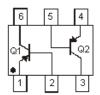


DST3906DJ

DUAL 40V PNP SURFACE MOUNT TRANSISTOR

Features

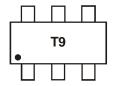
- V_{CEO} = -40V
- I_C = -200mA
- Epitaxial Planar Die Construction
- Ideally Suited for Automated Assembly Processes
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Ultra Small Package


Mechanical Data

- Case: SOT963
- Case Material: Molded Plastic, "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Annealed over Copper Leadframe. Solderable per MIL-STD-202, Method 208 @3
- Weight: 0.0027 grams (Approximate)

SOT963

Device Schematic


Ordering Information (Note 4)

Part Number	Packaging	Shipping
DST3906DJ-7	SOT963	10.000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/

Marking Information

T9 = Product Type Marking Code

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	-40	V
Collector-Emitter Voltage	V_{CEO}	-40	V
Emitter-Base Voltage	V_{EBO}	-5.0	V
Collector Current - Continuous (Note 5)	Ι _C	-200	mA

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 5)	P_{D}	300	mW
Thermal Resistance, Junction to Ambient (Note 5)	$R_{ hetaJA}$	417	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

ESD Ratings (Note 6)

Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	4,000	V	3B
Electrostatic Discharge - Machine Model	ESD MM	400	V	С

Notes: 5. Device mounted on FR-4 PCB with minimum recommended pad layout.

^{6.} Refer to JEDEC specification JESD22-A114 and JESD22-A115.

Thermal Characteristics and Derating Information

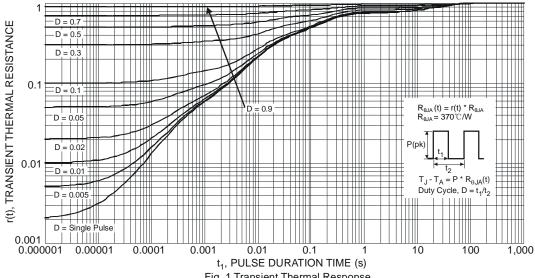
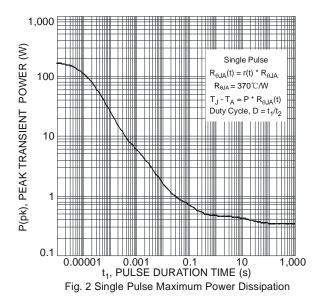



Fig. 1 Transient Thermal Response

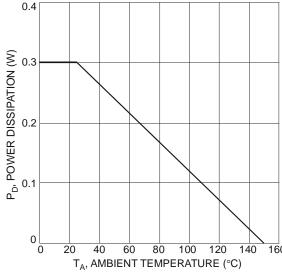
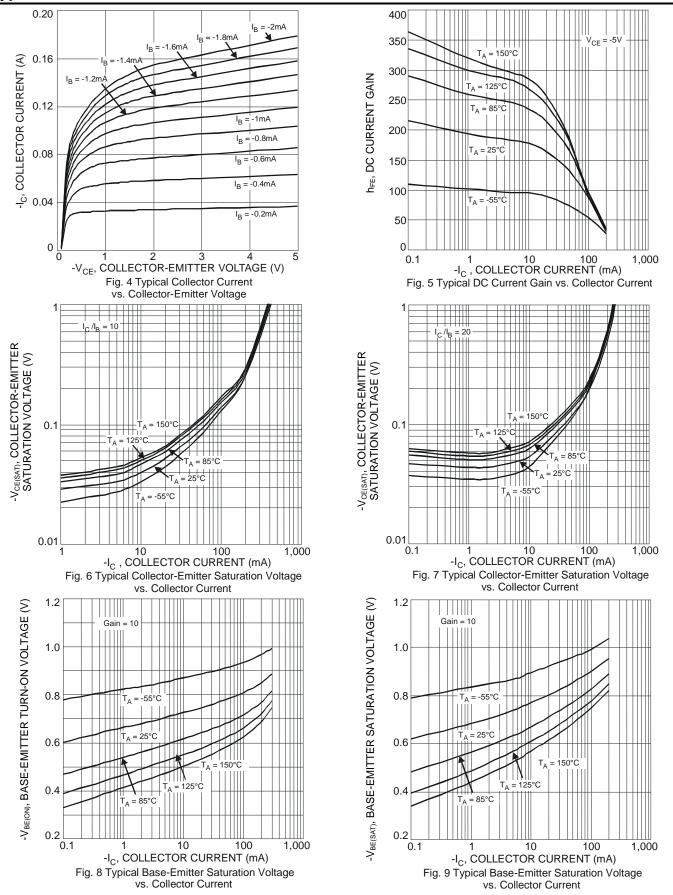


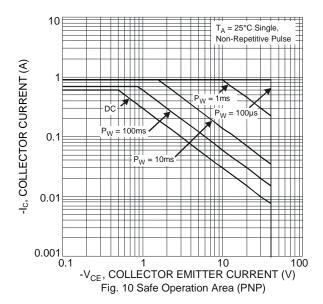
Fig. 3 Power Dissipation vs. Ambient Temperature

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)


Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS	OFF CHARACTERISTICS				
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-40		V	$I_C = -10\mu A, I_E = 0$
Collector-Emitter Breakdown Voltage (Note 7)	V _{(BR)CEO}	-40	_	V	$I_C = -1 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-6		V	$I_E = -10\mu A, I_C = 0$
Collector Cutoff Current	I _{CEX}	_	-50	nA	$V_{CE} = -30V$, $V_{EB(OFF)} = -3V$
Collector Cuton Current	I _{CBO}	_	-50	nA	$V_{CB} = -30V, I_{E} = 0$
Base Cutoff Current	I _{BL}	_	-50	nA	$V_{CE} = -30V$, $V_{EB(OFF)} = -3V$
ON CHARACTERISTICS (Note 7)					
		60	_		$I_C = -100\mu A, V_{CE} = -1V$
		80	_		$I_C = -1.0 \text{mA}, V_{CE} = -1 \text{V}$
DC Current Gain	h _{FE}	100	300	_	$I_C = -10 \text{mA}, V_{CE} = -1 \text{V}$
		60	_		$I_C = -50 \text{mA}, V_{CE} = -1 \text{V}$
		30	_		$I_C = -100 \text{mA}, V_{CE} = -1 \text{V}$
Collector-Emitter Saturation Voltage	Variour	_	-0.25	V	$I_C = -10mA$, $I_B = -1mA$
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$		-0.40	0 v	$I_C = -50\text{mA}$, $I_B = -5\text{mA}$
Base-Emitter Saturation Voltage	V _{BE(SAT)}	-0.65	-0.85	V	$I_C = -10mA$, $I_B = -1mA$
· ·		_	-0.95	V	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$
SMALL SIGNAL CHARACTERISTICS	1			ı	
Output Capacitance	C _{OBO}	_	4.5	pF	$V_{CB} = -5V, f = 1MHz, I_{E} = 0$
Input Capacitance	C _{IBO}	_	10	pF	$V_{EB} = -0.5V$, $f = 1MHz$, $I_{C} = 0$
Input Impedance	h _{ie}	2	12	kΩ	
Voltage Feedback Ratio	h _{re}	0.1	10	x 10 ⁻⁴	$V_{CE} = -10V, I_{C} = -1mA,$
Small Signal Current Gain	h _{fe}	100	400	_	f = 1kHz
Output Admittance	h _{oe}	3	60	μS	
Current Gain-Bandwidth Product	f⊤	300	_	MHz	$V_{CE} = -20V, I_{C} = -10mA,$ f = 100MHz
SWITCHING CHARACTERISTICS					
Delay Time	t _D	_	35	ns	$V_{CC} = -3V, I_{C} = -10mA,$
Rise Time	t _R		35	ns	$I_{B1} = -1 \text{mA}$
Storage Time	ts	_	225	ns	$V_{CC} = -3V, I_{C} = -10mA,$
Fall Time	t _F	_	75	ns	$I_{B2} = 1mA$

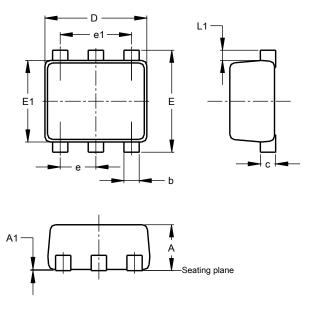
Note:

7. Measured under pulsed conditions. Pulse width ≤ 300µs. Duty cycle ≤ 2%.



Typical Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

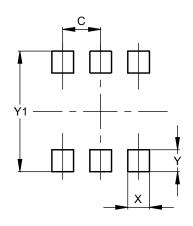
Typical Electrical Characteristics (Cont. @T_A = +25°C, unless otherwise specified.)



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT963



SOT963					
Dim Min		Max	Тур		
Α	0.40	0.50	0.45		
A1	0.00	0.05			
b	0.10	0.20	0.15		
С	0.120	0.180	0.150		
D	0.95	1.05	1.00		
Е	0.95	1.05	1.00		
E1	0.75	0.85	0.80		
е		-	0.35		
e1			0.70		
L1	0.05	0.15	0.10		
All Dimensions in mm					

Suggest Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT963

Dimensions	Value (in mm)		
С	0.350		
Х	0.200		
Y	0.200		
Y1	1.100		

Note:

The suggested land pattern dimensions have been provided for reference only, as actual pad layouts may vary depending on application. These dimensions may be modified based on user equipment capability or fabrication criteria. A more robust pattern may be desired for wave soldering and is calculated by adding 0.2mm to the 'Z' dimension. For further information, please reference document IPC-7351A, Naming Convention for Standard SMT Land Patterns, and for International grid details, please see document IEC, Publication 97.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com