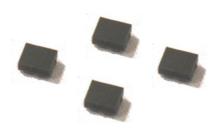


Datasheet of SAW Device


SAW Duplexer

for Band28A / Unbalanced / LR /1814

Murata PN: SAYEY718MBC0F0A

Feature

- > for 5GNR
- > High Isolation
- For Envelope Tracking

Note: This Murata SAW Component is Consumer grade product and applicable for Cellular phone or similar end devices.

Please also read Important Notice at the end of this document.

Revision J

General Information

- Operating temperature : -20 to +85 deg.C Storage temperature : -40 to +85 deg.C

: +30.0dBm 5000h +50deg.C (1) - Input Power

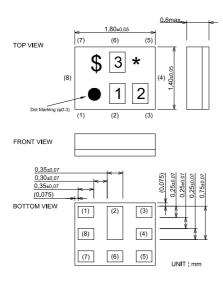
+28.5dBm 5000h +50deg.C (2)

(1) applicable for W-CDMA, SC-FDMA, DFT-s-OFDM

(2) applicable for CP-OFDM

- D.C. Volatage between the terminals : 3V (25+/-2 deg.C)

- Minimum Resistance between the terminals : 10M ohm - RoHS compliance : Yes


- ESD (ElectroStatic Discharge) sensitive device

The input power shall be applied to Tx-port within own Tx passband frequency range.

Package Dimensions & Recommended Land Pattern unit: mm

Dimensions

Marking: Laser Printing

*: Month code

\$: Date code

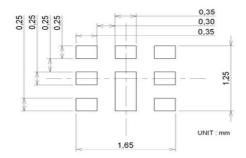
1:7

2 : D

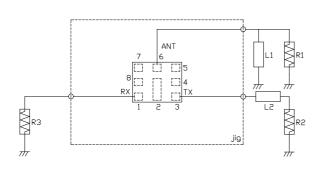
3 : A

Terminal Number

(6): Ant


(3):TX

(1): RX


Others: GND

Notice) Please refer to Measurement Circuit for Port information in detail.

Land Pattern

Measurement Circuit (Top Thru View)

R1:50 ohm	L1 :8nH (Ideal inductor)
	:8.2nH (LQP03TN8N2)
	<reference></reference>
R2 : 50 ohm	L2 :11.4nH (Ideal inductor)
R3 : 50 ohm	

Electrical Characteristic < TX → ANT. >

					Cho	ractori	otioo		1
TX → ANT.					Characteristics (-20 to +85 deg.C)			Unit	Noto
I X → AIN I.			min.	typ.*	max.	Utill	Note		
Center Frequency	1				1111111.	718	IIIax.	MHz	1
Insertion Loss	703.25	to	732.75	MHz		2.2	2.8	dB	
		to	730.5	MHz		1.9	2.3	dB _{INT}	Any 4.5MHz
Ripple Deviation		to	733.	MHz		0.7	1.7	dB	Any 5MHz
VSWR	703.	to	733.	MHz		1.8	2.0		TX
		to	733.	MHz		1.5	2.0		ANT.
Absolute Attenuation		to	670.	MHz	30	34		dB	
		to	694.	MHz	30	36		dB	DTV rejection
		to	695. 698.	MHz	25 5.0	36 11.0		dB dB	DTV rejection
		to	698.	MHz MHz	8.0	11.0		dВ	DTV rejection +23 to +27deg.C, DTV
		to to	698.	MHz	7.0	11.0		dB	-15 to +70deg.C
		to	788.	MHz	43	48		dB	RX
		to	803.	MHz	20	25		dB	
		to	894.	MHz	30	36		dB	
		to	1250.	MHz	35	39		dB	GPS L2
	1406.	to	1466.	MHz	33	37		dB	2f
	1559.	to	1563.	MHz	33	37		dB	Compass
	1565.42	to	1573.37	MHz	33	37		dB	Wideband GPS lower side
	1573.37		1577.47	MHz	33	37		dB	Regular GPS
	1577.47	to	1585.42	MHz	33	37		dB	Wideband GPS upper side
	1597.55		1605.89	MHz	33	38		dB	GLONASS
		to	1880. 1995.	MHz	30 30	39 40		dB dB	DCS B2 / B25
		to	2025.	MHz MHz	30	41		dВ	B34
		to to	2199.	MHz	28	35		dB	3f
		to	2484.	MHz	23	30		dB	ISM 2.4
		to	2620.	MHz	19	26		dB	B38
		to	2932.	MHz	15	19		dB	4f
		to	5950.	MHz	20	32		dB	ISM 5G
						-			
						 			

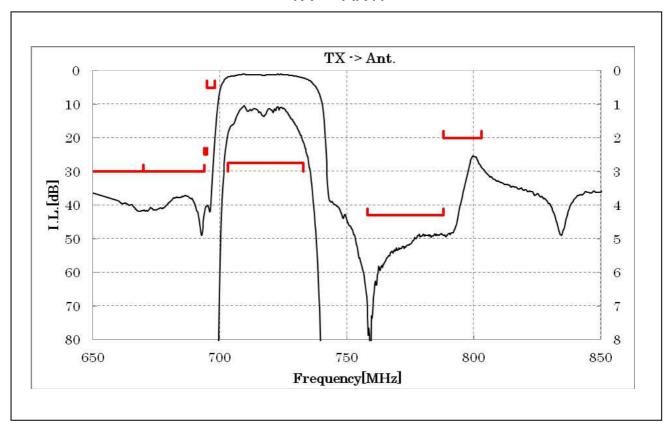
^{*} Typical value at 25±2deg.C

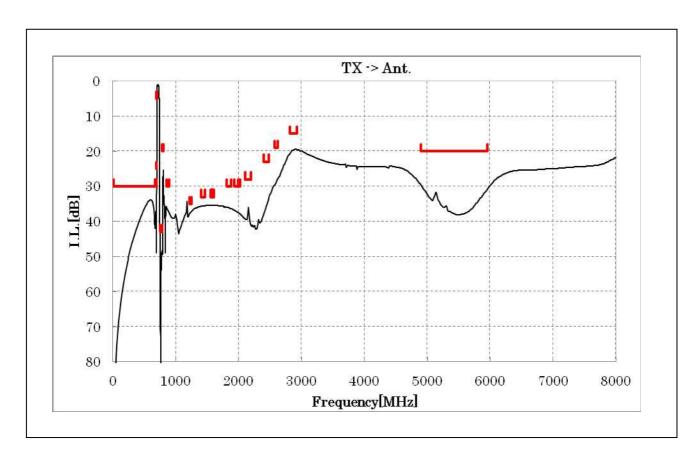
Electrical Characteristic < ANT. → RX >

min. typ.* max. Center Frequency 773 MHz	ANT DY			Characteristics (-20 to +85 deg C)			1.1-54	Nete		
Center Frequency	ANI. → KA								Unit	Note
This ertion Loss	Center Frequency					1111111.		I III ax.	MHz	1
Ripple Deviation 758. to 788. MHz 0.5 1.6 dB Any 5MHz	Insertion Loss		to		MHz		2.2		dB	
VSWR 758. to 788. MHz 1.8 2.1 RX 758. to 788. MHz 1.7 2.0 ANT. Absolute Attenuation 10. to 699. MHz 40 57 dB DTV Rejection 45. to 65. MHz 50 78 dB RX-TX 703. to 733. MHz 50 58 dB TX 733. to 748. MHz 21 38 dB Block-B TX 814. to 6000. MHz 33 38 dB OoB Rejection 2400. to 2483. MHz 30 52 dB ISM2.4 6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f										
758. to 788. MHz 1.7 2.0 ANT. Absolute Attenuation 10. to 699. MHz 40 57 dB DTV Rejection 45. to 65. MHz 50 78 dB RX-TX 703. to 733. MHz 50 58 dB TX 733. to 748. MHz 21 38 dB Block-B TX 814. to 6000. MHz 33 38 dB OoB Rejection 2400. to 2483. MHz 30 52 dB ISM2.4 6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f	Ripple Deviation				MHz				dB	
Absolute Attenuation 10. to 699. MHz 40 57 dB DTV Rejection 45. to 65. MHz 50 78 dB RX- TX 703. to 733. MHz 50 58 dB TX 733. to 748. MHz 21 38 dB Block-B TX 814. to 6000. MHz 33 38 dB OoB Rejection 2400. to 2483. MHz 30 52 dB ISM2.4 6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f	VSWK									
45. to 65. MHz 50 78 dB RX-TX 703. to 733. MHz 50 58 dB TX 733. to 748. MHz 21 38 dB Block-B TX 814. to 6000. MHz 33 38 dB OoB Rejection 2400. to 2483. MHz 30 52 dB ISM2.4 6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f	Absolute Attenuation					40		2.0	dB	
733. to 748. MHz 21 38 dB Block-B TX 814. to 6000. MHz 33 38 dB OoB Rejection 2400. to 2483. MHz 30 52 dB ISM2.4 6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f		45.		65.	MHz					RX- TX
814. to 6000. MHz 33 38 dB OoB Rejection 2400. to 2483. MHz 30 52 dB ISM2.4 6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f										
2400. to 2483. MHz 30 52 dB ISM2.4 6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f										
6822. to 7092. MHz 30 42 dB 9f 7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f										ISM2 4
7580. to 7880. MHz 25 33 dB 10f 8338. to 8668. MHz 13 21 dB 11f 9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f										
9096. to 9456. MHz 5.0 12.0 dB 12f 9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f							33			10f
9854. to 10244. MHz 5.0 11.0 dB 13f 10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f			to							
10612. to 11032. MHz 12 23 dB 14f 11370. to 11820. MHz 7.0 21.0 dB 15f										
11370. to 11820. MHz 7.0 21.0 dB 15f										
			to	12750.						

^{*} Typical value at 25±2deg.C

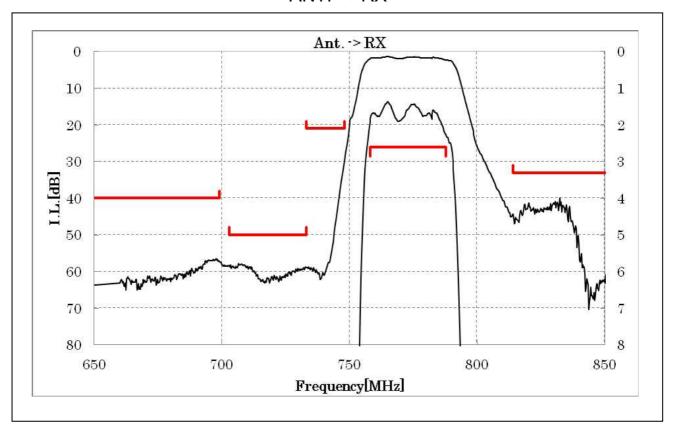
Electrical Characteristic < TX → RX >

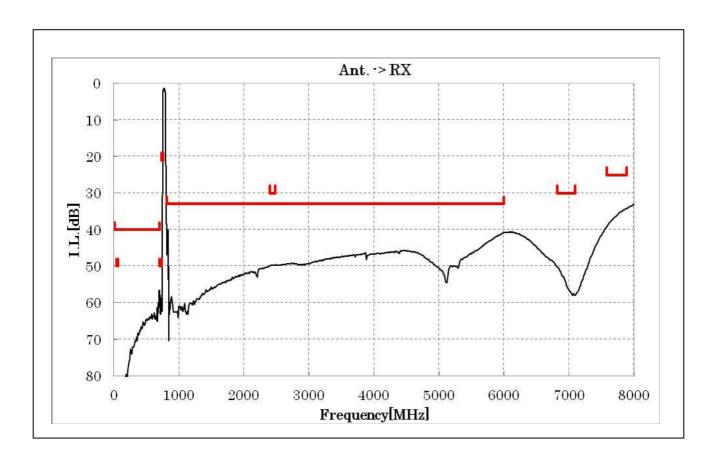

Liectifical Criai	aotorioti	·		<u> </u>			1	
				Cha	racteri	stics		
$TX \rightarrow RX$					(-20 to +85 deg.C)			Note
					typ.*	max.	Unit	
laciation				1111111.	ι, γ.	max.		<u> </u>
Isolation	703.25 to	732.75	NALI-	58	61		dB	TV
	703.25 (0		IVITIZ					TX
	705.5 to	730.5	MHz	60	62		dB _{INT}	Any 4.5MHz, TX
	758.25 to	787.75	MHz	55	59		dB	RX
	760.5 to	785.5	MHz	55	60		dB _{INT}	Any 4.5MHz, RX
	1406. to	1466.	MHz	40	63		dB	2f TX
	2109. to	2199.	MHz	40	63		dB	3f TX
	2812. to	2932.	MHz	40	59		dB	4f TX
				<u> </u>	<u> </u>			
						<u> </u>		
								* Typical value at 25+2deg C


^{*} Typical value at 25±2deg.C

Electrical Characteristic

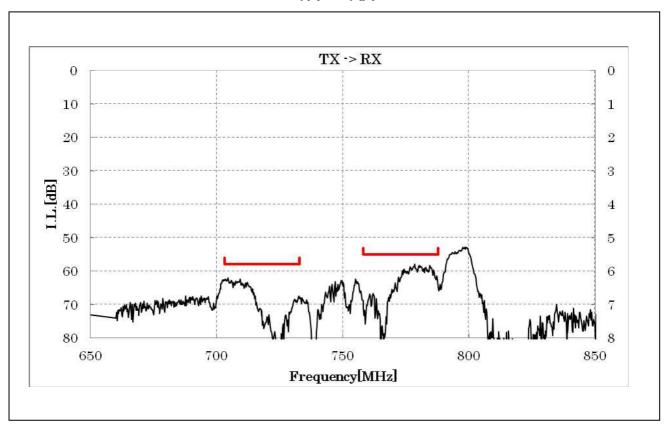
 $< TX \rightarrow ANT. >$

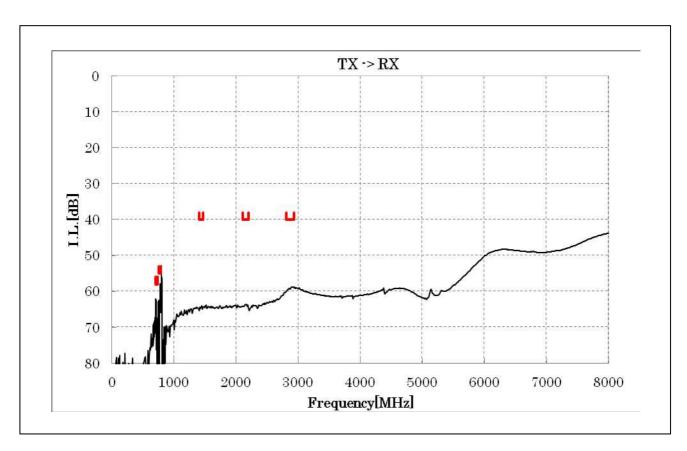




Electrical Characteristic

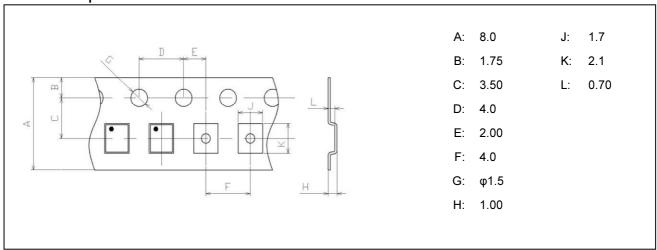
 $< ANT. \rightarrow RX >$

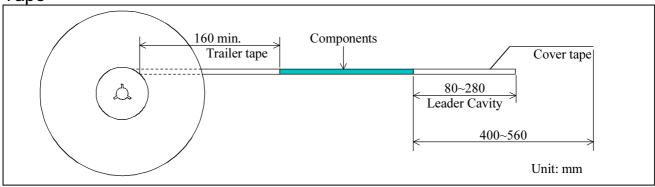




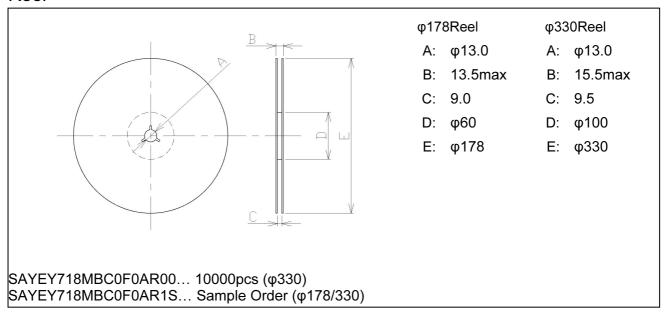
Electrical Characteristic

 $< TX \rightarrow RX >$





Dimensions of Tape & Reel unit: mm


Carrier Tape

Tape

Reel

Important Notice (1/2)

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product specified in the front page of this product specifications (the "Product" or "Products") when our Product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our Product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our Product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the Product is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such Products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The Product shall not be used for any application which requires especially high reliability or accuracy in order to prevent defect which incurs high possibility of damage to the third party's life, body or property such as the applications listed below as item (a) to (j) (the "Prohibited Application"). You acknowledge and agree that, if you use our Products in the Prohibited Applications, we will not be responsible for any damage caused by such use.

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN THE PROHIBITED APPLICATIONS.

- (a) Aircraft equipment.
- (b) Aerospace equipment
- (c) Undersea equipment.
- (d) Power plant control equipment -
- (e) Medical equipment.
- (f) Transportation equipment (vehicles, automotive, trains, ships, etc.).
- (g)Traffic signal equipment.
- (h)Disaster prevention / crime prevention equipment.
- (i) Burning / explosion control equipment
- (j) Application of similar complexity and/ or reliability requirements to the applications listed in the above.

For the avoidance of doubt, the Product is not automotive grade, and will not support such requests for automotive as below, also not support other specific requests for automotive.

- AEC-Q200
- PPAP
- IATF16949, VDA6.3
- Zero Defect program
- Long product life cycle
- Automotive 8D failure analysis and report

Important Notice (2/2)

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the Product in molding condition.

This product is ESD (ElectroStatic Discharge) sensitive device.

When you install or measure this, you should be careful not to add antistatic electricity or high voltage. Please be advised that you had better check anti serge voltage.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our Products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our Products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use.

Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The Product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

- •the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the Product to be sold by you,
 - ·deviation or lapse in function of engineering sample,
 - ·improper use of engineering samples.

We disclaim any liability for consequential and incidental damages.

If you can't agree the above contents, you should inquire our sales.