MOSFET – Power, N-Channel, SUPERFET[®] III, FAST

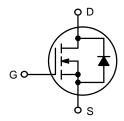
650 V, 250 mΩ, 13 A

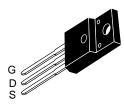
NTPF250N65S3H

Description

SUPERFET III MOSFET is onsemi's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provides superior switching performance, and withstand extreme dv/dt rate.

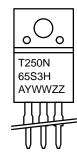
Consequently, SUPERFET III FAST MOSFET series helps minimize various power systems and improve system efficiency.


Features


- 700 V @ $T_J = 150$ °C
- Typ. $R_{DS(on)} = 201 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 24 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 229 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Computing / Display Power Supplies
- Telecom / Server Power Supplies
- Industrial Power Supplies
- Lighting / Charger / Adapter



TO-220 FULLPAK CASE 221D

MARKING DIAGRAM

T250N65S3H = Specific Device Code = Assembly Location YWW = Date Code (Year & Week)

= Assembly Lot ZZ

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise specified)

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain to Source Voltage		650	V
V_{GSS}	Gate to Source Voltage	DC	±30	V
		AC (f > 1 Hz)	±30	V
I _D	Drain Current	Continuous (T _C = 25°C)	13*	А
		Continuous (T _C = 100°C)	8*	1
I _{DM}	Drain Current	Pulsed (Note 1)	36*	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		108	mJ
I _{AS}	Avalanche Current (Note 2)		2.9	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		1.06	mJ
dv/dt	MOSFET dv/dt		120	V/ns
	Peak Diode Recovery dv/dt (Note 3)	20		
P_{D}	Power Dissipation	(T _C = 25°C)	29	W
		Derate Above 25°C	0.23	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 s		260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
*Drain current limited by maximum junction temperature.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	4.23	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Shipping
NTPF250N65S3H	T250N65S3H	TO-220 FULLPAK	1000 Units / Tube

^{1.} Repetitive rating: pulse-width limited by maximum junction temperature. 2. $I_{AS} = 2.9 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$. 3. $I_{SD} \le 6.5 \text{ A}$, di/dt $\le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}\text{C}$.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS		-			•
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_D = 1 \text{ mA, } T_J = 25^{\circ}\text{C}$	650			V
		$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 150^{\circ}\text{C}$	700			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, Referenced to 25°C		0.63		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 520 V, T _C = 125°C		0.7		
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
N CHARACTE	ERISTICS		•			
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 1.1 \text{ mA}$	2.4		4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$		201	250	mΩ
9FS	Forward Transconductance	$V_{DS} = 20 \text{ V}, I_{D} = 6.5 \text{ A}$		14		S
YNAMIC CHA	RACTERISTICS				•	•
C _{iss}	Input Capacitance	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}, f = 250 \text{ kHz}$		1261		pF
C _{oss}	Output Capacitance			19		pF
C _{oss(eff.)}	Effective Output Capacitance	$V_{DS} = 0 \text{ V to } 400 \text{ V}, V_{GS} = 0 \text{ V}$		229		pF
C _{oss(er.)}	Energy Related Output Capacitance	$V_{DS} = 0 \text{ V to } 400 \text{ V}, V_{GS} = 0 \text{ V}$		33		pF
Q _{g(tot)}	Total Gate Charge at 10 V			24		nC
Q _{gs}	Gate to Source Gate Charge	$V_{DS} = 400 \text{ V}, I_{D} = 6.5 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 4)		5.9		nC
Q _{gd}	Gate to Drain "Miller" Charge	(riste i)		6.8		nC
ESR	Equivalent Series Resistance	f = 1 MHz		0.9		Ω
WITCHING CH	IARACTERISTICS					
t _{d(on)}	Turn-On Delay Time			18		ns
t _r	Turn-On Rise Time	$V_{DD} = 400 \text{ V}, I_D = 6.5 \text{ A},$		8.2		ns
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = 400 \text{ V, } I_D = 6.5 \text{ A,} \ V_{GS} = 10 \text{ V, } R_g = 12 \Omega \ (\text{Note 4})$		54		ns
t _f	Turn-Off Fall Time			4.2		ns
OURCE-DRAI	N DIODE CHARACTERISTICS		•			
I _S	Maximum Continuous Source to Drain Diode Forward Current				13	Α
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current				36	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 6.5 A			1.2	V
t _{rr}	Reverse Recovery Time	V _{DD} = 400 V, I _{SD} = 6.5 A,		233		ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$		2.5		μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

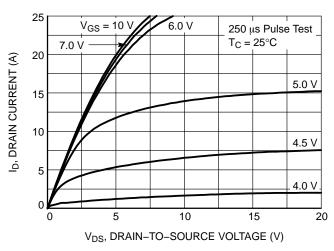


Figure 1. On-Region Characteristics

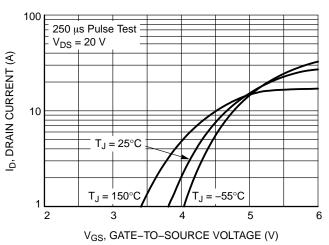


Figure 2. Transfer Characteristics

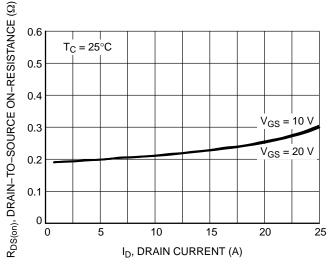


Figure 3. On Resistance Variation vs. Drain Current and Gate Voltage

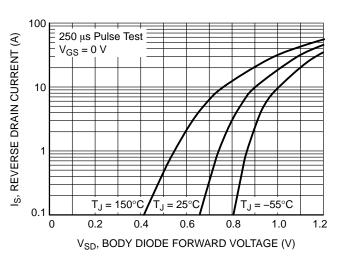


Figure 4. Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

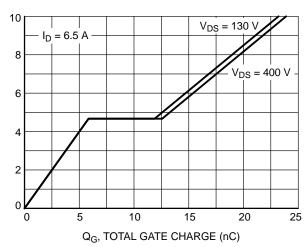


Figure 6. Gate Charge Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

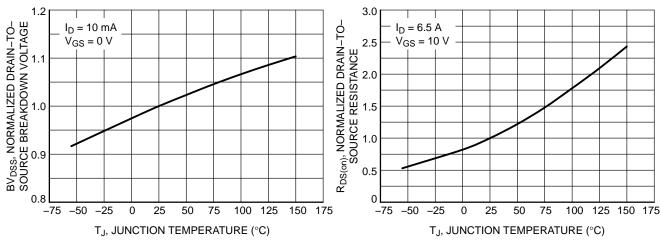


Figure 7. Breakdown Voltage Variation vs. Temperature

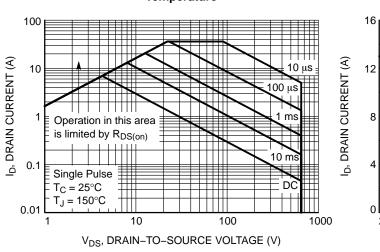


Figure 9. Maximum Safe Operating Area

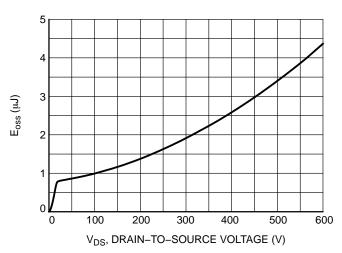
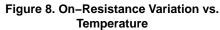



Figure 11. E_{oss} vs. Drain-to-Source Voltage



Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL CHARACTERISTICS

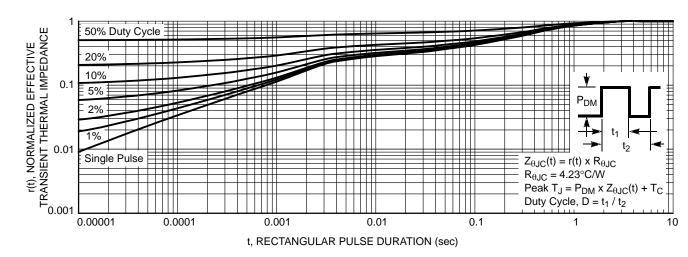


Figure 12. Transient Thermal Response Curve

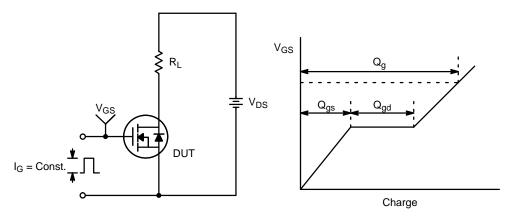


Figure 13. Gate Charge Test Circuit & Waveform

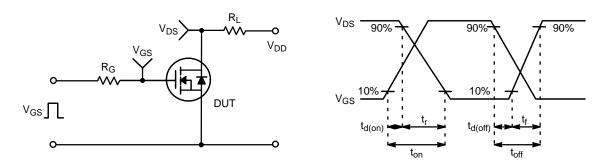


Figure 14. Resistive Switching Test Circuit & Waveforms

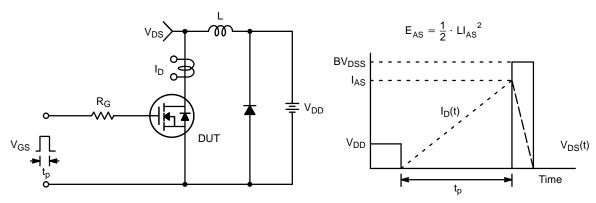


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

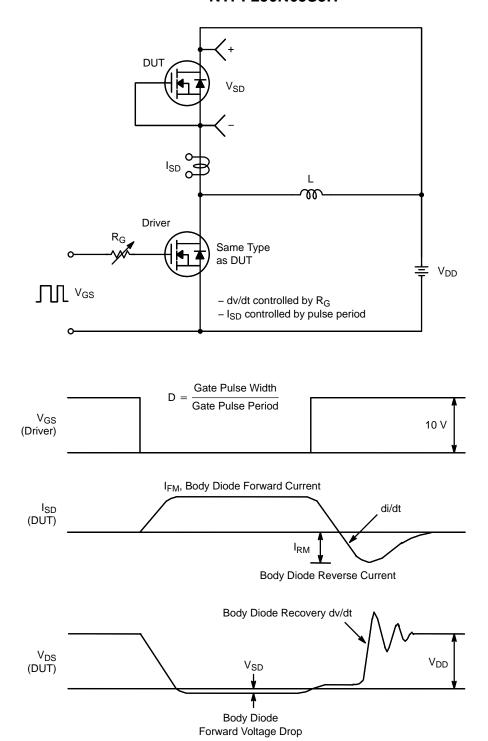


Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

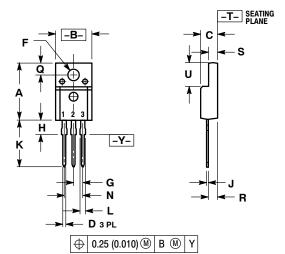
SCALE 1:1

TO-220 FULLPAK CASE 221D-03 ISSUE K

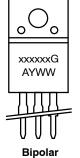
DATE 27 FEB 2009

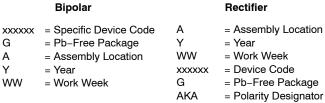
0

AYWW


xxxxxxG

AKA


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH
- 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.


	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.617	0.635	15.67	16.12	
В	0.392	0.419	9.96	10.63	
С	0.177	0.193	4.50	4.90	
D	0.024	0.039	0.60	1.00	
F	0.116	0.129	2.95	3.28	
G	0.100 BSC		2.54	BSC	
Н	0.118	0.135	3.00	3.43	
J	0.018	0.025	0.45	0.63	
K	0.503	0.541	12.78	13.73	
L	0.048	0.058	1.23	1.47	
N	0.200 BSC		5.08	BSC	
Q	0.122	0.138	3.10	3.50	
R	0.099	0.117	2.51	2.96	
S	0.092	0.113	2.34	2.87	
U	0.239	0.271	6.06	6.88	

MARKING DIAGRAMS

STYLE 1: PIN 1. GATE STYLE 2: PIN 1. BASE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER CATHODE
 ANODE 2. DRAIN 2. 3. SOURCE STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE STYLE 4: PIN 1. CATHODE STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE ANODE 3. CATHODE

DOCUMENT NUMBER:	98ASB42514B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220 FULLPAK		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

