IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop (FS) Trench construction, and provides superior performance in demanding switching applications. Offering both low on-state voltage and minimal switching loss, the IGBT is well suited for resonant or soft switching applications. Incorporated into the device is a rugged co-packaged free wheeling diode with a low forward voltage.

Features

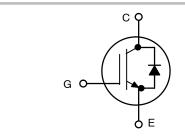
- Low Saturation Voltage using Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Low Gate Charge
- 5 µs Short-Circuit Capability
- These are Pb-Free Devices

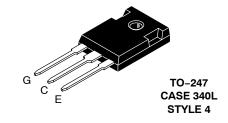
Typical Applications

- Inverter Welding Machines
- Microwave Ovens
- Industrial Switching
- Motor Control Inverter

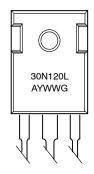
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V_{CES}	1200	V
Collector current @ Tc = 25°C @ Tc = 100°C	I _C	60 30	A
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	240	Α
Diode forward current @ Tc = 25°C @ Tc = 100°C	l _F	60 30	A
Diode pulsed current, T _{pulse} limited by T _{Jmax}	I _{FM}	240	Α
Gate-emitter voltage	V_{GE}	±20	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	560 224	W
Short–Circuit Withstand Time $V_{GE} = 15 \text{ V}, V_{CE} = 600 \text{ V}, T_J \le 150^{\circ}\text{C}$	T _{sc}	5	μs
Operating junction temperature range	TJ	-55 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®


http://onsemi.com

30 A, 1200 V V_{CEsat} = 1.75 V E_{off} = 1.0 mJ

MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB30N120LWG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.223	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	1.5	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC		•				
Collector-emitter breakdown voltage, gate-emitter short-circuited	$V_{GE} = 0 \text{ V, } I_{C} = 500 \mu\text{A}$	V _{(BR)CES}	1200	_	-	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A V _{GE} = 15 V, I _C = 30 A, T _J = 150°C	V _{CEsat}	1.35 -	1.75 2.1	2.2	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 400 \mu A$	$V_{GE(th)}$	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	V _{GE} = 0 V, V _{CE} = 1200 V V _{GE} = 0 V, V _{CE} = 1200 V, T _{J =} 150°C	I _{CES}	- -	- -	0.5 2.0	mA
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	100	nA
DYNAMIC CHARACTERISTIC	•					
Input capacitance		C _{ies}	-	10,400	-	pF
Output capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	C _{oes}	-	245	-	1
Reverse transfer capacitance		C _{res}	-	185	-	
Gate charge total		Q_g	_	420	-	nC
Gate to emitter charge	V _{CE} = 600 V, I _C = 30 A, V _{GE} = 15 V	Q _{ge}	_	94	-	
Gate to collector charge		Q _{gc}	_	178	-	
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD					
Turn-on delay time		t _{d(on)}	-	136	-	
Rise time		t _r	-	36	_	
Turn-off delay time	$T_J = 25^{\circ}C$ $V_{CC} = 600 \text{ V, } I_C = 30 \text{ A}$	t _{d(off)}	-	360	_	ns
Fall time	$R_g = 10 \Omega$ $V_{GE} = 0 \text{ V/ } 15 \text{ V}$	t _f	-	150	_	
Turn-on switching loss	GE = 0 V/ 13 V	E _{on}	-	4.4	=	I
Turn-off switching loss		E _{off}	-	1.0	_	mJ
Turn-on delay time		t _{d(on)}	-	131	_	
Rise time	T 40500	t _r	-	36	_	
Turn-off delay time	$T_J = 125^{\circ}C$ $V_{CC} = 600 \text{ V, } I_C = 30 \text{ A}$	t _{d(off)}	_	380	_	ns
Fall time	$R_g = 10 \Omega$ $V_{GE} = 0 \text{ V} / 15 \text{ V}$	t _f	-	216	_	
Turn-on switching loss	VGE - 0 V/ 13 V	E _{on}	-	5.3	_	I
Turn-off switching loss		E _{off}	ı	2.0		mJ
DIODE CHARACTERISTIC						
Forward voltage	V _{GE} = 0 V, I _F = 30 A V _{GE} = 0 V, I _F = 30 A, T _J = 150°C	V _F	<u> </u>	1.5 1.7	1.7 -	V

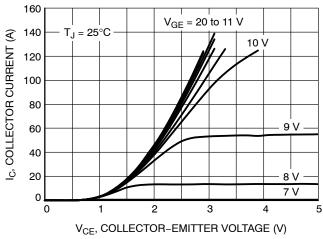


Figure 1. Output Characteristics

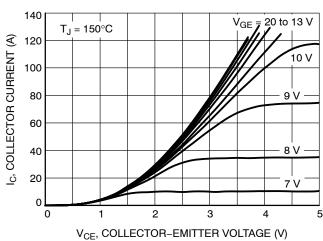


Figure 2. Output Characteristics

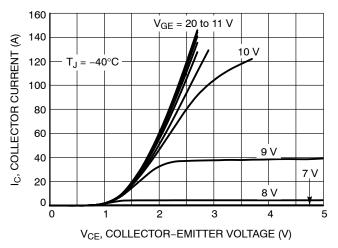


Figure 3. Output Characteristics

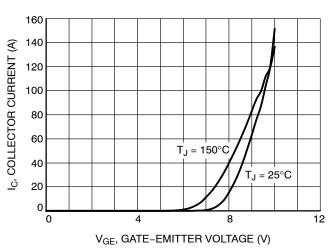


Figure 4. Typical Transfer Characteristics

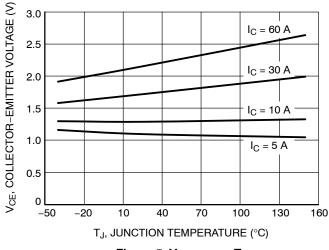
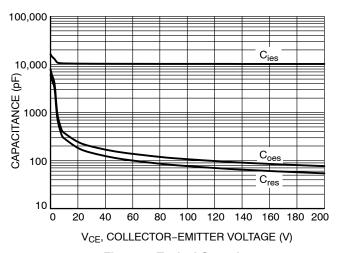
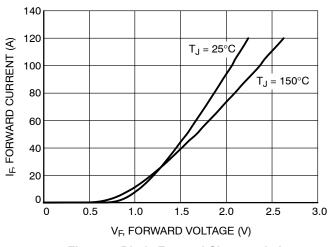
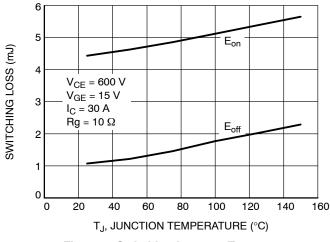


Figure 5. V_{CE(sat)} vs. T_J


Figure 6. Typical Capacitance

20 V_{GE}, GATE-EMITTER VOLTAGE (V) V_{CE} = 600 V 15 10 5 0 60 120 180 240 300 360 420 480 Q_G, GATE CHARGE (nC)

Figure 7. Diode Forward Characteristics

Figure 8. Typical Gate Charge

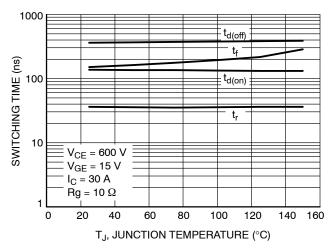
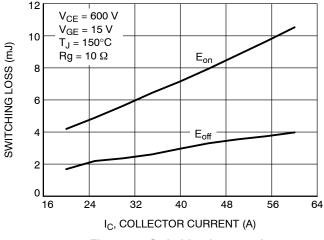



Figure 9. Switching Loss vs. Temperature

Figure 10. Switching Time vs. Temperature

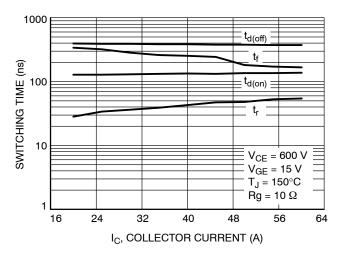
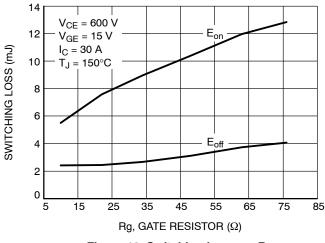
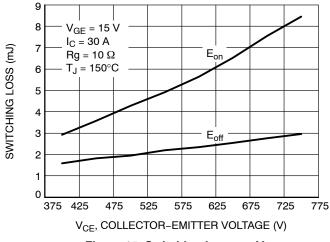



Figure 11. Switching Loss vs. I_C


Figure 12. Switching Time vs. I_C

10,000 SWITCHING TIME (ns) 100 10 $t_{d(off)}$ t_f $t_{d(on)}$ t_r V_{CE} = 600 V V_{GE} = 15 V I_C = 30 A T_J = 150°C 5 15 25 35 45 65 Rg, GATE RESISTOR (Ω)

Figure 13. Switching Loss vs. Rg

Figure 14. Switching Time vs. Rg

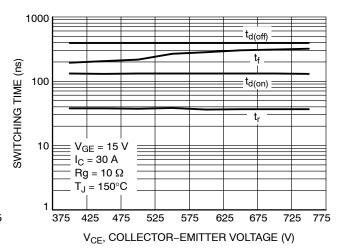


Figure 16. Switching Time vs. V_{CE}

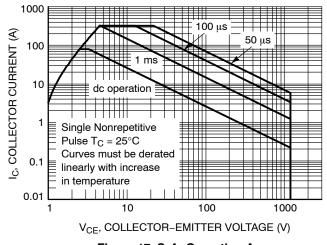


Figure 17. Safe Operating Area

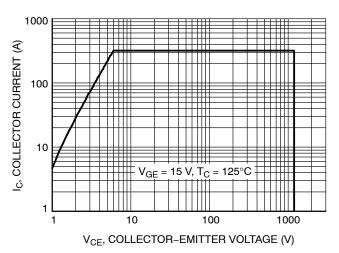


Figure 18. Reverse Bias Safe Operating Area

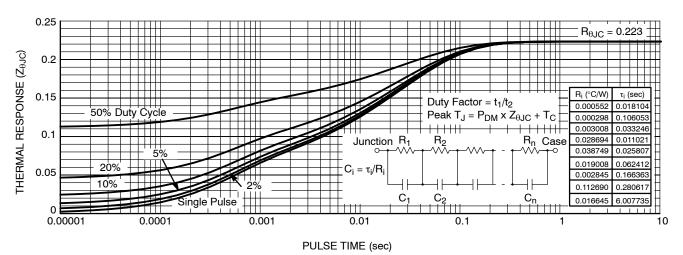


Figure 19. IGBT Transient Thermal Impedance

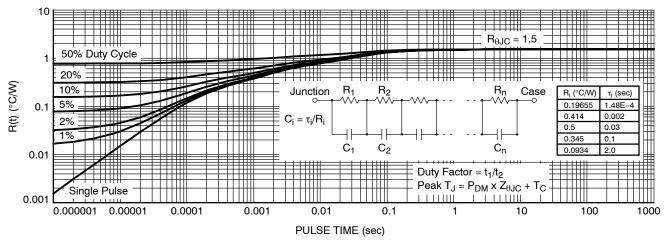


Figure 20. Diode Transient Thermal Impedance

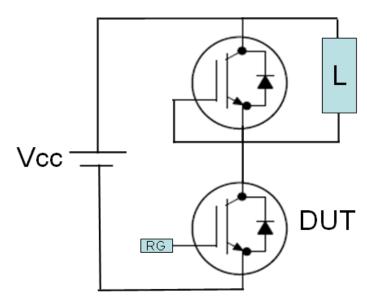


Figure 21. Test Circuit for Switching Characteristics

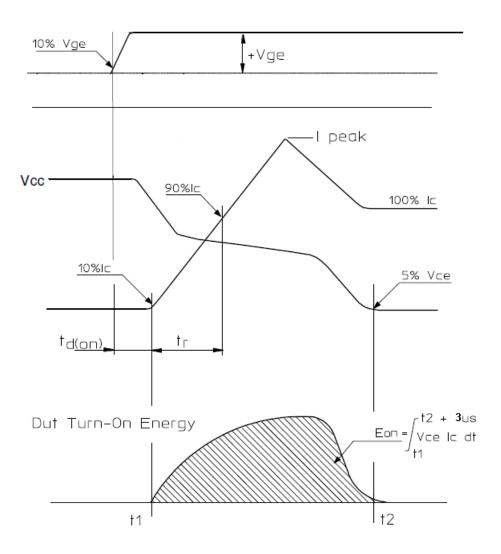


Figure 22. Definition of Turn On Waveform

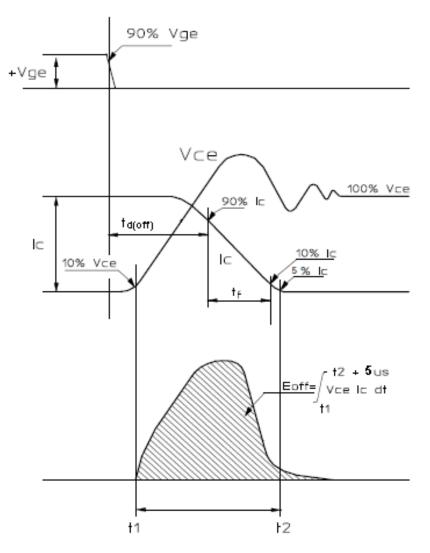
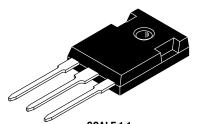
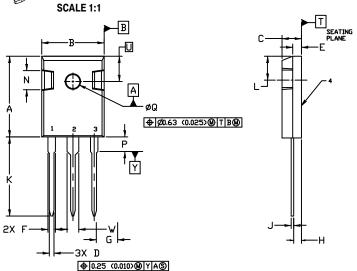
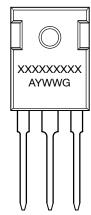



Figure 23. Definition of Turn Off Waveform


TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	INCHES	
DIM	MIN.	MAX.	MIN.	MAX.	
Α	20.32	21.08	0.800	0.830	
В	15.75	16.26	0.620	0.640	
С	4.70	5.30	0.185	0.209	
D	1.00	1.40	0.040	0.055	
Ε	1.90	2.60	0.075	0.102	
F	1.65	2.13	0.065	0.084	
G	5.45 BSC		0.215 BSC		
Н	1.50	2.49	0.059	0.098	
J	0.40	0.80	0.016	0.031	
К	19.81	20.83	0.780	0.820	
L	5.40	6.20	0.212	0.244	
N	4.32	5.49	0.170	0.216	
Р		4.50		0.177	
Q	3.55	3.65	0.140	0.144	
U	6.15 BSC		0.242	0.242 BSC	
W	2.87	3.12	0.113	0.123	

GENERIC MARKING DIAGRAM*

STYLE 1: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 2: PIN 1. ANODE 2. CATHODE (S) 3. ANODE 2 4. CATHODES (S) STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 4:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

XXXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

 STYLE 5:
 STYLE 6:

 PIN 1. CATHODE
 PIN 1. MAIN TERMINAL 1

 2. ANODE
 2. MAIN TERMINAL 2

 3. GATE
 3. GATE

 4. ANODE
 4. MAIN TERMINAL 2

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DESCRIPTION:	TO-247	Timed versions are discontinued except when samped CONTINUED	PAGE 1 OF 1
DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

