

5 V Triple PECL Input to LVPECL Output Translator

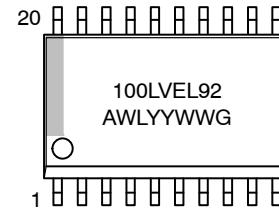
MC100LVEL92

Description

The MC100LVEL92 is a triple PECL input to LVPECL output translator. The device receives standard PECL signals and translates them to differential LVPECL output signals.

To accomplish the PECL to LVPECL level translation, the MC100LVEL92 requires three power rails. The V_{CC} supply is to be connected to the standard 5 V PECL supply, the LV_{CC} supply is to be connected to the 3.3 V LVPECL supply, and Ground is connected to the system ground plane. Both the V_{CC} and LV_{CC} should be bypassed to ground with 0.01 μ F capacitors.

The PECL V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

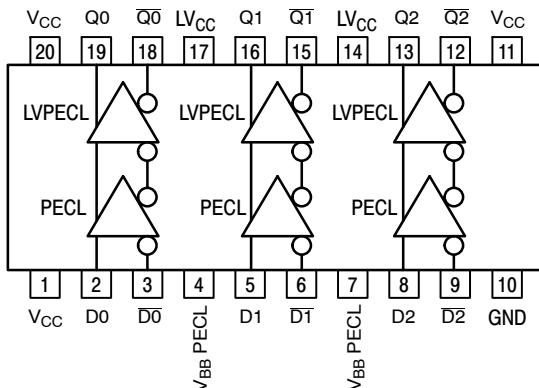

Features

- 500 ps Propagation Delays
- 5 V and 3.3 V Supplies Required
- ESD Protection: Human Body Model; > 2 kV, Machine Model; > 200 V
- The 100 Series Contains Temperature Compensation
- LVPECL Operating Range: LV_{CC} = 3.0 V to 3.8 V
- PECL Operating Range: V_{CC} = 4.5 V to 5.5 V
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or < GND + 1.3 V
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free)
For Additional Information, see Application Note [AND8003/D](#)
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index 28 to 34
- Transistor Count = 247 devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

SOIC-20 WB
DW SUFFIX
CASE 751D

MARKING DIAGRAM*

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G = Pb-Free Package


*For additional marking information, refer to Application Note [AND8002/D](#).

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100LVEL92DWG	SOIC-20 WB (Pb-Free)	38 Units/Tube
MC100LVEL92DWR2G	SOIC-20 WB (Pb-Free)	1000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, [BRD8011/D](#).

MC100LVEL92

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D _n , D _n ^{bar}	PECL Inputs
Q _n , Q _n ^{bar}	LVPECL Outputs
PECL V _{BB}	PECL Reference Voltage Output
LV _{CC}	LVPECL Power Supply
V _{CC}	PECL Power Supply
GND	Common Ground Rail

Warning: All V_{CC}, LV_{CC}, and GND pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout: SO-20 WB (Top View)

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Power Supply	GND = 0 V		8 to 0	V
LV _{CC}	LVPECL Power Supply	GND = 0 V		8 to 0	V
V _I	PECL Input Voltage	GND = 0 V	V _I ≤ V _{CC}	6 to 0	V
I _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	PECL V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ _{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB	90 60	°C/W
θ _{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	°C/W
T _{sol}	Wave Solder (Pb-Free)	< 2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MC100LVEL92

Table 3. PECL INPUT DC CHARACTERISTICS ($V_{CC} = 5.0$ V; $LV_{CC} = 3.3$ V; GND = 0 V Note 1))

Symbol	Characteristic	-40°C			25°C			85°C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$I_{V_{CC}}$	PECL Power Supply Current			12			12			12	mA
V_{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3190		3515	3190		3525	3190		3525	mV
$PECL\ V_{BB}$	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
V_{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 2) $V_{pp} < 500$ mV $V_{pp} \geq 500$ mV	1.3 1.5		4.8 4.8	1.2 1.4		4.8 4.8	1.2 1.4		4.8 4.8	V
I_{IH}	Input HIGH Current			150			150			150	μA
I_{IL}	Input LOW Current D D	0.5 -600			0.5 -600			0.5 -600			μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfm.

1. Input parameters vary 1:1 with V_{CC} . V_{CC} can vary 4.5 V to 5.5 V.
2. V_{IHCMR} min varies 1:1 with GND. V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $V_{pp\ min}$ and 1.0 V.

Table 4. LVPECL OUTPUT DC CHARACTERISTICS ($V_{CC} = 5.0$ V; $LV_{CC} = 3.3$ V; GND = 0 V (Note 3))

Symbol	Characteristic	-40°C			25°C			85°C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$I_{LV_{CC}}$	LVPECL Power Supply Current			20			20			21	mA
V_{OH}	Output HIGH Voltage (Note 4)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V_{OL}	Output LOW Voltage (Note 4)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfm.

3. Output parameters vary 1:1 with LV_{CC} . V_{CC} can vary 3.0 V to 3.8 V.
4. Outputs are terminated through a $50\ \Omega$ resistor to $LV_{CC} - 2.0$ V.

Table 5. AC CHARACTERISTICS ($V_{CC} = 5.0$ V; $LV_{CC} = 3.3$ V; GND = 0 V (Note 5))

Symbol	Characteristic	-40°C			25°C			85°C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
f_{max}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
t_{PLH} t_{PHL}	Propagation Delay Diff D to Q S.E.	490 440	590 590	690 740	510 460	610 610	710 760	530 480	630 630	730 780	ps
t_{SKEW}	Skew Output-to-Output (Note 6) Part-to-Part (Diff) (Note 6) Duty Cycle (Diff) (Note 7)		20 20 25	100 200		20 20 25	100 200		20 20 25	100 200	ps
t_{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V_{PP}	Input Swing (Note 8)	150		1000	150		1000	150		1000	mV
t_r t_f	Output Rise/Fall Times Q (20% – 80%)	270		530	270		530	270		530	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfm.

5. LV_{CC} can vary 3.0 V to 3.8 V; V_{CC} can vary 4.5 V to 5.5 V. Outputs are terminated through a 50Ω resistor to $LV_{CC} - 2.0$ V.

6. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.

7. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.

8. $V_{PP}(\min)$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40 .

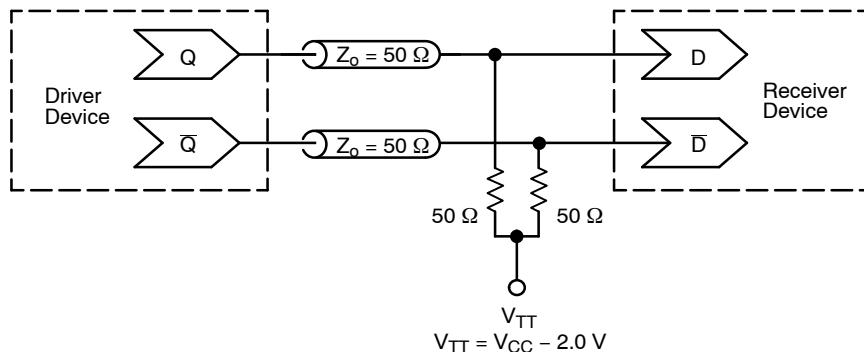
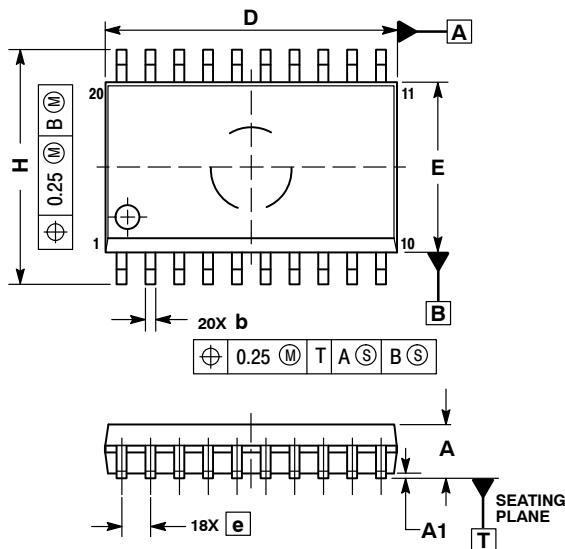
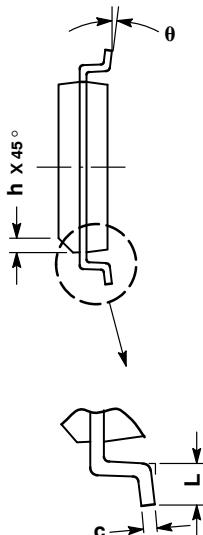



Figure 2. Typical Termination for Output Driver and Device Evaluation
(See Application Note [AND8020/D](#) – Termination of ECL Logic Devices.)

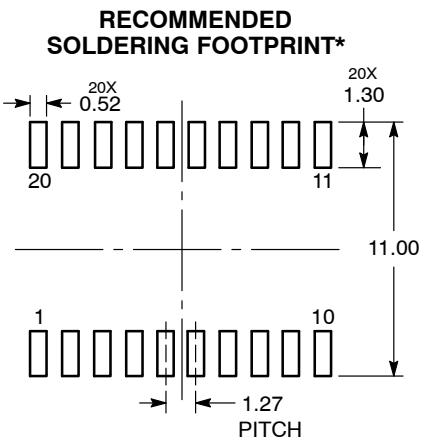

Resource Reference of Application Notes

AN1405/D	- ECL Clock Distribution Techniques
AN1406/D	- Designing with PECL (ECL at +5.0 V)
AN1503/D	- ECLinPS™ I/O SPiCE Modeling Kit
AN1504/D	- Metastability and the ECLinPS Family
AN1568/D	- Interfacing Between LVDS and ECL
AN1672/D	- The ECL Translator Guide
AND8001/D	- Odd Number Counters Design
AND8002/D	- Marking and Date Codes
AND8020/D	- Termination of ECL Logic Devices
AND8066/D	- Interfacing with ECLinPS
AND8090/D	- AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC dba “**onsemi**” or its affiliates and/or subsidiaries in the United States and/or other countries.

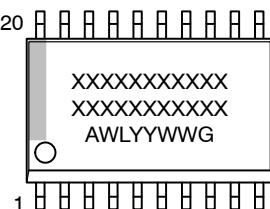


SCALE 1:1


SOIC-20 WB
CASE 751D-05
ISSUE H

DATE 22 APR 2015

NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.


MILLIMETERS		
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
c	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
h	0.25	0.75
L	0.50	0.90
θ	0 °	7 °

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the [onsemi](#) Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-20 WB	PAGE 1 OF 1

onsemi and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

