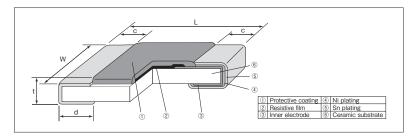

THICK FILM (ANTI SURGE)

SG73P Endured Pulse Power Flat Chip Resistors

Coating color: Black (1E,1EW) Green (1J,2A,2B,2E,2E1)

Features

- Superior to RK73 series chip resistors in pulse withstanding voltage and high power.
- ullet Resistance tolerance is available from $\pm 0.5\%$.
- Suitable for both reflow and flow solderings.
- Products with lead free termination meet EU-RoHS requirements.
 EU-RoHS regulation is not intended for Pb-glass contained in electrode, resistor element and glass.
- AEC-Q200 Tested.

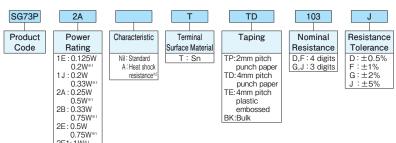

Applications

- E.C.U.
- · Circuits to catch inductive lighting surge.

■Reference Standards

IEC 60115-8 JIS C 5201-8 EIAJ RC-2134C

■Construction



■Dimensions

Type		Weight(g)					
(Inch Size Code)	L	W	С	d	t	(1000pcs)	
1E(0402)	1.0+0.1	0.5±0.05	0.15±0.1	0.25+0.05	0.35±0.05	0.68	
1EW (0402)	1.U-0.05	0.5 ± 0.05	0.15±0.1	U.25 _{-0.1}	0.35±0.05	0.00	
1J (0603)	1.6±0.2	0.8±0.1	0.3±0.1	0.3±0.1	0.45±0.1	2.14	
1J AT (0603)	1.6±0.2		0.35±0.15	0.5±0.2	0.45±0.1	2.14	
2A (0805)	2.0±0.2	1.25±0.1	0.3+0.2	0.3+0.2	0.5±0.1	4.54	
2A AT (0805)	2.0±0.2		0.45±0.25	0.6±0.2	0.55±0.1	4.54	
2B (1206)		1.6±0.2	0.4+0.2	$0.4^{+0.2}_{-0.1}$		9.14	
2B AT (1206)	3.2±0.2		0.55±0.35	0.8±0.2	0.6±0.1	9.14	
2E(1210)	3.2±0.2	2.6±0.2	0.4 ^{+0.2} _{-0.1}	$0.4^{+0.2}_{-0.1}$	0.6±0.1	155	
2E1 (1210)		2.0 <u>F</u> U.2				15.5	

■Type Designation

Example

 $\ensuremath{\%2}$ 1J, 2A, and 2B are available for Heat shock resistance

 $Contact \ us \ when \ you \ have \ control \ request \ for \ environmental \ hazardous \ material \ other \ than \ the \ substance \ specified \ by \ EU-RoHS.$

For further information on taping, please refer to APPENDIX C on the back pages

Ratings

		Rated	Rated		Resistance Range (Ω)		Max.	Max.				
Туре	Power Rating	Ambient Temp.	Terminal Part Temp.	T.C.R. (×10 ⁻⁶ /K)	D:±0.5% E24·E96	F:±1% E24 · E96	G: ±2% J: ±5% E24	Working Voltage	Overload Voltage	Packaging & Q'ty/Reel (pcs) TP TD TE		
	0.125W	70°C	125℃					751	40014			
1E	0.2W*1	70°C	105℃	±200	10~1M	1~1M	1~10M	75V	100V	10,000	_	_
	1EW 0.25W ^{±1}	70°C	125℃	±100	10~1M	10~1M	10~1M	75V	100V	10,000	_	_
1EW				±200	_	1~9.76	1~9.1 1.1M~10M					
				±100	510~576k	510~576k	510~560k	150V	200V	10,000*5	5,000	_
1J	0.2W	70°C	135℃	±100*3	10~499 590k~1M	1~499 590k~1M	1~470 620k~10M					
13	0.33W ^{±1}	70°C	125℃	±100	510~576k	510~576k	510~560k					
				±100*3	10~499 590k~1M	1~499 590k~1M	1~470 620k~10M					
				±100	100~100k	100~100k	100~100k		600V (800V)*4	10,000*5	5,000	4,000 ^{æ5}
2A	0.25W	70°C	125℃	±200	10~97.6 102k~1M	1~97.6 102k~1M	1~91 110k~10M	400V				
ZA				±100	100~100k	100~100k	100~100k	4000				
	0.5W ^{®1}	70°C	100°C	±200	10~97.6 102k~1M	1~97.6 102k~1M	1~91 110k~10M					
				±100	300~1M	300~1M	300~1.1M					
0.33W	70°C	125℃	±200	10~294	1~294	1~270 1.2M~10M	200V	400V		5,000	4,000=5	
			±100	300~1M	300~1M	300~1.1M						
	0.75W ^{±1}	70℃	105℃	±200	10~294	1~294	1~270 1.2M~10M					
2E	0.5W	70°C	125℃		10~1M	1~1M	1~10M	200V	400V	_	5,000	4,000=5
	0.75W ^{⊕1}	70°C	1100		-							
2E1	1.0W*1	70°C	95℃	±200	10~1M	1~1M	1~10M	200V	400V	_	5,000	4,000 ≈5

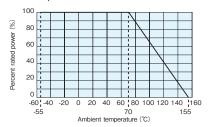
Operating Temperature Range: −55°C∼+155°C

Rated voltage= $\sqrt{\text{Power Rating} \times \text{Resistance value}}$ or Max. working voltage, whichever is lower.

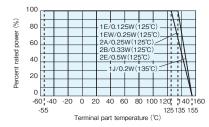
 $3 \text{ Cold T.C.R.}(-55^{\circ}\text{C} \sim +25^{\circ}\text{C}) \text{ is } \pm 150 \times 10^{-6}\text{/K.}$

%4 Applies when power rating is 0.4W or lower.

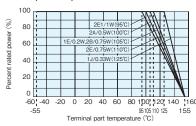
*5 Standard packaging: TD(4mm pitch punch paper)


If any questions arise whether to use the "Rated Ambient Temperature" or the "Rated Terminal Part Temperature" in your usage conditions, please give priority to the "Rated Terminal Part Temperature". For more details, please refer to "Introduction of the derating curves based on the terminal part temperature" on the beginning of our catalog.

^{*1} If you use at the rated power, please keep the condition that the terminal of the resistor is below the rated terminal part temperature. Please refer to the derating curves based on the terminal temperature of right side on the next page.


■ Derating Curve

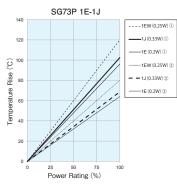
Ambient temperature

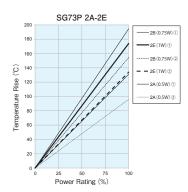


For resistors operated at an ambient temperature of $70^{\circ}\!\text{C}$ or higher, the power shall be derated in accordance with the above derating curve.

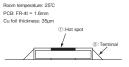
Terminal part temperature

Terminal part temperature

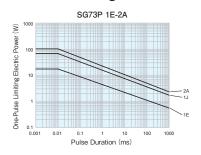


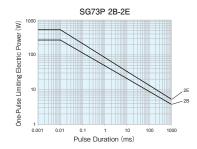

When the terminal part temperature of the resistor exceeds the rated terminal part temperature shown above, the power shall be derated according to the derating curve.

If you want to use at the rated power of *1 or *4, please use the derating curves based on the terminal part temperature of right side.


*Please refer to "Introduction of the derating curves based on the terminal part temperature" on the beginning of our catalog

■Temperature Rise





Regarding the temperature rise, the value of the temperature varies per conditions and board for use since the temperature is measured under our measuring conditions.

■One-Pulse Limiting Electric Power

The maximum applicable voltage is equal to the max, overload voltage. Please ask us about the resistance characteristic of continuous applied pulse. The pulse endurance values are not assured values, so be sure to check the products on actual equipment when you use them.

■Performance

-	Performance Requirements ΔR±((%+0.1Ω)				
Test Items	Limit	Typical	Test Methods			
Resistance	Within specified tolerance	_	25℃			
T.C.R.	Within specified T.C.R.	_	+25°C/-55°C and +25°C/+125°C			
Overload (Short time)	2	0.5	Rated voltage × 2.5 for 5s (1EW: 0.25W, 2A: 0.4W, 0.5W, 2B: 0.75W, 2E: 0.75W,			
Resistance to soldering heat	1	0.75	260°C±5°C, 10s±1s			
Rapid change of temperature	0.5 : Characteristic [Nil] (Standard) 1 : Characteristic [A] (Heat shock resistance)	0.3: Characteristic [Nil] (Standard) 0.5: Characteristic [A] (Heat shock resistance)	$\label{eq:characteristic} $$ \text{CNiI} (Standard) : $-55^{\circ} (30\text{min.})/+125^{\circ} (30\text{min.})$ 100 cycles $$ \text{Characteristic [A] (Heat shock resistance) : $-55^{\circ} (30\text{min.})/+125^{\circ} (30\text{min.})$ 1000 cycles $$ \text{CNII} (30\text{min.})/+125^{\circ} (30\text{min.})$ 1000 cycles $$ \text{CNII} (30\text{min.})/+125^{\circ} (30\text{min.})/+125^{\circ} (30\text{min.})$ 1000 cycles $$ \text{CNII} (30\text{min.})/+125^{\circ} (30min.$			
Moisture resistance	3	0.75	40°C±2°C, 90%∼95%RH, 1000h 1.5h ON/0.5h OFF cycle			
Endurance at 70°C or rated terminal part temperature	3	0.75	70°C±2°C or rated terminal part temperature ±2°C 1000h 1.5h ON/0.5h OFF cycle			
High temperature exposure	1	0.3	+155°C, 1000h			

■Precautions for Use

• The substrate of chip resistors is alumina. Cracks may occur at the connection of solder (solder fillet portion) due to the difference of the coefficient of thermal expansion from a mounting board when heat stress like heat cycle, etc. are repeatedly given to them. Care should be taken to the occurrence of the cracks when the change in ambient temperature or ON/OFF of load is repeated. The occurrence of the crack by heat stress may be influenced by the size of a pad, solder volume, heat radiation of mounting board etc., so please pay careful attention to designing when a big change in ambient temperature and conditions for use like ON/OFF of load can be assumed.