# 2-Bit 100 Mb/s Configurable **Dual-Supply Level Translator**

# **NLSX5002**

The NLSX5002 is a 2-bit configurable dual-supply autosensing bidirectional level translator that does not require a direction control pin. The I/O V<sub>CC</sub>- and I/O V<sub>L</sub>-ports are designed to track two different power supply rails, V<sub>CC</sub> and V<sub>L</sub> respectively. Both the V<sub>CC</sub> and the V<sub>L</sub> supply rails are configurable from 0.9 V to 4.5 V. This allows a logic signal on the V<sub>L</sub> side to be translated to either a higher or a lower logic signal voltage on the V<sub>CC</sub> side, and vice-versa.

The NLSX5002 offers the feature that the values of the  $V_{CC}$  and V<sub>L</sub> supplies are independent. Design flexibility is maximized because V<sub>L</sub> can be set to a value either greater than or less than the V<sub>CC</sub> supply. In contrast, the majority of competitive auto sense translators have a restriction that the value of the V<sub>I</sub> supply must be equal to less than (V<sub>CC</sub> - 0.4) V.

The NLSX5002 has high output current capability, which allows the translator to drive high capacitive loads such as most high frequency EMI filters. Another feature of the NLSX5002 is that each I/O\_V<sub>Ln</sub> and I/O\_V<sub>CCn</sub> channel can function as either an input or an output.

An Output Enable (EN) input is available to reduce the power consumption. The EN pin can be used to disable both I/O ports by putting them in 3-state which significantly reduces the supply current from both V<sub>CC</sub> and V<sub>L</sub>. The EN signal is referenced to the V<sub>L</sub> supply.

#### **Features**

- Wide V<sub>CC</sub>, V<sub>L</sub> Operating Range: 0.9 V to
- V<sub>L</sub> and V<sub>CC</sub> are independent
  - V<sub>L</sub> may be greater than, equal to, or less than V<sub>L</sub>
- High-Speed with 140 Mb/s Guaranteed Date Rate for  $V_{CC}$ ,  $V_L > 1.8 V$
- Low Bit-to-Bit Skew
- Overvoltage Tolerant Enable and I/O Pins
- Non-Preferential Power-Up Sequencing
- Power-Off Protection
- Small Packaging: UQFN8, 1.4 mm x 1.2 mm, 0.4 mm Pitch
- These Devices are Pb-Free and are RoHS Compliant

#### **Typical Applications**

• Mobile Phones, PDAs, Other Portable Devices

# Important Information

- ESD Protection for All Pins:
  - ♦ HBM (Human Body Model) > 8000 V
  - ♦ MM (Machine Model) > 400 V



## ON Semiconductor®

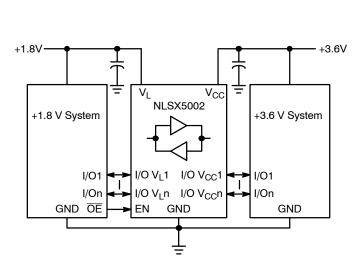
www.onsemi.com

## **MARKING DIAGRAM**



**UQFN8 MU SUFFIX** CASE 523AS




Specific Device Co

M = Date Code

## ORDERING INFORMATION

| Device         | Package   | Shipping <sup>†</sup> |
|----------------|-----------|-----------------------|
| NLSX5002BMUTCG | UQFN8     | 3000/Tape & Reel      |
| 12 0 N/r       | (Pb-Free) |                       |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.



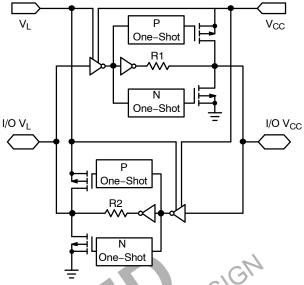
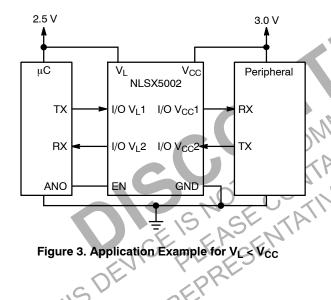




Figure 1. Typical Application Circuit

Figure 2. Simplified Functional Diagram (1 I/O Line)



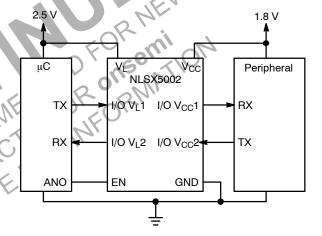



Figure 4. Application Example for V<sub>L</sub> > V<sub>CC</sub>

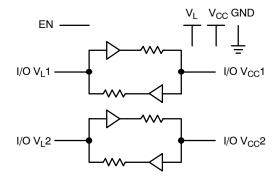



Figure 5. Logic Diagram

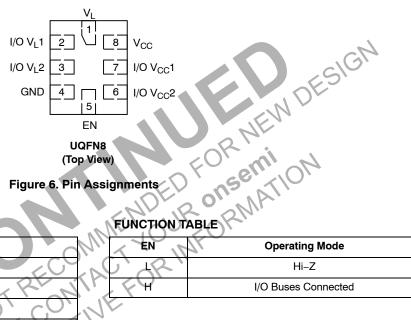



Figure 6. Pin Assignments

# **PIN ASSIGNMENT**

| Pins                  | Description                             |
|-----------------------|-----------------------------------------|
| V <sub>CC</sub>       | V <sub>CC</sub> Input Voltage           |
| V <sub>L</sub>        | V <sub>L</sub> Input Voltage            |
| GND                   | Ground                                  |
| EN                    | Output Enable                           |
| I/O V <sub>CC</sub> n | I/O Port, Referenced to V <sub>CC</sub> |
| I/O V <sub>L</sub> n  | I/O Port, Referenced to V <sub>L</sub>  |

| EN | Operating Mode      |
|----|---------------------|
| 75 | Hi–Z                |
| H  | I/O Buses Connected |

#### **MAXIMUM RATINGS**

| Symbol              | Parameter                                           | Value        | Condition            | Unit |
|---------------------|-----------------------------------------------------|--------------|----------------------|------|
| V <sub>CC</sub>     | I/O V <sub>CC</sub> -side DC Supply Voltage         | -0.5 to +5.5 |                      | V    |
| V <sub>L</sub>      | I/O V <sub>L</sub> -side DC Supply Voltage          | -0.5 to +5.5 |                      | V    |
| I/O V <sub>CC</sub> | V <sub>CC</sub> -Referenced DC Input/Output Voltage | -0.5 to +5.5 |                      | V    |
| I/O V <sub>L</sub>  | V <sub>L</sub> -Referenced DC Input/Output Voltage  | -0.5 to +5.5 |                      | V    |
| VI                  | Enable Control Pin DC Input Voltage                 | -0.5 to +5.5 |                      | V    |
| I <sub>IK</sub>     | DC Input Diode Current                              | -50          | V <sub>I</sub> < GND | mA   |
| lok                 | DC Output Diode Current                             | -50          | V <sub>O</sub> < GND | mA   |
| I <sub>CC</sub>     | DC Supply Current Through V <sub>CC</sub>           | ±100         |                      | mA   |
| IL                  | DC Supply Current Through V <sub>L</sub>            | ±100         |                      | mA   |
| I <sub>GND</sub>    | DC Ground Current Through Ground Pin                | ±100         |                      | mA   |
| T <sub>STG</sub>    | Storage Temperature                                 | -65 to +150  | /As                  | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### RECOMMENDED OPERATING CONDITIONS

| Symbol          | Parameter                                                                                                                               | Min        | Max        | Unit |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------|
| V <sub>CC</sub> | I/O V <sub>CC</sub> -side Positive DC Supply Voltage                                                                                    | 0.9        | 4.5        | V    |
| $V_{L}$         | I/O V <sub>L</sub> -side Positive DC Supply Voltage                                                                                     | 0.9        | 4.5        | V    |
| VI              | Enable Control Pin Voltage (Referenced to V <sub>L</sub> )                                                                              | GND        | 4.5        | V    |
| V <sub>IO</sub> | Bus Input/Output Voltage                                                                                                                | GND<br>GND | 4.5<br>4.5 | V    |
| T <sub>A</sub>  | Operating Temperature Range                                                                                                             | -55        | +125       | °C   |
| Δt/ΔV           | Input Transition Rise or Rate V <sub>I</sub> , V <sub>IO</sub> from 30% to 70% of V <sub>CC</sub> ; V <sub>CC</sub> = 3.3 V $\pm$ 0.3 V | 0          | 10         | ns   |
|                 | V <sub>I</sub> , V <sub>IO</sub> from 30% to 70% of V <sub>CC</sub> ; V <sub>CC</sub> = 3.3 V ± 0.3 V                                   |            |            |      |

#### DC ELECTRICAL CHARACTERISTICS

|                     |                                                        |                                                                                                  |                                 |                                   | -40°C to +85°C           |                 | -55°C to +125°C          |                          |                          |      |
|---------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|--------------------------|-----------------|--------------------------|--------------------------|--------------------------|------|
| Symbol              | Parameter                                              | Test Conditions<br>(Note 1)                                                                      | V <sub>CC</sub> (V)<br>(Note 2) | <b>V<sub>L</sub> (V)</b> (Note 3) | Min                      | Typ<br>(Note 4) | Max                      | Min                      | Max                      | Unit |
| V <sub>IHC</sub>    | I/O V <sub>CC</sub> Input HIGH Voltage                 |                                                                                                  | 0.9 – 4.5                       | 0.9 – 4.5                         | 2/3 *<br>V <sub>CC</sub> | -               | -                        | 2/3 *<br>V <sub>CC</sub> | -                        | ٧    |
| V <sub>ILC</sub>    | I/O V <sub>CC</sub> Input LOW Voltage                  |                                                                                                  | 0.9 – 4.5                       | 0.9 – 4.5                         | -                        | -               | 1/3 *<br>V <sub>CC</sub> | -                        | 1/3 *<br>V <sub>CC</sub> | ٧    |
| $V_{IHL}$           | I/O V <sub>L</sub> Input HIGH Voltage                  |                                                                                                  | 0.9 – 4.5                       | 0.9 – 4.5                         | 2/3 *<br>V <sub>L</sub>  | _               | -                        | 2/3 * V <sub>L</sub>     | -                        | ٧    |
| V <sub>ILL</sub>    | I/O V <sub>L</sub> Input LOW Voltage                   |                                                                                                  | 0.9 – 4.5                       | 0.9 – 4.5                         | -                        | _               | 1/3 *<br>V <sub>L</sub>  | -                        | 1/3 * V <sub>L</sub>     | ٧    |
| V <sub>IH</sub>     | Control Pin Input HIGH Voltage                         | T <sub>A</sub> = +25°C                                                                           | 0.9 – 4.5                       | 0.9 – 4.5                         | 2/3 *<br>V <sub>L</sub>  | -               | -                        | 2/3 * V <sub>L</sub>     | -                        | V    |
| V <sub>IL</sub>     | Control Pin Input LOW Voltage                          | T <sub>A</sub> = +25°C                                                                           | 0.9 – 4.5                       | 0.9 – 4.5                         | -                        | _               | 1/3 *<br>V <sub>L</sub>  | -                        | 1/3 * V <sub>L</sub>     | ٧    |
| V <sub>OHC</sub>    | I/O V <sub>CC</sub> Output HIGH Voltage                | I/O V <sub>CC</sub> source<br>current = 20 μA                                                    | 0.9 – 4.5                       | 0.9 – 4.5                         | 0.9 *<br>V <sub>CC</sub> | -               |                          | 0.9 *<br>V <sub>CC</sub> | _                        | ٧    |
| V <sub>OLC</sub>    | I/O V <sub>CC</sub> Output LOW Voltage                 | I/O V <sub>CC</sub> sink<br>current = 20 μA                                                      | 0.9 – 4.5                       | 0.9 – 4.5                         |                          |                 | 0.2                      | _                        | 0.2                      | ٧    |
| V <sub>OHL</sub>    | I/O V <sub>L</sub> Output HIGH Voltage                 | I/O V <sub>L</sub> source<br>current = 20 μA                                                     | 0.9 – 4.5                       | 0.9 – 4.5                         | 0.9 *<br>V <sub>L</sub>  | R-M             | _<br>                    | 0.9 * V <sub>L</sub>     | -                        | ٧    |
| V <sub>OLL</sub>    | I/O V <sub>L</sub> Output LOW Voltage                  | I/O V <sub>L</sub> sink current<br>= 20 μA                                                       | 0.9 – 4.5                       | 0.9 – 4.5                         | O-K                      | nsel            | 0.2                      | )/-                      | 0.2                      | ٧    |
| I <sub>QVCC</sub>   | V <sub>CC</sub> Supply Current                         | $EN = V_L, I_O = 0 A,$<br>$(I/O V_{CC} = 0 V,$<br>$I/O V_L = 0 V) or$<br>$(I/O V_{CC} = V_{CC},$ | 0.9 – 4.5                       | 0.9-4.5                           | JR-                      | ORIN            | 1                        | -                        | 2.5                      | μА   |
| I <sub>QVL</sub>    | V <sub>L</sub> Supply Current                          | I/O V <sub>L</sub> = V <sub>L</sub> )                                                            | 0.9 – 4.5                       | 0.9 – 4.5                         | 11-                      | -               | 1                        | -                        | 2.5                      | μΑ   |
| I <sub>TS-VCC</sub> | V <sub>CC</sub> Tristate Output Mode<br>Supply Current | T <sub>A</sub> = +25°C,<br>EN = 0 V                                                              | 0.9 – 4.5                       | 0.9 – 4.5                         | -                        | =               | 1                        | -                        | 2.1                      | μΑ   |
| I <sub>TS-VL</sub>  | V <sub>L</sub> Tristate Output Mode<br>Supply Current  | T <sub>A</sub> = +25°C,<br>EN = 0 V                                                              | 0.9 – 4.5                       | 0.9 – 4.5                         | -                        | -               | 1                        | -                        | 2.1                      | μΑ   |
| I <sub>OZ</sub>     | I/O Tristate Output Mode<br>Leakage Current            | T <sub>A</sub> = +25°C,<br>EN = 0V                                                               | 0.9 – 4.5                       | 0.9 – 4.5                         | -                        | -               | ±1                       | -                        | ±1.5                     | μА   |
| I <sub>I</sub>      | Control Pin Input Current                              | T <sub>A</sub> = +25°C                                                                           | 0.9 – 4.5                       | 0.9 – 4.5                         | -                        | -               | ±1                       | -                        | ±1                       | μΑ   |
| I <sub>OFF</sub>    | Power Off Leakage Current                              | $I/O V_{CC} = 0 \text{ to } 4.5V,$                                                               | 0                               | 0                                 | -                        | -               | 1                        | -                        | 1.5                      | μΑ   |
| _                   | HIS BY                                                 | $I/O V_L = 0 \text{ to } 4.5 \text{ V}$                                                          | 0.9 – 4.5                       | 0                                 | -                        | -               | 1                        | -                        | 1.5                      | 1    |
| ,                   | ` `                                                    |                                                                                                  | 0                               | 0.9 – 4.5                         | _                        | _               | 1                        | _                        | 1.5                      |      |

Normal test conditions are V<sub>I</sub> = 0 V, C<sub>IOVCC</sub> ≤ 15 pF and C<sub>IOVL</sub> ≤ 15 pF, unless otherwise specified.
 V<sub>CC</sub> is the supply voltage associated with the I/O V<sub>CC</sub> port, and V<sub>CC</sub> ranges from +0.9 V to 4.5 V under normal operating conditions.
 V<sub>L</sub> is the supply voltage associated with the I/O V<sub>L</sub> port, and V<sub>L</sub> ranges from +0.9 V to 4.5 V under normal operating conditions.
 Typical values are for V<sub>CC</sub> = +2.8 V, V<sub>L</sub> = +1.8 V and T<sub>A</sub> = +25°C. All units are production tested at T<sub>A</sub> = +25°C. Limits over the operating temperature range are guaranteed by design.

#### **TIMING CHARACTERISTICS**

|                        |                                                  |                                                                                                                                                       |                                 |                                      | -5           | 5°C to +125     | 5°C         |      |
|------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|--------------|-----------------|-------------|------|
| Symbol                 | Parameter                                        | Test Conditions<br>(Note 5)                                                                                                                           | V <sub>CC</sub> (V)<br>(Note 6) | <b>V<sub>L</sub> (V)</b><br>(Note 7) | Min          | Typ<br>(Note 8) | Max         | Unit |
| t <sub>R-VCC</sub>     | I/O V <sub>CC</sub> Rise Time                    | C <sub>IOVCC</sub> = 15 pF                                                                                                                            | 0.9 – 4.5                       | 0.9 – 4.5                            | -            | -               | 8.5         | ns   |
|                        |                                                  |                                                                                                                                                       | 1.8 – 4.5                       | 1.8 – 4.5                            | -            | -               | 3.5         |      |
| t <sub>F-VCC</sub>     | I/O V <sub>CC</sub> Fall Time                    | C <sub>IOVCC</sub> = 15 pF                                                                                                                            | 0.9 – 4.5                       | 0.9 – 4.5                            | -            | -               | 8.5         | ns   |
|                        |                                                  |                                                                                                                                                       | 1.8 – 4.5                       | 1.8 – 4.5                            | -            | -               | 3.5         |      |
| t <sub>R-VL</sub>      | I/O V <sub>L</sub> Rise Time                     | C <sub>IOVL</sub> = 15 pF                                                                                                                             | 0.9 – 4.5                       | 0.9 – 4.5                            | -            | -               | 8.5         | ns   |
|                        |                                                  |                                                                                                                                                       | 1.8 – 4.5                       | 1.8 – 4.5                            | -            | -               | 3.5         |      |
| t <sub>F-VL</sub>      | I/O V <sub>L</sub> Fall Time                     | C <sub>IOVL</sub> = 15 pF                                                                                                                             | 0.9 – 4.5                       | 0.9 – 4.5                            | -            | -               | 8.5         | ns   |
|                        |                                                  |                                                                                                                                                       | 1.8 – 4.5                       | 1.8 – 4.5                            | -            | -               | 3.5         |      |
| Z <sub>OVCC</sub>      | I/O V <sub>CC</sub> One-Shot<br>Output Impedance |                                                                                                                                                       | 0.9<br>1.8<br>4.5               | 0.9 – 4.5                            | 1            | 37<br>20<br>6.0 | GFJ         | Ω    |
| Z <sub>OVL</sub>       | I/O V <sub>L</sub> One–Shot Output Impedance     |                                                                                                                                                       | 0.9 – 4.5                       | 0.9<br>1.8<br>4.5                    | -1           | 37<br>20<br>6.0 | -<br>-<br>- | Ω    |
| t <sub>PD_VL-VCC</sub> | Propagation Delay                                | C <sub>IOVCC</sub> = 25 pF                                                                                                                            | 0.9 – 4.5                       | 0.9 – 4.5                            | V-           | -               | 40          | ns   |
|                        | (Driving I/O V <sub>CC</sub> )                   |                                                                                                                                                       | 1.8 – 4.5                       | 1.8 – 4.5                            | <b>1</b> -   | _               | 13          |      |
| t <sub>PD_VCC-VL</sub> | Propagation Delay                                | C <sub>IOVL</sub> = 25 pF                                                                                                                             | 0.9 – 4.5                       | 0.9 – 4.5                            | <u>, -</u> ( | 16              | 40          | ns   |
|                        | (Driving I/O V <sub>L</sub> )                    |                                                                                                                                                       | 1.8 – 4.5                       | 1.8 – 4.5                            | V.           | -               | 13          |      |
| t <sub>SK</sub>        | Channel-to-Channel<br>Skew                       | C <sub>IOVCC</sub> = 15 pF, C <sub>IOVL</sub> = 15 pF<br>(Note 9)                                                                                     | 0.9 – 4.5                       | 0.9 – 4.5                            | 'L _         | -               | 0.15        | ns   |
| I <sub>IN_PEAK</sub>   | Input Driver Maximum<br>Peak Current             | $EN = V_L; \\ I/O\_V_{CC} = 1 \text{ MHz Square Wave,} \\ Amplitude = V_{CC}, \text{ or} \\ I/O\_V_L = 1 \text{ MHz Square Wave,} \\ Amplitude = V_L$ | 0.9 – 4.5                       | 0.9 – 4.5                            | -            | -               | 5.0         | mA   |

Normal test conditions are V<sub>I</sub> = 0 V, C<sub>IOVCC</sub> ≤ 15 pF and C<sub>IOVL</sub> ≤ 15 pF, unless otherwise specified.
 V<sub>CC</sub> is the supply voltage associated with the I/O V<sub>CC</sub> port, and V<sub>CC</sub> ranges from +0.9 V to 4.5 V under normal operating conditions.
 V<sub>L</sub> is the supply voltage associated with the I/O V<sub>L</sub> port, and V<sub>L</sub> ranges from +0.9 V to 4.5 V under normal operating conditions.
 Typical values are for V<sub>CC</sub> = +2.8 V, V<sub>L</sub> = +1.8 V and T<sub>A</sub> = +25°C. All units are production tested at T<sub>A</sub> = +25°C. Limits over the operating temperature range are guaranteed by design.
 Guaranteed by design.

# **TIMING CHARACTERISTICS (continued)**

|                      |                                         |                  |                                                                    |                                  |                                       | -5       | 5°C to +125      | 5°C |      |
|----------------------|-----------------------------------------|------------------|--------------------------------------------------------------------|----------------------------------|---------------------------------------|----------|------------------|-----|------|
| Symbol               | Parameter                               |                  | Test Conditions<br>(Note 10)                                       | V <sub>CC</sub> (V)<br>(Note 11) | <b>V<sub>L</sub> (V)</b><br>(Note 12) | Min      | Typ<br>(Note 13) | Max | Unit |
| t <sub>EN-VCC</sub>  | I/O_V <sub>CC</sub> Output Enable Time  | t <sub>PZH</sub> | C <sub>IOVCC</sub> = 15 pF,<br>I/O_V <sub>L</sub> = V <sub>L</sub> | 0.9 – 4.5                        | 0.9 – 4.5                             | -        | -                | 160 | ns   |
|                      |                                         | t <sub>PZL</sub> | C <sub>IOVCC</sub> = 15 pF,<br>I/O_V <sub>L</sub> = 0 V            | 0.9 – 4.5                        | 0.9 – 4.5                             | -        | -                | 130 |      |
| t <sub>EN-VL</sub>   | I/O_V <sub>L</sub> Output Enable Time   | t <sub>PZH</sub> | $C_{IOVL}$ = 15 pF,<br>I/O_V <sub>CC</sub> = V <sub>CC</sub>       | 0.9 – 4.5                        | 0.9 – 4.5                             | -        | -                | 160 | ns   |
|                      |                                         | t <sub>PZL</sub> | C <sub>IOVL</sub> = 15 pF,<br>I/O_V <sub>CC</sub> = 0 V            | 0.9 – 4.5                        | 0.9 – 4.5                             | -        | -                | 130 |      |
| t <sub>DIS-VCC</sub> | I/O_V <sub>CC</sub> Output Disable Time | t <sub>PHZ</sub> | C <sub>IOVCC</sub> = 15 pF,<br>I/O_V <sub>L</sub> = V <sub>L</sub> | 0.9 – 4.5                        | 0.9 – 4.5                             | -        | -                | 210 | ns   |
|                      |                                         | t <sub>PLZ</sub> | C <sub>IOVCC</sub> = 15 pF,<br>I/O_V <sub>L</sub> = 0 V            | 0.9 – 4.5                        | 0.9 – 4.5                             | 1        | -                | 175 |      |
| t <sub>DIS-VL</sub>  | I/O_V <sub>L</sub> Output Disable Time  | t <sub>PHZ</sub> | $C_{IOVL}$ = 15 pF,<br>I/O_V <sub>CC</sub> = V <sub>CC</sub>       | 0.9 – 4.5                        | 0.9 – 4.5                             |          | <u>.</u> 5\      | 210 | ns   |
|                      |                                         | t <sub>PLZ</sub> | $C_{IOVL} = 15 pF,$<br>I/O_V <sub>CC</sub> = 0 V                   | 0.9 – 4.5                        | 0.9 – 4.5                             | <u> </u> | ÖĀ               | 175 |      |
| MDR                  | Maximum Data Rate                       |                  | C <sub>IO</sub> = 15 pF                                            | 0.9 – 4.5                        | 0.9 – 4.5                             | 50       | -                | -   | mbps |
|                      |                                         |                  |                                                                    | 1.8 – 4.5                        | 1.8 – 4.5                             | 140      | _                | -   |      |

<sup>10.</sup> Normal test conditions are V<sub>I</sub> = 0 V, C<sub>IOVCC</sub> ≤ 15 pF and C<sub>IOVL</sub> ≤ 15 pF, unless otherwise specified.

11. V<sub>CC</sub> is the supply voltage associated with the I/O V<sub>CC</sub> port, and V<sub>CC</sub> ranges from +0.9 V to 4.5 V under normal operating conditions.

12. V<sub>L</sub> is the supply voltage associated with the I/O V<sub>L</sub> port, and V<sub>L</sub> ranges from +0.9 V to 4.5 V under normal operating conditions.

13. Typical values are for V<sub>CC</sub> = +3.3 V, V<sub>L</sub> = +1.8 V and T<sub>A</sub> = +25°C. All units are production tested at T<sub>A</sub> = +25°C. Limits over the operating temperature range are guaranteed by design.

# **DYNAMIC POWER CONSUMPTION** $(T_A = +25^{\circ}C)$

| Symbol              | Parameter                                     | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CC</sub> (V)<br>(Note 14) | <b>V<sub>L</sub> (V)</b><br>(Note 15) | Typ<br>(Note 16) | Unit |
|---------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|------------------|------|
| C <sub>PD_VL</sub>  | Power Dissipation                             | V <sub>L</sub> = Input port, V <sub>CC</sub> = Output Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9                              | 4.5                                   | 13               | pF   |
|                     | Capacitance<br>(Referred to V <sub>L</sub> )  | C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = V <sub>L</sub> (Output enabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                              | 1.8                                   | 7.0              | ,    |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 1.5                                   | 6.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 1.8                                   | 6.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 2.8                                   | 7.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                              | 2.5                                   | 6.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                              | 1.8                                   | 6.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5                              | 0.9                                   | 10               |      |
|                     |                                               | V <sub>CC</sub> = Input port, V <sub>L</sub> = Output Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9                              | 4.5                                   | 19               | pF   |
|                     |                                               | C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = V <sub>L</sub> (Output enabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                              | 1.8                                   | 16               |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 1.5                                   | 16               |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 1.8                                   | C16              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 2.8                                   | 16               |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                              | 2.5                                   | 16               |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                              | 71.8                                  | 16               |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5                              | 0.9                                   | 16               |      |
| C <sub>PD_VCC</sub> | Power Dissipation                             | V <sub>L</sub> = Input port, V <sub>CC</sub> = Output Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9                              | 4.5                                   | 16               | pF   |
|                     | Capacitance<br>(Referred to V <sub>CC</sub> ) | C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = V <sub>L</sub> (Output enabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                              | 1.8                                   | 17               |      |
|                     |                                               | A STATE OF THE PARTY OF THE PAR | 1.8                              | 1.5                                   | 17               |      |
|                     |                                               | MAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                              | 1.8                                   | 17               |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 2.8                                   | 17               |      |
|                     |                                               | - DE TRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                              | 2.5                                   | 18               |      |
|                     | 46                                            | DOT CONTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.8                              | 1.8                                   | 18               |      |
|                     |                                               | NOE CONTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5                              | 0.9                                   | 21               |      |
|                     |                                               | V <sub>CC</sub> = Input port, V <sub>L</sub> = Output Port<br>C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = V <sub>L</sub> (Output enabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9                              | 4.5                                   | 13               | pF   |
|                     | 110                                           | CLoad = 0,1 = 1 MHz,<br>EN = V <sub>L</sub> (Output enabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                              | 1.8                                   | 6.0              |      |
|                     | EN.                                           | PERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                              | 1.5                                   | 7.0              |      |
|                     | SV                                            | $V_{CC}$ = Input port, $V_L$ = Output Port $C_{Load}$ = 0, f = 1 MHz, $EN = V_L$ (Output enabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8                              | 1.8                                   | 7.0              |      |
| <                   | HI                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                              | 2.8                                   | 6.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                              | 2.5                                   | 7.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                              | 1.8                                   | 7.0              |      |
|                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5                              | 0.9                                   | 15               |      |

<sup>14.</sup>  $V_{CC}$  is the supply voltage associated with the I/O VCc port, and VCc ranges from +0.9 V to 4.5 V under normal operating conditions. 15.  $V_L$  is the supply voltage associated with the I/O VL port, and VL ranges from +0.9 V to 4.5 V under normal operating conditions. 16. Typical values are at  $T_A = +25^{\circ}C$ .

<sup>17.</sup>  $C_{PD\ VL}$  and  $C_{PD\ VCC}$  are defined as the value of the IC's equivalent capacitance from which the operating current can be calculated for the  $V_L$  and  $V_{CC}$  power supplies, respectively.  $I_{CC} = I_{CC}$  (dynamic) +  $I_{CC}$  (static)  $\approx I_{CC}$  (operating)  $\approx C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$  where  $I_{CC} = I_{CC\_VCC} + I_{CC\_VL}$  and  $I_{CC\_VL}$  and  $I_{CC\_VL}$  and  $I_{CC\_VL}$  and  $I_{CC\_VL}$  and  $I_{CC\_VL}$  (static)  $I_{CC\_VL}$  (static)  $I_{CC\_VL}$  (operating)  $I_{CC\_VL}$  (operating)

# STATIC POWER CONSUMPTION ( $T_A = +25^{\circ}C$ )

| Symbol              | Parameter                                     | Test Conditions                                                  | V <sub>CC</sub> (V)<br>(Note 18) | V <sub>L</sub> (V)<br>(Note 19) | Typ<br>(Note 20) | Unit |
|---------------------|-----------------------------------------------|------------------------------------------------------------------|----------------------------------|---------------------------------|------------------|------|
| C <sub>PD_VL</sub>  | Power Dissipation                             | V <sub>L</sub> = Input port, V <sub>CC</sub> = Output Port       | 0.9                              | 4.5                             | 0.01             | pF   |
|                     | Capacitance<br>(Referred to V <sub>L</sub> )  | C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = GND (outputs disabled) | 1.5                              | 1.8                             | 0.01             |      |
|                     |                                               |                                                                  | 1.8                              | 1.5                             | 0.01             |      |
|                     |                                               |                                                                  | 1.8                              | 1.8                             | 0.01             |      |
|                     |                                               |                                                                  | 1.8                              | 2.8                             | 0.01             |      |
|                     |                                               |                                                                  | 2.5                              | 2.5                             | 0.01             |      |
|                     |                                               |                                                                  | 2.8                              | 1.8                             | 0.01             |      |
|                     |                                               |                                                                  | 4.5                              | 0.9                             | 0.01             |      |
|                     |                                               | V <sub>CC</sub> = Input port, V <sub>L</sub> = Output Port       | 0.9                              | 4.5                             | 0.01             | pF   |
|                     |                                               | C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = GND (outputs disabled) | 1.5                              | 1.8                             | 0.01             |      |
|                     |                                               |                                                                  | 1.8                              | 1.5                             | 0.01             |      |
|                     |                                               |                                                                  | 1.8                              | 1.8                             | 0,01             |      |
|                     |                                               |                                                                  | 1.8                              | 2.8                             | 0.01             |      |
|                     |                                               |                                                                  | 2.5                              | 2.5                             | 0.01             |      |
|                     |                                               |                                                                  | 2.8                              | 1.8                             | 0.01             |      |
|                     |                                               |                                                                  | 4.5                              | 0.9                             | 0.01             |      |
| C <sub>PD_VCC</sub> | Power Dissipation                             | V <sub>L</sub> = Input port, V <sub>CC</sub> = Output Port       | 0.9                              | 4.5                             | 0.01             | pF   |
|                     | Capacitance<br>(Referred to V <sub>CC</sub> ) | C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = GND (outputs disabled) | 1.5                              | 1.8                             | 0.01             |      |
|                     |                                               | THE MENT                                                         | 1.8                              | 1.5                             | 0.01             |      |
|                     |                                               | MAIN                                                             | 1.8                              | 1.8                             | 0.01             |      |
|                     |                                               |                                                                  | 1.8                              | 2.8                             | 0.01             |      |
|                     |                                               | - DE TRE                                                         | 2.5                              | 2.5                             | 0.01             |      |
|                     | 46                                            | 2 OT CONTE                                                       | 2.8                              | 1.8                             | 0.01             |      |
|                     |                                               | NO E CONTINUE                                                    | 4.5                              | 0.9                             | 0.01             |      |
|                     |                                               | $V_{CC}$ = Input port, $V_{\underline{L}}$ = Output Port         | 0.9                              | 4.5                             | 0.01             | pF   |
|                     | 110                                           | C <sub>Load</sub> = 0, f = 1 MHz,<br>EN = GND (outputs disabled) | 1.5                              | 1.8                             | 0.01             |      |
|                     | LEN,                                          | Pales                                                            | 1.8                              | 1.5                             | 0.01             |      |
|                     | HISDEVI                                       | SEP                                                              | 1.8                              | 1.8                             | 0.01             |      |
| 1                   | HIS                                           | Kr                                                               | 1.8                              | 2.8                             | 0.01             |      |
|                     |                                               |                                                                  | 2.5                              | 2.5                             | 0.01             |      |
|                     |                                               |                                                                  | 2.8                              | 1.8                             | 0.01             |      |
|                     |                                               |                                                                  | 4.5                              | 0.9                             | 0.01             |      |

<sup>18.</sup>  $V_{CC}$  is the supply voltage associated with the I/O VCC port, and VCC ranges from +0.9 V to 4.5 V under normal operating conditions. 19.  $V_L$  is the supply voltage associated with the I/O VL port, and VL ranges from +0.9 V to 4.5 V under normal operating conditions. 20. Typical values are at  $T_A$  = +25°C

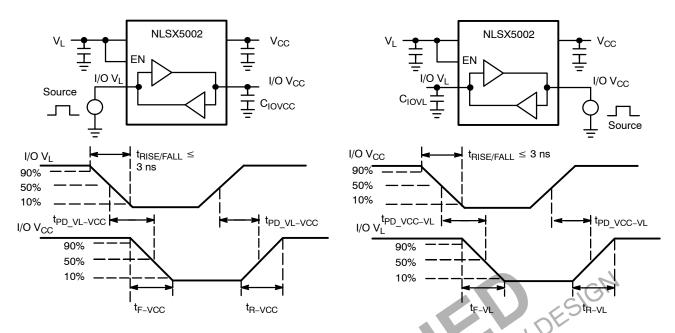



Figure 7. Driving I/O  $V_{CC}$  Test Circuit and Timing

Figure 8. Driving I/O V<sub>L</sub> Test Circuit and Timing

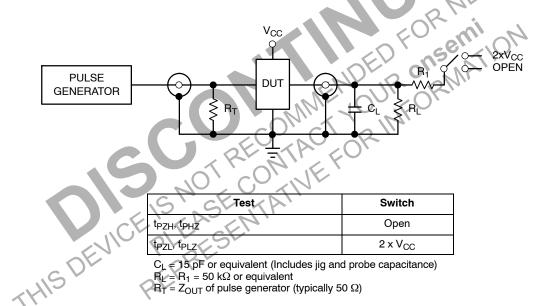



Figure 9. Test Circuit for Enable/Disable Time Measurement



Figure 10. Timing Definitions for Propagation Delays and Enable/Disable Measurement

#### IMPORTANT APPLICATIONS INFORMATION

#### **Level Translator Architecture**

The NLSX5002 auto-sense translator provides bi-directional logic voltage level shifting to transfer data in multiple supply voltage systems. These level translators have two supply voltages,  $V_L$  and  $V_{CC}$ , which set the logic levels on the input and output sides of the translator. When used to transfer data from the I/O  $V_L$  to the I/O  $V_{CC}$  ports, input signals referenced to the  $V_L$  supply are translated to output signals with a logic level matched to  $V_{CC}$ . In a similar manner, the I/O  $V_{CC}$  to I/O  $V_L$  translation shifts input signals with a logic level compatible to  $V_{CC}$  to an output signal matched to  $V_L$ .

The NLSX5002 translator consists of bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. One-shot circuits are used to detect the rising or falling input signals. In addition, the one-shots decrease the rise and fall times of the output signal for high-to-low and low-to-high transitions.

## **Input Driver Requirements**

Auto-sense translators such as the NLSX5002 have a wide bandwidth, but a relatively small DC output current rating. The high bandwidth of the bi-directional I/O circuit is used to quickly transform from an input to an output driver and vice versa. The I/O ports have a modest DC current output specification so that the output driver can be over driven when data is sent in the opposite direction. For proper operation, the input driver to the auto-sense translator should be capable of driving 5 mA of peak output current. The bi-directional configuration of the translator results in both input stages being active for a very short time period. Although the peak current from the input signal circuit is relatively large, the average current is small and consistent with a standard CMOS input stage.

# Enable Input (EN)

The NLSX5002 translator has an Enable pin (EN) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O  $V_{CC}$  and I/O

 $V_L$  pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the  $V_L$  supply and has Over-Voltage Tolerant (OVT) protection.

#### Uni-Directional versus Bi-Directional Translation

The NLSX5002 translator can function as a non-inverting uni-directional translator. One advantage of using the translator as a uni-directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni-directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB.

# **Power Supply Guidelines**

The values of the  $V_L$  and  $V_{CC}$  supplies can be set to anywhere between 0.9 and 4.5 V. Design flexibility is maximized because  $V_L$  may be either greater than or less than the  $V_{CC}$  supply. In contrast, the majority of the competitive auto sense translators has a restriction that the value of the  $V_L$  supply must be equal to less than ( $V_{CC}$  – 0.4) V.

The sequencing of the power supplies will not damage the device during power-up operation. In addition, the I/O  $V_{CC}$  and I/O  $V_{L}$  pins are in the high impedance state if either supply voltage is equal to 0 V. For optimal performance, 0.01 to 0.1  $\mu F$  decoupling capacitors should be used on the  $V_{L}$  and  $V_{CC}$  power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

The NLSX5002 translators have a power down feature that provides design flexibility. The output ports are disabled when either power supply is off ( $V_L$  or  $V_{CC} = 0$  V). This feature causes all of the I/O pins to be in the power saving high impedance state.

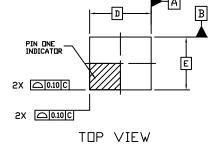


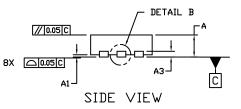


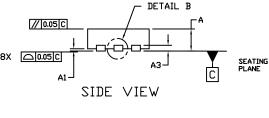
#### UQFN8, 1.40x1.20, 0.40P CASE 523AS **ISSUE B**

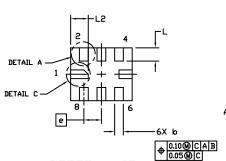
**DATE 19 AUG 2021** 

#### NOTES:


MOLD CMPD


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS 2.
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
- REFER TO SPECIFIC DEVICE DATA SHEET FOR PIN 1 NOTCH LOCATION.


PACKAGE DUTLINE

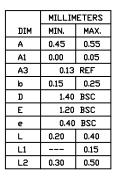

7¥

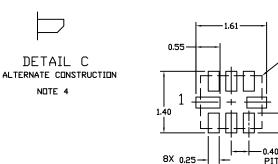
-0.45










EXPOSED Cu



DETAIL A ALTERNATE CONSTRUCTIONS





RECOMMENDED MOUNTING FOOTPRINT \*

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

# **GENERIC MARKING DIAGRAM\***

BOTTOM VIEW



XX = Specific Device Code M = Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON58906E             | Electronic versions are uncontrolled except when accessed directly from the Document Reportant Versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:     | UQFN8, 1.40x1.20, 0.40P |                                                                                                                                                                        | PAGE 1 OF 1 |  |  |  |

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

