

MC74VHC138

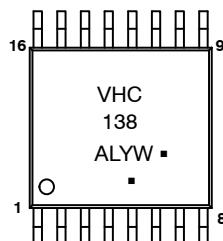
3-to-8 Line Decoder

The MC74VHC138 is an advanced high speed CMOS 3-to-8 decoder fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

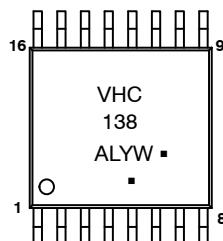
When the device is enabled, three Binary Select inputs (A0 – A2) determine which one of the outputs (Y_0 – Y_7) will go Low. When enable input E3 is held Low or either \bar{E}_2 or \bar{E}_1 is held High, decoding function is inhibited and all outputs go high. E3, \bar{E}_2 , and \bar{E}_1 inputs are provided to ease cascade connection and for use as an address decoder for memory systems.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7V, allowing the interface of 5V systems to 3V systems.

- High Speed: $t_{PD} = 5.7\text{ns}$ (Typ) at $V_{CC} = 5\text{ V}$
- Low Power Dissipation: $I_{CC} = 4\text{ }\mu\text{A}$ (Max) at $T_A = 25^\circ\text{C}$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\%$ V_{CC}
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: $VO_{LP} = 0.8\text{ V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 122 FETs or 30.5 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant


ON Semiconductor

<http://onsemi.com>


MARKING DIAGRAMS

SOIC-16
D SUFFIX
CASE 751B

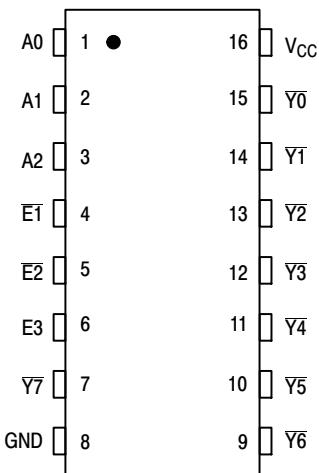
TSSOP-16
DT SUFFIX
CASE 948F

VHC138 = Specific Device Code

A = Assembly Location

WL, L = Wafer Lot

Y = Year

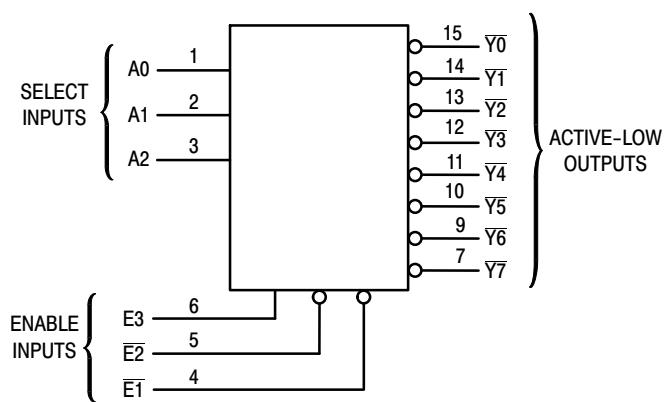

WW, W = Work Week

G or ▀ = Pb-Free Package

ORDERING INFORMATION

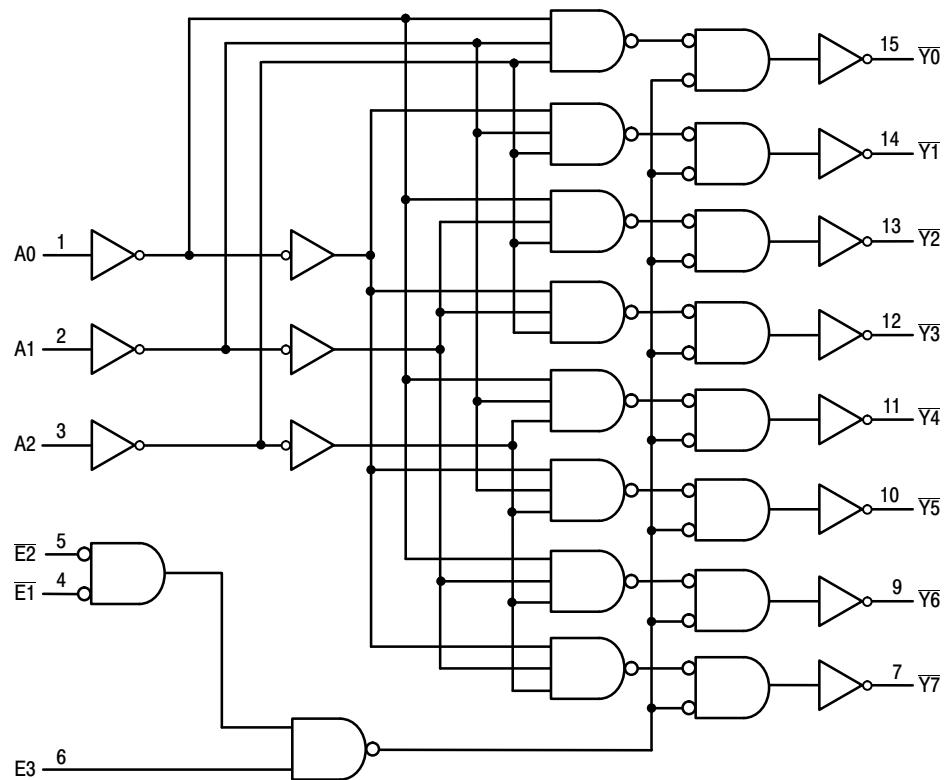
Device	Package	Shipping
MC74VHC138DG	SOIC-16	48 Units/Rail
MC74VHC138DR2G	SOIC-16	2500 Units/Reel
MC74VHC138DTR2G	TSSOP-16	2500 Units/Reel

PIN ASSIGNMENT

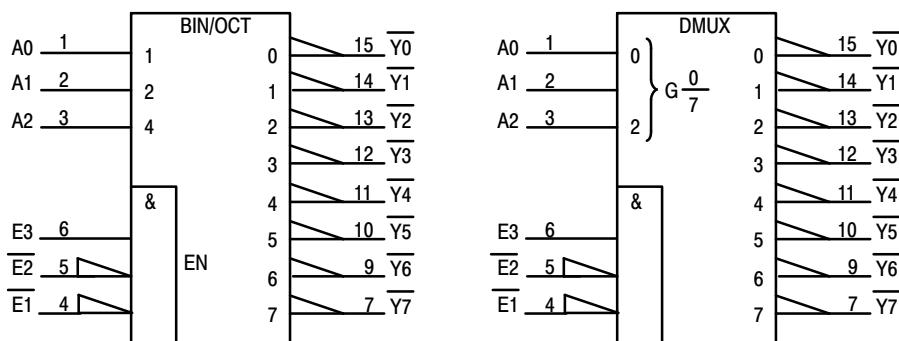

FUNCTION TABLE

Inputs				Outputs							
E3	E2	E1	A2 A1 A0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	X	H	X X X	H	H	H	H	H	H	H	H
X	H	X	X X X	H	H	H	H	H	H	H	H
L	X	X	X X X	H	H	H	H	H	H	H	H
H	L	L	L L L	L	H	H	H	H	H	H	H
H	L	L	L L H	H	L	H	H	H	H	H	H
H	L	L	L H L	H	H	L	H	H	H	H	H
H	L	L	L H H	H	H	H	L	H	H	H	H
H	L	L	H L L	H	H	H	H	L	H	H	H
H	L	L	H L H	H	H	H	H	H	L	H	H
H	L	L	H H L	H	H	H	H	H	H	L	H
H	L	L	H H H	H	H	H	H	H	H	H	L

H = high level (steady state); L = low level (steady state);


X = don't care

LOGIC DIAGRAM



MC74VHC138

EXPANDED LOGIC DIAGRAM

IEC LOGIC DIAGRAM

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	– 0.5 to + 7.0	V
V_{in}	DC Input Voltage	– 0.5 to + 7.0	V
V_{out}	DC Output Voltage	– 0.5 to V_{CC} + 0.5	V
I_{IK}	Input Diode Current	– 20	mA
I_{OK}	Output Diode Current	± 20	mA
I_{out}	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_D	Power Dissipation in Still Air, SOIC Packages† TSSOP Package†	500 450	mW
T_{stg}	Storage Temperature	– 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $GND \leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

†Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C
TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
V_{in}	DC Input Voltage	0	5.5	V
V_{out}	DC Output Voltage	0	V_{CC}	V
T_A	Operating Temperature	– 55	+ 125	°C
t_r, t_f	Input Rise and Fall Time $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	0 0	100 20	ns/V

The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.

DEVICE JUNCTION TEMPERATURE VERSUS
TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

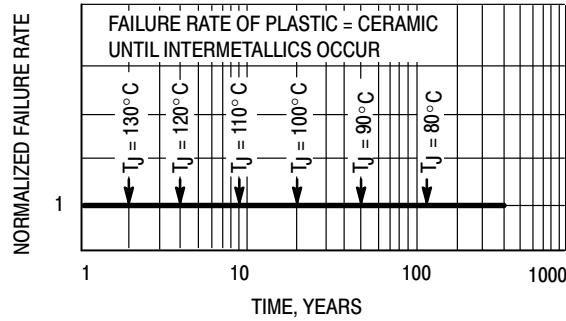


Figure 1. Failure Rate vs. Time
Junction Temperature

MC74VHC138

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V _{CC} (V)	T _A = 25°C			T _A = ≤ 85°C		T _A = ≤ 125°C		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
V _{OH}	Minimum High-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	V _{IN} = V _{IH} or V _{IL} I _{OH} = - 50 μA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		V _{IN} = V _{IH} or V _{IL} I _{OH} = -4 mA I _{OH} = -8 mA	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		
V _{OL}	Maximum Low-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	V _{IN} = V _{IH} or V _{IL} I _{OL} = 50 μA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		V _{IN} = V _{IH} or V _{IL} I _{OL} = 4 mA I _{OL} = 8 mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			± 0.1		± 1.0		± 1.0	μA
I _{CC}	Maximum Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5			4.0		40.0		40.0	μA

AC ELECTRICAL CHARACTERISTICS (Input t_r = t_f = 3.0ns)

Symbol	Parameter	Test Conditions	T _A = 25°C			T _A = - 40 to 85°C		T _A = - 55 to 125°C		Unit
			Min	Typ	Max	Min	Max	Min	Max	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to Y	V _{CC} = 3.3 ± 0.3V C _L = 15pF C _L = 50pF		8.2 10.0	11.4 15.8	1.0 1.0	13.5 18.0	1.0 1.0	13.5 18.0	ns
		V _{CC} = 5.0 ± 0.5V C _L = 15pF C _L = 50pF		5.7 7.2	8.1 10.1	1.0 1.0	9.5 11.5	1.0 1.0	9.5 11.5	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, E3 to Y	V _{CC} = 3.3 ± 0.3V C _L = 15pF C _L = 50pF		8.1 10.6	12.8 16.3	1.0 1.0	15.0 18.5	1.0 1.0	15.0 18.5	ns
		V _{CC} = 5.0 ± 0.5V C _L = 15pF C _L = 50pF		5.6 7.1	8.1 10.1	1.0 1.0	9.5 11.5	1.0 1.0	9.5 11.5	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, E2 or E1 to Y	V _{CC} = 3.3 ± 0.3V C _L = 15pF C _L = 50pF		8.2 10.7	11.4 14.9	1.0 1.0	13.5 17.0	1.0 1.0	13.5 17.0	ns
		V _{CC} = 5.0 ± 0.5V C _L = 15pF C _L = 50pF		5.8 7.3	8.1 10.1	1.0 1.0	9.5 11.5	1.0 1.0	9.5 11.5	
C _{IN}	Maximum Input Capacitance			4	10		10		10	pF

C _{PD}	Power Dissipation Capacitance (Note 1)	Typical @ 25°C, V _{CC} = 5.0V				pF
		34				

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

SWITCHING WAVEFORMS

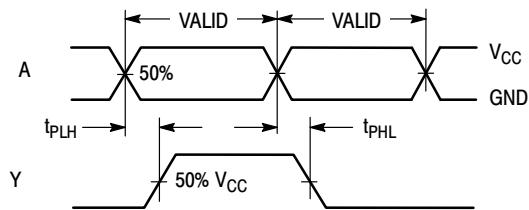


Figure 2.

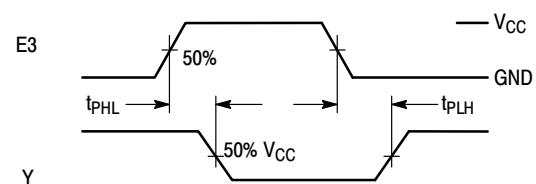


Figure 3.

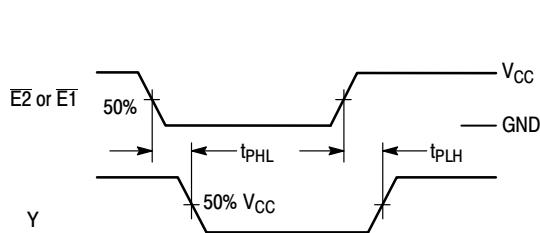
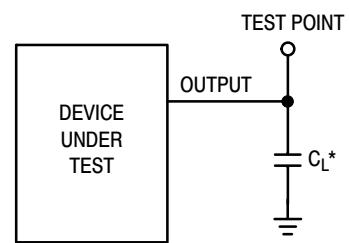



Figure 4.

*Includes all probe and jig capacitance

Figure 5. Test Circuit

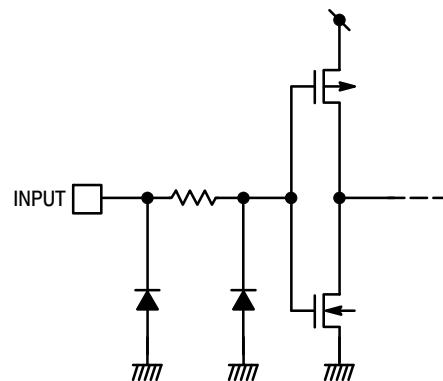
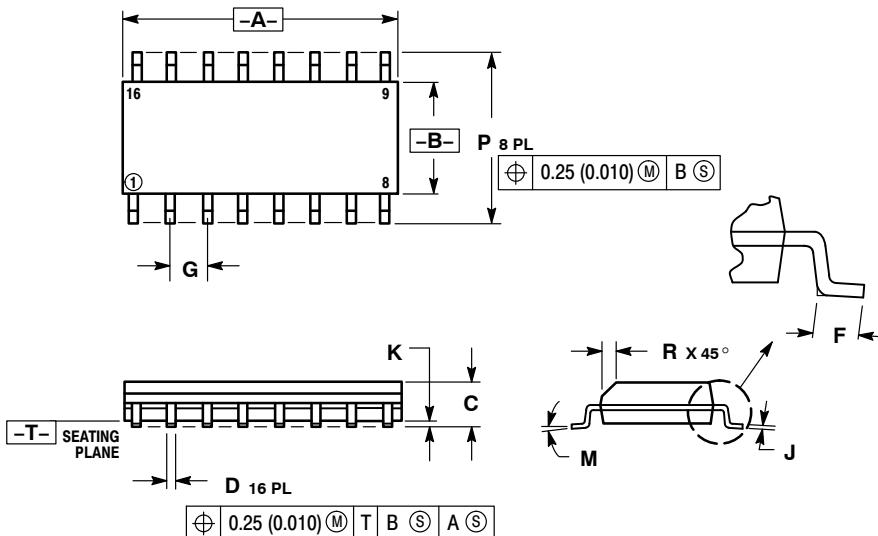


Figure 6. Input Equivalent Circuit

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

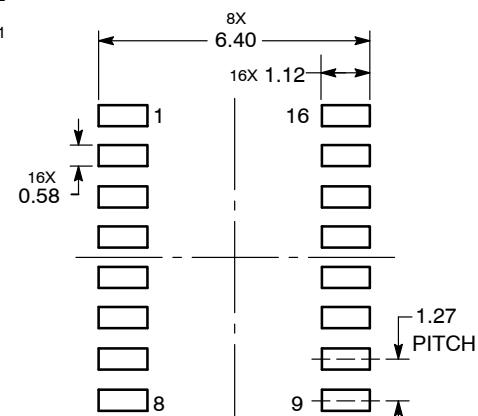

ON Semiconductor®

SCALE 1:1

SOIC-16
CASE 751B-05
ISSUE K

DATE 29 DEC 2006

NOTES:


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:
PIN 1. COLLECTOR	PIN 1. CATHODE	PIN 1. COLLECTOR, DYE #1	PIN 1. COLLECTOR, DYE #1
2. BASE	2. ANODE	2. BASE, #1	2. COLLECTOR, #1
3. Emitter	3. NO CONNECTION	3. Emitter, #1	3. COLLECTOR, #2
4. NO CONNECTION	4. CATHODE	4. COLLECTOR, #1	4. COLLECTOR, #2
5. Emitter	5. CATHODE	5. COLLECTOR, #2	5. COLLECTOR, #3
6. BASE	6. NO CONNECTION	6. BASE, #2	6. COLLECTOR, #3
7. COLLECTOR	7. ANODE	7. Emitter, #2	7. COLLECTOR, #4
8. COLLECTOR	8. CATHODE	8. COLLECTOR, #2	8. COLLECTOR, #4
9. BASE	9. CATHODE	9. COLLECTOR, #3	9. BASE, #4
10. Emitter	10. ANODE	10. BASE, #3	10. Emitter, #4
11. NO CONNECTION	11. NO CONNECTION	11. Emitter, #3	11. BASE, #3
12. Emitter	12. CATHODE	12. COLLECTOR, #3	12. Emitter, #3
13. BASE	13. CATHODE	13. COLLECTOR, #4	13. BASE, #2
14. COLLECTOR	14. NO CONNECTION	14. BASE, #4	14. Emitter, #2
15. Emitter	15. ANODE	15. Emitter, #4	15. BASE, #1
16. COLLECTOR	16. CATHODE	16. COLLECTOR, #4	16. Emitter, #1

STYLE 5:	STYLE 6:	STYLE 7:
PIN 1. DRAIN, DYE #1	PIN 1. CATHODE	PIN 1. SOURCE N-CH
2. DRAIN, #1	2. CATHODE	2. COMMON DRAIN (OUTPUT)
3. DRAIN, #2	3. CATHODE	3. COMMON DRAIN (OUTPUT)
4. DRAIN, #2	4. CATHODE	4. GATE P-CH
5. DRAIN, #3	5. CATHODE	5. COMMON DRAIN (OUTPUT)
6. DRAIN, #3	6. CATHODE	6. COMMON DRAIN (OUTPUT)
7. DRAIN, #4	7. CATHODE	7. COMMON DRAIN (OUTPUT)
8. DRAIN, #4	8. CATHODE	8. SOURCE P-CH
9. GATE, #4	9. ANODE	9. SOURCE P-CH
10. SOURCE, #4	10. ANODE	10. COMMON DRAIN (OUTPUT)
11. GATE, #3	11. ANODE	11. COMMON DRAIN (OUTPUT)
12. SOURCE, #3	12. ANODE	12. COMMON DRAIN (OUTPUT)
13. GATE, #2	13. ANODE	13. GATE N-CH
14. SOURCE, #2	14. ANODE	14. COMMON DRAIN (OUTPUT)
15. GATE, #1	15. ANODE	15. COMMON DRAIN (OUTPUT)
16. SOURCE, #1	16. ANODE	16. SOURCE N-CH

SOLDERING FOOTPRINT

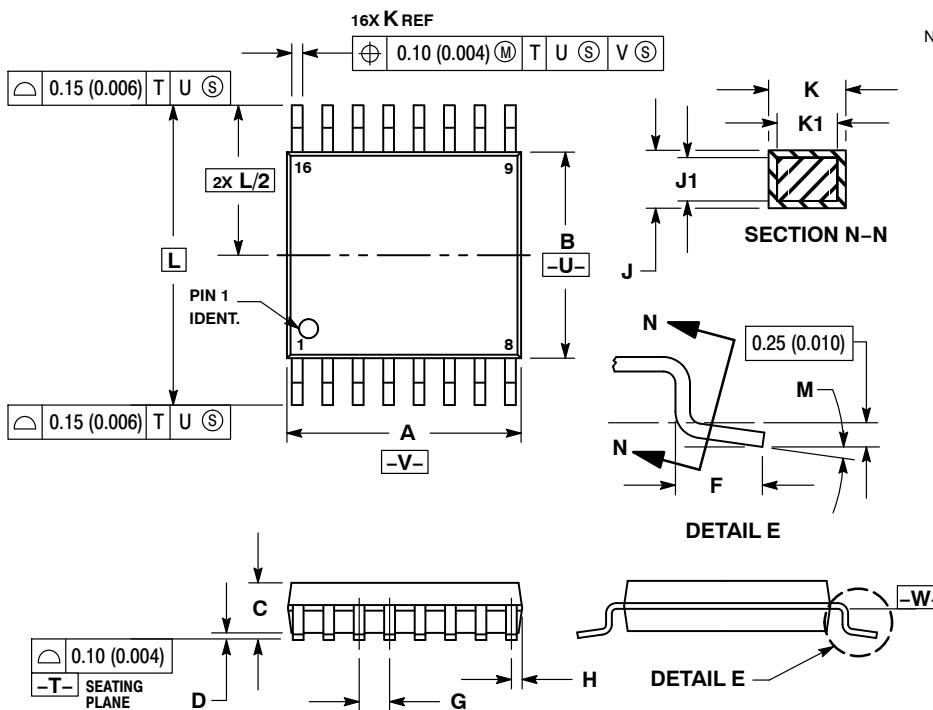
DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-16	PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE

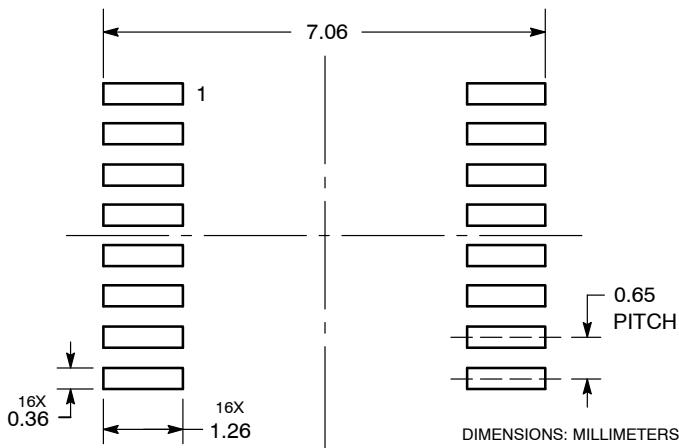
PACKAGE DIMENSIONS


ON Semiconductor®

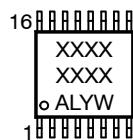
1
SCALE 2:1

TSSOP-16
CASE 948F-01
ISSUE B

DATE 19 OCT 2006



NOTES:


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0 °	8 °	0 °	8 °

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
G or ■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TSSOP-16	PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

