Wanted signal at –64 dBm and 1-Mbps BLE, third, fourth, and fifth offset channel</td>
<td>–50</td>
<td>–</td>
<td>–</td>
<td>dBm</td>
<td>(RCV-LE/CA/05/C)</td>
</tr>
<tr>
<td>SID355</td>
<td>RXSE1</td>
<td>Receiver spurious emission 30 MHz to 1.0 GHz</td>
<td>–</td>
<td>–</td>
<td>–57</td>
<td>dBm</td>
<td>ETSI EN300 328 V1.8.1</td>
</tr>
</tbody>
</table>
Table 52. BLESubsystem (continued)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID356</td>
<td>RXSE2</td>
<td>Receiver spurious emission 1.0 GHz to 12.75 GHz</td>
<td>–</td>
<td>–</td>
<td>–47</td>
<td>dBm</td>
<td>1-MHz measurement bandwidth ETSI EN300 328 V1.8.1</td>
</tr>
</tbody>
</table>

RF Transmitter Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID357</td>
<td>TXP, ACC</td>
<td>RF power accuracy</td>
<td>–</td>
<td>±1</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>SID358</td>
<td>TXP, RANGE</td>
<td>RF power control range</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>SID359</td>
<td>TXP, 0dBm</td>
<td>Output power, 0-dB Gain setting (PA7)</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>SID360</td>
<td>TXP, MAX</td>
<td>Output power, maximum power setting (PA10)</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>SID361</td>
<td>TXP, MIN</td>
<td>Output power, minimum power setting (PA1)</td>
<td>–</td>
<td>–18</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>SID362</td>
<td>F2AVG</td>
<td>Average frequency deviation for 10101010 pattern</td>
<td>185</td>
<td>–</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>SID363</td>
<td>F1AVG</td>
<td>Average frequency deviation for 11110000 pattern</td>
<td>225</td>
<td>250</td>
<td>275</td>
<td>kHz</td>
</tr>
<tr>
<td>SID364</td>
<td>EO</td>
<td>Eye opening = ΔF2AVG/ΔF1AVG</td>
<td>0.8</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>SID365</td>
<td>FTX, ACC</td>
<td>Frequency accuracy</td>
<td>–150</td>
<td>–</td>
<td>150</td>
<td>kHz</td>
</tr>
<tr>
<td>SID366</td>
<td>FTX, MAXDR</td>
<td>Maximum frequency drift</td>
<td>–50</td>
<td>–</td>
<td>50</td>
<td>kHz</td>
</tr>
<tr>
<td>SID367</td>
<td>FTX, INITDR</td>
<td>Initial frequency drift</td>
<td>–20</td>
<td>–</td>
<td>20</td>
<td>kHz</td>
</tr>
<tr>
<td>SID368</td>
<td>FTX, DR</td>
<td>Maximum drift rate</td>
<td>–20</td>
<td>–</td>
<td>20</td>
<td>kHz/50 µs</td>
</tr>
<tr>
<td>SID369</td>
<td>IBSE1</td>
<td>In-band spurious emission at 2-MHz offset</td>
<td>–</td>
<td>–</td>
<td>–20</td>
<td>dBm</td>
</tr>
<tr>
<td>SID370</td>
<td>IBSE2</td>
<td>In-band spurious emission at ≥3-MHz offset</td>
<td>–</td>
<td>–</td>
<td>–30</td>
<td>dBm</td>
</tr>
<tr>
<td>SID371</td>
<td>TXSE1</td>
<td>Transmitter spurious emissions (average), <1.0 GHz</td>
<td>–</td>
<td>–</td>
<td>–55.5</td>
<td>dBm</td>
</tr>
<tr>
<td>SID372</td>
<td>TXSE2</td>
<td>Transmitter spurious emissions (average), >1.0 GHz</td>
<td>–</td>
<td>–</td>
<td>–41.5</td>
<td>dBm</td>
</tr>
</tbody>
</table>

RF Current Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID373</td>
<td>IRX</td>
<td>Receive current in normal mode</td>
<td>–</td>
<td>18.7</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>SID373A</td>
<td>IRX_RF</td>
<td>Radio receive current in normal mode</td>
<td>–</td>
<td>16.4</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>SID374</td>
<td>IRX, HIGHGAIN</td>
<td>Receive current in high-gain mode</td>
<td>–</td>
<td>21.5</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>SID375</td>
<td>ITX, 3dBm</td>
<td>TX current at 3-dBm setting (PA10)</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>SID376</td>
<td>ITX, 0dBm</td>
<td>TX current at 0-dBm setting (PA10)</td>
<td>–</td>
<td>16.5</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>SID376A</td>
<td>ITX_RF, 0dBm</td>
<td>Radio TX current at 0 dBm setting (PA7)</td>
<td>–</td>
<td>15.6</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>SID376B</td>
<td>ITX_RF, 0dBm</td>
<td>Radio TX current at 0 dBm excluding Balun loss</td>
<td>–</td>
<td>14.2</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>SID377</td>
<td>ITX,-3dBm</td>
<td>TX current at −3-dBm setting (PA4)</td>
<td>–</td>
<td>15.5</td>
<td>–</td>
<td>mA</td>
</tr>
</tbody>
</table>
Table 52. BLE Subsystem (continued)

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID378</td>
<td>ITX,-6dBm</td>
<td>TX current at –6-dBm setting (PA3)</td>
<td>–</td>
<td>14.5</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID379</td>
<td>ITX,-12dBm</td>
<td>TX current at –12-dBm setting (PA2)</td>
<td>–</td>
<td>13.2</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID380</td>
<td>ITX,-18dBm</td>
<td>TX current at –18-dBm setting (PA1)</td>
<td>–</td>
<td>12.5</td>
<td>–</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>SID380A</td>
<td>Iavg_1sec, 0dBm</td>
<td>Average current at 1-second BLE connection interval</td>
<td>–</td>
<td>17.1</td>
<td>–</td>
<td>µA</td>
<td>TXP: 0 dBm; ±20-ppm master and slave clock accuracy.</td>
</tr>
<tr>
<td>SID380B</td>
<td>Iavg_4sec, 0dBm</td>
<td>Average current at 4-second BLE connection interval</td>
<td>–</td>
<td>6.1</td>
<td>–</td>
<td>µA</td>
<td>TXP: 0 dBm; ±20-ppm master and slave clock accuracy.</td>
</tr>
</tbody>
</table>

General RF Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID381</td>
<td>FREQ</td>
<td>RF operating frequency</td>
<td>2400</td>
<td>–</td>
<td>2482</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID382</td>
<td>CHBW</td>
<td>Channel spacing</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID383</td>
<td>DR</td>
<td>On-air data rate</td>
<td>–</td>
<td>1000</td>
<td>–</td>
<td>kbps</td>
<td>–</td>
</tr>
<tr>
<td>SID384</td>
<td>IDLE2TX</td>
<td>BLE.IDLE to BLE. TX transition time</td>
<td>–</td>
<td>120</td>
<td>140</td>
<td>µs</td>
<td>–</td>
</tr>
<tr>
<td>SID385</td>
<td>IDLE2RX</td>
<td>BLE.IDLE to BLE. RX transition time</td>
<td>–</td>
<td>75</td>
<td>120</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

RSSI Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID386</td>
<td>RSSI, ACC</td>
<td>RSSI accuracy</td>
<td>–</td>
<td>±5</td>
<td>–</td>
<td>dB</td>
<td>–</td>
</tr>
<tr>
<td>SID387</td>
<td>RSSI, RES</td>
<td>RSSI resolution</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>dB</td>
<td>–</td>
</tr>
<tr>
<td>SID388</td>
<td>RSSI, PER</td>
<td>RSSI sample period</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 53. ECO Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID389</td>
<td>F_ECO</td>
<td>Crystal frequency</td>
<td>–</td>
<td>24</td>
<td>–</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>SID390</td>
<td>F_TOL</td>
<td>Frequency tolerance</td>
<td>–50</td>
<td>–</td>
<td>50</td>
<td>ppm</td>
<td>–</td>
</tr>
<tr>
<td>SID391</td>
<td>ESR</td>
<td>Equivalent series resistance</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>Ω</td>
<td>–</td>
</tr>
<tr>
<td>SID392</td>
<td>PD</td>
<td>Drive level</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>µW</td>
<td>–</td>
</tr>
<tr>
<td>SID393</td>
<td>T_START1</td>
<td>Startup time (Fast Charge on)</td>
<td>–</td>
<td>–</td>
<td>850</td>
<td>µs</td>
<td>–</td>
</tr>
<tr>
<td>SID394</td>
<td>T_START2</td>
<td>Startup time (Fast Charge off)</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>SID395</td>
<td>C_L</td>
<td>Load capacitance</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID396</td>
<td>C0</td>
<td>Shunt capacitance</td>
<td>–</td>
<td>1.1</td>
<td>–</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID397</td>
<td>I_ECO</td>
<td>Operating current</td>
<td>–</td>
<td>1400</td>
<td>–</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 54. WCO Specifications

<table>
<thead>
<tr>
<th>Spec ID#</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/ Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID398</td>
<td>f_{WCO}</td>
<td>Crystal frequency</td>
<td>–</td>
<td>32.768</td>
<td>–</td>
<td>kHz</td>
<td>–</td>
</tr>
<tr>
<td>SID399</td>
<td>FTOL</td>
<td>Frequency tolerance</td>
<td>–</td>
<td>50</td>
<td>–</td>
<td>ppm</td>
<td>–</td>
</tr>
<tr>
<td>SID400</td>
<td>ESR</td>
<td>Equivalent series resistance</td>
<td>–</td>
<td>50</td>
<td>–</td>
<td>kΩ</td>
<td>–</td>
</tr>
<tr>
<td>SID401</td>
<td>PD</td>
<td>Drive level</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>µW</td>
<td>–</td>
</tr>
<tr>
<td>SID402</td>
<td>T_{START}</td>
<td>Startup time</td>
<td>–</td>
<td>–</td>
<td>500</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>SID403</td>
<td>C_L</td>
<td>Crystal load capacitance</td>
<td>6</td>
<td>–</td>
<td>12.5</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID404</td>
<td>C_0</td>
<td>Crystal shunt capacitance</td>
<td>–</td>
<td>1.35</td>
<td>–</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>SID405</td>
<td>I_{WCO1}</td>
<td>Operating current (High-Power mode)</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>SID406</td>
<td>I_{WCO2}</td>
<td>Operating current (Low-Power mode)</td>
<td>–</td>
<td>–</td>
<td>2.6</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>
Ordering Information

The PSoC 4XX8 BLE 4.2 part numbers and features are listed in Table 55.

Features	Max CPU Speed (MHz)	BLE sub-system	Flash (KB)	SRAM (KB)	UDB	Op-amp	CapSense	TMG (Features)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	PWMs (using UDBs)	I2S (using UDB)	GPIO	Package	
PSoC 4 BLE256K: CY8C4248LQI-BL543	24	✓	256	32	-	2	-	-	806 Ksps	-	4	2	NA	36	QFN			
CY8C4248FNQ-BL543	24	✓	256	32	-	2	-	-	806 Ksps	-	4	2	-	36	CSP			
CY8C4248FLI-BL543	24	✓	256	32	-	2	-	-	806 Ksps	-	4	2	-	36	Thin CSP			
CY8C4248LSQ-BL543	24	✓	256	32	4	4	-	-	1 Msps	-	4	2	-	36	QFN			
CY8C4248FNQ-BL583	24	✓	256	32	4	4	-	-	1 Msps	-	4	2	4	36	CSP			
CY8C4248FLI-BL583	24	✓	256	32	4	4	-	-	1 Msps	-	4	2	-	36	Thin CSP			
CY8C4248LSQ-BL583	24	✓	256	32	4	4	-	-	1 Msps	-	4	2	4	36	QFN			
CY8C4248FNQ-BL593	24	✓	256	32	4	4	-	-	1 Msps	-	4	2	4	36	CSP			
CY8C4248FLI-BL593	24	✓	256	32	4	4	-	-	1 Msps	-	4	2	-	36	Thin CSP			

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A, B, ..., Z) unless stated otherwise.
Ordering Code Definitions

Example

CY8C
4: PSOC 4
2: 4200 Family
4: 48 MHz
8: 256 KB
LQ: QFN
I: Industrial
BLXYZ: Attributes

CY8C 4 A B C D E F - BLXYZ

Cypress Prefix
Architecture
Family within Architecture
Speed Grade
Flash Capacity
Package Code
Temperature Range
Attributes Code

The Field Values are listed in the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY8C</td>
<td>Cypress Prefix</td>
<td>4</td>
<td>PSOC 4</td>
</tr>
<tr>
<td>4</td>
<td>Architecture</td>
<td>4</td>
<td>PSOC 4</td>
</tr>
<tr>
<td>A</td>
<td>Family within architecture</td>
<td>1</td>
<td>4100-BLE Family</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4200-BLE Family</td>
</tr>
<tr>
<td>B</td>
<td>CPU Speed</td>
<td>2</td>
<td>24 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>48 MHz</td>
</tr>
<tr>
<td>C</td>
<td>Flash Capacity</td>
<td>8, 7</td>
<td>256, 128 KB</td>
</tr>
<tr>
<td>DE</td>
<td>Package Code</td>
<td>FN</td>
<td>WLCSP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LQ</td>
<td>QFN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FL</td>
<td>Thin CSP</td>
</tr>
<tr>
<td>F</td>
<td>Temperature Range</td>
<td>I</td>
<td>Industrial</td>
</tr>
<tr>
<td>BLXYZ</td>
<td>Attributes Code</td>
<td>BL500-BL599</td>
<td>BL5 indicates Bluetooth LE 4.2 support</td>
</tr>
</tbody>
</table>
Packaging

Table 56. Package Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Operating ambient temperature</td>
<td>–</td>
<td>–40</td>
<td>25.00</td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating junction temperature</td>
<td>–</td>
<td>–40</td>
<td>–</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>T_{JA}</td>
<td>Package θ_{JA} (56-pin QFN)</td>
<td>–</td>
<td>–</td>
<td>16.9</td>
<td>–</td>
<td>°C/watt</td>
</tr>
<tr>
<td>T_{JC}</td>
<td>Package θ_{JC} (56-pin QFN)</td>
<td>–</td>
<td>–</td>
<td>9.7</td>
<td>–</td>
<td>°C/watt</td>
</tr>
<tr>
<td>T_{JA}</td>
<td>Package θ_{JA} (76-ball WLCSP)</td>
<td>–</td>
<td>–</td>
<td>20.1</td>
<td>–</td>
<td>°C/watt</td>
</tr>
<tr>
<td>T_{JC}</td>
<td>Package θ_{JC} (76-ball WLCSP)</td>
<td>–</td>
<td>–</td>
<td>0.19</td>
<td>–</td>
<td>°C/watt</td>
</tr>
<tr>
<td>T_{JA}</td>
<td>Package θ_{JA} (76-ball Thin WLCSP)</td>
<td>–</td>
<td>–</td>
<td>20.9</td>
<td>–</td>
<td>°C/watt</td>
</tr>
<tr>
<td>T_{JC}</td>
<td>Package θ_{JC} (76-ball Thin WLCSP)</td>
<td>–</td>
<td>–</td>
<td>0.17</td>
<td>–</td>
<td>°C/watt</td>
</tr>
</tbody>
</table>

Table 57. Solder Reflow Peak Temperature

<table>
<thead>
<tr>
<th>Package</th>
<th>Maximum Peak Temperature</th>
<th>Maximum Time at Peak Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-pin QFN</td>
<td>260 °C</td>
<td>30 seconds</td>
</tr>
<tr>
<td>76-ball WLCSP and Thin WLCSP</td>
<td>260 °C</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>

Table 58. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

<table>
<thead>
<tr>
<th>Package</th>
<th>MSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-pin QFN</td>
<td>MSL 3</td>
</tr>
<tr>
<td>76-ball WLCSP and Thin WLCSP</td>
<td>MSL 1</td>
</tr>
</tbody>
</table>

Table 59. Package Details

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-58740 Rev. *C</td>
<td>56-pin QFN</td>
<td>7.0 mm × 7.0 mm × 0.6 mm</td>
</tr>
<tr>
<td>001-96603 Rev. *A</td>
<td>76-ball WLCSP</td>
<td>4.04 mm × 3.87 mm × 0.55 mm</td>
</tr>
<tr>
<td>002-10658, Rev. **</td>
<td>76-ball thin WLCSP</td>
<td>4.04 mm × 3.87 mm × 0.4 mm</td>
</tr>
</tbody>
</table>
The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance.
WLCSP Compatibility

The PSoC 4XXX_BLE family has products with 128 KB (16KB SRAM) and 256 KB (32KB SRAM) Flash. Package pin-outs and sizes are identical for the 56-pin QFN package but are different in one dimension for the 68-ball WLCSP.

The 256KB Flash product has an extra column of balls which are required for mechanical integrity purposes in the Chip-Scale package. With consideration for this difference, the land pattern on the PCB may be designed such that either product may be used with no change to the PCB design.

Figure 9 shows the 128KB and 256 KB Flash CSP packages.

![Figure 9. 128KB and 256 KB Flash CSP Packages](image)

The rightmost column of (all NC, No Connect) balls in the 256K BLE WLCSP is for mechanical integrity purposes. The package is thus wider (3.2 mm versus 2.8 mm). All other dimensions are identical. Cypress will provide layout symbols for PCB layout.

The scheme in Figure 9 is implemented to design the PCB for the 256K BLE package with the appropriate space requirements thus allowing use of either package at a later time without redesigning the Printed Circuit Board.
Figure 10. 76-Ball WLCSP Package Outline

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. SOLDER BALL POSITION DESIGNATION PER JEP195, SECTION 3, SPP-020.
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

DIMENSION "y" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

SD AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0.
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = ±eD/2 AND "SE" = ±eE/2.
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
5. "e" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.
6. JEDEC SPECIFICATION NO. REF : N/A

001-96603 *B
NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
3. "E" REPRESENTS THE SOLDER BALL GRID PITCH.
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
 N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX
 SIZE MD X ME.
 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A
 PLANE PARALLEL TO DATUM C.
 SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND
 DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,
 "SD" OR "SE" = 0.
 WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,
 "SD" = +eD/2 AND "SE" = +eE/2.
 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK
 METALIZED MARK, INDENTATION OR OTHER MEANS.
8. **"** INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER
 BALLS.
Acronyms

Table 60. Acronyms Used in this Document

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abus</td>
<td>analog local bus</td>
</tr>
<tr>
<td>ADC</td>
<td>analog-to-digital converter</td>
</tr>
<tr>
<td>AG</td>
<td>analog global</td>
</tr>
<tr>
<td>AHB</td>
<td>AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus</td>
</tr>
<tr>
<td>ALU</td>
<td>arithmetic logic unit</td>
</tr>
<tr>
<td>AMUXBUS</td>
<td>analog multiplexer bus</td>
</tr>
<tr>
<td>API</td>
<td>application programming interface</td>
</tr>
<tr>
<td>APSR</td>
<td>application program status register</td>
</tr>
<tr>
<td>ARM®</td>
<td>advanced RISC machine, a CPU architecture</td>
</tr>
<tr>
<td>ATM</td>
<td>automatic thump mode</td>
</tr>
<tr>
<td>BW</td>
<td>bandwidth</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network, a communications protocol</td>
</tr>
<tr>
<td>CMRR</td>
<td>common-mode rejection ratio</td>
</tr>
<tr>
<td>CPU</td>
<td>central processing unit</td>
</tr>
<tr>
<td>CRC</td>
<td>cyclic redundancy check, an error-checking protocol</td>
</tr>
<tr>
<td>DAC</td>
<td>digital-to-analog converter, see also IDAC, VDAC</td>
</tr>
<tr>
<td>DFB</td>
<td>digital filter block</td>
</tr>
<tr>
<td>DIO</td>
<td>digital input/output, GPIO with only digital capabilities, no analog. See GPIO.</td>
</tr>
<tr>
<td>DMIPS</td>
<td>Dhrystone million instructions per second</td>
</tr>
<tr>
<td>DMA</td>
<td>direct memory access, see also TD</td>
</tr>
<tr>
<td>DNL</td>
<td>differential nonlinearity, see also INL</td>
</tr>
<tr>
<td>DNU</td>
<td>do not use</td>
</tr>
<tr>
<td>DR</td>
<td>port write data registers</td>
</tr>
<tr>
<td>DSI</td>
<td>digital system interconnect</td>
</tr>
<tr>
<td>DWT</td>
<td>data watchpoint and trace</td>
</tr>
<tr>
<td>ECC</td>
<td>error correcting code</td>
</tr>
<tr>
<td>ECO</td>
<td>external crystal oscillator</td>
</tr>
<tr>
<td>EEPROM</td>
<td>electrically erasable programmable read-only memory</td>
</tr>
<tr>
<td>EMI</td>
<td>electromagnetic interference</td>
</tr>
<tr>
<td>EMIF</td>
<td>external memory interface</td>
</tr>
<tr>
<td>EOC</td>
<td>end of conversion</td>
</tr>
<tr>
<td>EOF</td>
<td>end of frame</td>
</tr>
<tr>
<td>EPSR</td>
<td>execution program status register</td>
</tr>
<tr>
<td>ESD</td>
<td>electrostatic discharge</td>
</tr>
</tbody>
</table>

Table 60. Acronyms Used in this Document (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM</td>
<td>embedded trace macrocell</td>
</tr>
<tr>
<td>FIR</td>
<td>finite impulse response, see also IIR</td>
</tr>
<tr>
<td>FPB</td>
<td>flash patch and breakpoint</td>
</tr>
<tr>
<td>FS</td>
<td>full-speed</td>
</tr>
<tr>
<td>GPIO</td>
<td>general-purpose input/output, applies to a PSoC pin</td>
</tr>
<tr>
<td>HVI</td>
<td>high-voltage interrupt, see also LVI, LVD</td>
</tr>
<tr>
<td>IC</td>
<td>integrated circuit</td>
</tr>
<tr>
<td>iDAC</td>
<td>current DAC, see also DAC, VDAC</td>
</tr>
<tr>
<td>IDE</td>
<td>integrated development environment</td>
</tr>
<tr>
<td>IC, IIC</td>
<td>Inter-Integrated Circuit, a communications protocol</td>
</tr>
<tr>
<td>IIR</td>
<td>infinite impulse response, see also FIR</td>
</tr>
<tr>
<td>ILO</td>
<td>internal low-speed oscillator, see also IMO</td>
</tr>
<tr>
<td>IMO</td>
<td>internal main oscillator, see also ILO</td>
</tr>
<tr>
<td>INL</td>
<td>integral nonlinearity, see also DNL</td>
</tr>
<tr>
<td>I/O</td>
<td>input/output, see also GPIO, DIO, SIO, USBIO</td>
</tr>
<tr>
<td>IPOR</td>
<td>initial power-on reset</td>
</tr>
<tr>
<td>IPSR</td>
<td>interrupt program status register</td>
</tr>
<tr>
<td>IRQ</td>
<td>interrupt request</td>
</tr>
<tr>
<td>ITM</td>
<td>instrumentation trace macrocell</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>LIN</td>
<td>Local Interconnect Network, a communications protocol.</td>
</tr>
<tr>
<td>LR</td>
<td>link register</td>
</tr>
<tr>
<td>LUT</td>
<td>lookup table</td>
</tr>
<tr>
<td>LVD</td>
<td>low-voltage detect, see also LVI</td>
</tr>
<tr>
<td>LVI</td>
<td>low-voltage interrupt, see also HVI</td>
</tr>
<tr>
<td>LVTTL</td>
<td>low-voltage transistor-transistor logic</td>
</tr>
<tr>
<td>MAC</td>
<td>multiply-accumulate</td>
</tr>
<tr>
<td>MCU</td>
<td>microcontroller unit</td>
</tr>
<tr>
<td>MISO</td>
<td>master-in slave-out</td>
</tr>
<tr>
<td>NC</td>
<td>no connect</td>
</tr>
<tr>
<td>NMI</td>
<td>nonmaskable interrupt</td>
</tr>
<tr>
<td>NRZ</td>
<td>non-return-to-zero</td>
</tr>
<tr>
<td>NVIC</td>
<td>nested vectored interrupt controller</td>
</tr>
<tr>
<td>NVL</td>
<td>nonvolatile latch, see also WOL</td>
</tr>
<tr>
<td>opamp</td>
<td>operational amplifier</td>
</tr>
<tr>
<td>PAL</td>
<td>programmable array logic, see also PLD</td>
</tr>
</tbody>
</table>
Table 60. Acronyms Used in this Document (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>program counter</td>
</tr>
<tr>
<td>PCB</td>
<td>printed circuit board</td>
</tr>
<tr>
<td>PGA</td>
<td>programmable gain amplifier</td>
</tr>
<tr>
<td>PHUB</td>
<td>peripheral hub</td>
</tr>
<tr>
<td>PHY</td>
<td>physical layer</td>
</tr>
<tr>
<td>PICU</td>
<td>port interrupt control unit</td>
</tr>
<tr>
<td>PLA</td>
<td>programmable logic array</td>
</tr>
<tr>
<td>PLD</td>
<td>programmable logic device, see also PAL</td>
</tr>
<tr>
<td>PLL</td>
<td>phase-locked loop</td>
</tr>
<tr>
<td>PMDD</td>
<td>package material declaration data sheet</td>
</tr>
<tr>
<td>POR</td>
<td>power-on reset</td>
</tr>
<tr>
<td>PRES</td>
<td>precise power-on reset</td>
</tr>
<tr>
<td>PRS</td>
<td>pseudo random sequence</td>
</tr>
<tr>
<td>PS</td>
<td>port read data register</td>
</tr>
<tr>
<td>PSoc</td>
<td>Programmable System-on-Chip™</td>
</tr>
<tr>
<td>PSRR</td>
<td>power supply rejection ratio</td>
</tr>
<tr>
<td>PWM</td>
<td>pulse-width modulator</td>
</tr>
<tr>
<td>RAM</td>
<td>random-access memory</td>
</tr>
<tr>
<td>RISC</td>
<td>reduced-instruction-set computing</td>
</tr>
<tr>
<td>RMS</td>
<td>root-mean-square</td>
</tr>
<tr>
<td>RTC</td>
<td>real-time clock</td>
</tr>
<tr>
<td>RTL</td>
<td>register transfer language</td>
</tr>
<tr>
<td>RTR</td>
<td>remote transmission request</td>
</tr>
<tr>
<td>RX</td>
<td>receive</td>
</tr>
<tr>
<td>SAR</td>
<td>successive approximation register</td>
</tr>
<tr>
<td>SC/CT</td>
<td>switched capacitor/continuous time</td>
</tr>
<tr>
<td>SCL</td>
<td>(\text{I}^2\text{C}) serial clock</td>
</tr>
<tr>
<td>SDA</td>
<td>(\text{I}^2\text{C}) serial data</td>
</tr>
<tr>
<td>S/H</td>
<td>sample and hold</td>
</tr>
<tr>
<td>SINAD</td>
<td>signal to noise and distortion ratio</td>
</tr>
<tr>
<td>SIO</td>
<td>special input/output, GPIO with advanced features. See GPIO.</td>
</tr>
<tr>
<td>SOC</td>
<td>start of conversion</td>
</tr>
<tr>
<td>SOF</td>
<td>start of frame</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface, a communications protocol</td>
</tr>
<tr>
<td>SR</td>
<td>slew rate</td>
</tr>
<tr>
<td>SRAM</td>
<td>static random access memory</td>
</tr>
<tr>
<td>SRES</td>
<td>software reset</td>
</tr>
<tr>
<td>SWD</td>
<td>serial wire debug, a test protocol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWV</td>
<td>single-wire viewer</td>
</tr>
<tr>
<td>TD</td>
<td>transaction descriptor, see also DMA</td>
</tr>
<tr>
<td>THD</td>
<td>total harmonic distortion</td>
</tr>
<tr>
<td>TIA</td>
<td>transimpedance amplifier</td>
</tr>
<tr>
<td>TRM</td>
<td>technical reference manual</td>
</tr>
<tr>
<td>TTL</td>
<td>transistor-transistor logic</td>
</tr>
<tr>
<td>TX</td>
<td>transmit</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Transmitter Receiver, a communications protocol</td>
</tr>
<tr>
<td>UDB</td>
<td>universal digital block</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USBIO</td>
<td>USB input/output, PSoC pins used to connect to a USB port</td>
</tr>
<tr>
<td>VDAC</td>
<td>voltage DAC, see also DAC, IDAC</td>
</tr>
<tr>
<td>WDT</td>
<td>watchdog timer</td>
</tr>
<tr>
<td>WOL</td>
<td>write once latch, see also NVL</td>
</tr>
<tr>
<td>WRES</td>
<td>watchdog timer reset</td>
</tr>
<tr>
<td>XRES</td>
<td>external reset I/O pin</td>
</tr>
<tr>
<td>XTAL</td>
<td>crystal</td>
</tr>
</tbody>
</table>
Document Conventions

Units of Measure

Table 61. Units of Measure

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>fF</td>
<td>femto farad</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>KB</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>kbps</td>
<td>kilobits per second</td>
</tr>
<tr>
<td>Khr</td>
<td>kilohour</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>kΩ</td>
<td>kilo ohm</td>
</tr>
<tr>
<td>ksps</td>
<td>kilosamples per second</td>
</tr>
<tr>
<td>LSB</td>
<td>least significant bit</td>
</tr>
<tr>
<td>Mbps</td>
<td>megabits per second</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>MΩ</td>
<td>mega-ohm</td>
</tr>
<tr>
<td>Msp</td>
<td>megasamples per second</td>
</tr>
<tr>
<td>µA</td>
<td>microampere</td>
</tr>
<tr>
<td>µF</td>
<td>microfarad</td>
</tr>
<tr>
<td>µH</td>
<td>microhenry</td>
</tr>
<tr>
<td>µs</td>
<td>microsecond</td>
</tr>
<tr>
<td>µV</td>
<td>microvolt</td>
</tr>
<tr>
<td>µW</td>
<td>microwatt</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt</td>
</tr>
<tr>
<td>nA</td>
<td>nanoampere</td>
</tr>
<tr>
<td>ns</td>
<td>nanosecond</td>
</tr>
<tr>
<td>nV</td>
<td>nanovolt</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>pF</td>
<td>picofarad</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ps</td>
<td>picosecond</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>sps</td>
<td>samples per second</td>
</tr>
<tr>
<td>sqrtHz</td>
<td>square root of hertz</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>Revision</td>
<td>ECN</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>*C</td>
<td>5438827</td>
</tr>
<tr>
<td>*D</td>
<td>5713202</td>
</tr>
</tbody>
</table>