TS19706

Self-Oscillating Half-Bridge Driver

 Pin Definition:

 1. VCC
 8. VB

 2. RT
 7. HO

 3. CT
 6. VS

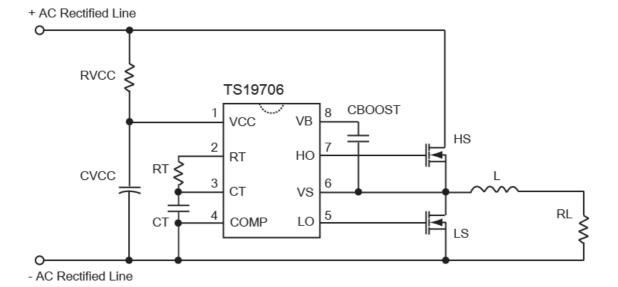
 4. COMP
 5. LO

Description

TS19706 is a high voltage, high speed, self-oscillating power MOSFET and IGBT driver with both high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The front end features a programmable oscillator which is similar to the 555 timer. The output drivers feature a high pulse current buffer stage and an internal dead time designed for minimum driver cross-conduction. Propagation delays for the two channels are matched to simplify use in 50% duty cycle applications. The floating channel can be used to drive an N-MOSFET or IGBT in the high side configuration that operates off a high voltage rail up to 600 volts.

Features

- Floating channel designed for operation ~+600V
- Noise immunity of transient voltage
- Under-voltage lockout
- Programmable oscillator frequency
- Matched propagation delay for both channels
- Ultra low startup current @75uA
- Shutdown function turns off both channel
- Low side output in phase with R_T


Application

- Ballast Lamp
- Motor driver
- SMPS

Ordering Information

Part No.	Package	Packing		
TS19706CD C3	DIP-8	50pcs / Tube		
TS19706CS RL	SOP-8	2.5Kpcs / 13" Reel		

Typical Application Circuit

TS19706

Self-Oscillating Half-Bridge Driver

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Supply Voltage	V _{CC}	19	V		
Recommend VCC Operating Condition		V _{CC}	10 ~ 18	V	
Recommend VBS Operating Condition		V_{BS}	VCC-0.7 ~ 18	V	
High Side Floating Supply Voltage		V _B	-0.3 ~ 625	V	
High Side Floating Supply Offset Voltage		Vs	V_B -25 ~ V_B +0.3	V	
High Side Gate Drive Output		НО	V_S -0.3 ~ V_B +0.3	V	
Low Side Gate Drive Output		LO	-0.3 ~ V _{CC} +0.3	V	
RT Pin Voltage		V _{RT}	-0.3 ~ V _{CC} +0.3	V	
CT Pin Voltage	V _{CT}	-0.3 ~ V _{CC} +0.3	V		
Davis Discipation @ T. 0500	SOP-8	Б	400		
Power Dissipation @ T _A =85°C	DIP-8	P_{D}	650	mW	
Operating Ambient Temperature	T _{OPR}	-20 ~ +85	°C		
Junction Temperature	TJ	+150	°C		
Storage Temperature Range	T _{STG}	-650 +150	°C		
The second Desirate and Australian to Applicant	SOP-8		160	°C/W	
Thermal Resistance - Junction to Ambient	DIP-8	− RΘ _{JA}	100		
ESD Voltage Protection		HMB	3	KV	
		MM	200	V	

Electrical Specifications

VBIAS (VCC, VBS) = 12V, CL = 1000 pF, CT = 1 nF and $TA = 25^{\circ}C$ unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Low Voltage Supply						
Rising VCC under-voltage lockout threshold	V _{CCUV+}		8.1	9.0	9.9	V
Falling VCC under-voltage lockout threshold	V _{CCUV} -		7.2	8.0	8.8	V
VCC under-voltage lockout Hysteresis	V _{CCUVH}	V _{CC} ≤ V _{CCUV}	0.5	1.0	1.5	V
Micropower startup VCC supply current	I _{QCCUV}			50	100	μΑ
Quiescent VCC supply current	I _{QCC}			160	300	μA
VCC operating voltage	Vop		10	12	18	V
Floating Supply						
Micropower startup VBS supply current	I _{QBSUV}	V _{CC} ≤ V _{CCUV}		0	10	μΑ
Quiescent VBS supply current	I_{QBS}			30	50	μΑ
Offset supply leakage current	I _{LK}	V _B =V _S =600V			50	μΑ

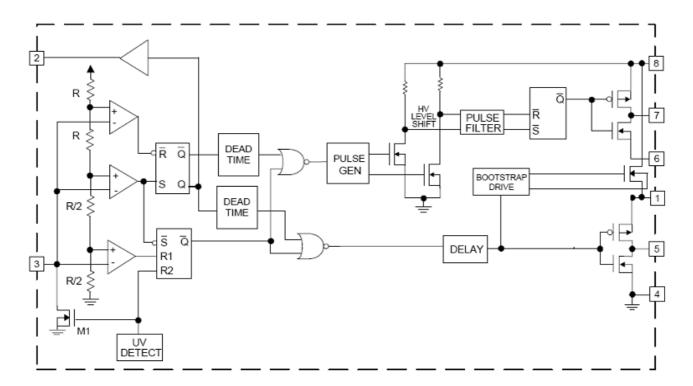
TS19706

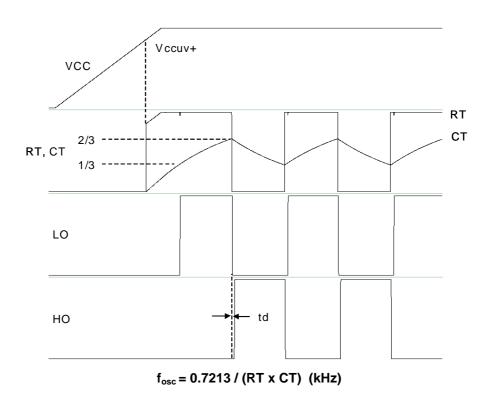
Electrical Specifications

VBIAS (VCC, VBS) = 12V, CL = 1000 pF, CT = 1 nF and TA = 25° C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Oscillator Frequency							
Oscillator frequency (CT=1008pF)	f _{OSC}	RT = 14.71k	47.2	48.2	49.2	kHz	
RT pin duty cycle	d	f _{OSC} <100kHz	48	50	52	%	
CT pin current	I _{CT}			0.001	1.0	uA	
UV-mode CT pin pull-down current	I _{CTUV}	$V_{CC} = 7V$	0.25	0.30	0.5	mA	
Upper CT ramp voltage threshold	V_{CT+}			8.0		V	
Lower CT ramp voltage threshold	V _{CT} -			4.0		V	
CT voltage shutdown threshold	V_{CTSD}		3.8	4.1	4.2	V	
High-level RT output voltage, VCC -	M	I _{RT} = 100uA		10	50	mV	
VRT	V_{RT+}	I _{RT} = 1mA		100	300	mV	
Level ovel DT evitovit veltere	M	I _{RT} = 100uA		10	50	mV	
Low-level RT output voltage	V_{RT-}	I _{RT} = 1mA		100	300	mV	
UV-mode RT output voltage	V_{RTUV}	$V_{CC} \le V_{CCUV}$		0	100	mV	
SD-Mode RT output voltage, VCC -	V	1 4004		40	F0	\/	
VRT	V_{RTSD}	I _{RT} = 100uA		10	50	mV	
Fate Driver Output							
Output rise time (CL=1nF)	t _r	$V_{CC} \le V_{CCUV}$		80	150	nS	
Output fall time (CL=1nF)	t _f			30	100	nS	
Shutdown propogation delay	t _{SD}			660	-	nS	
Output deadtime (HO or LO)	t_{D}			1.1	-	μs	

Pin Description

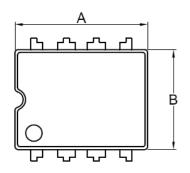

Pin	Function	Description
1	vcc	Low side and logic fixed supply
2	RT	Oscillator timing resistor input, in phase with HO for normal IC operation
3	СТ	Oscillator timing capacitor input, the oscillator frequency according to the following equation: f = 0.7213 / (RT x CT)
4	COMP	Low side return
5	LO	Low side gate drive output
6	VS	High side floating supply offset
7	НО	High side gate drive output
8	VB	High side floating supply

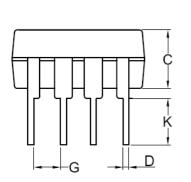


Block Diagram

Self-Oscillating Half-Bridge Driver

Input & Output Timing Diagram

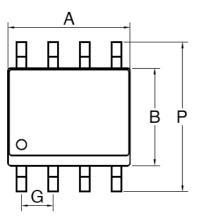


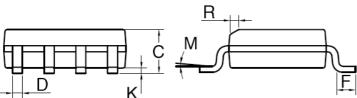

TS19706

Self-Oscillating Half-Bridge Driver

DIP-8 Mechanical Drawing

DIP-8 DIMENSION					
DIM	MILLIM	ETERS	INCHES		
וווט	MIN	MAX	MIN	MAX	
Α	9.07	9.32	0.357	0.367	
В	6.22	6.48	0.245	0.255	
С	3.18	4.45	0.125	0.135	
D	0.35	0.55	0.019	0.020	
G	2.54	2.54 (typ)		(typ)	
J	0.29	0.31	0.011	0.012	
K	3.25	3.35	0.128	0.132	
L	7.75	8.00	0.305	0.315	
М	-	10°	-	10°	


5/7


TS19706

SOP-8 Mechanical Drawing

OOD O DIMENSION						
	SOP-8 DIMENSION					
DIM	MILLIM	ETERS	INCHES			
DIIVI	MIN	MAX	MIN	MAX.		
Α	4.80	5.00	0.189	0.196		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27BSC		0.05BSC			
K	0.10	0.25	0.004	0.009		
М	00	7º	00	7º		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

TS19706

Self-Oscillating Half-Bridge Driver

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

7/7