

PIN DIODE SWITCHING DIODE-Ceramic Surface Mount

RoHS Compliant Version Available

DESCRIPTION

With high isolation, low loss, and low distortion characteristics, this Microsemi ceramic package PIN diode is perfect for two-way radio antenna switch applications where size and power handling capability are critical. The surface mount package is ideal for high volume automated assembly applications.

Its advantages also include the low forward bias resistance and high zero bias impedance that are essential for low loss, high isolation, and wide bandwidth antenna switch performance. Its square design makes this device ideal for use with automatic insertion equipment.

IMPORTANT:

For the most current data, consult our website: www.MICROSEMI.com

ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED) Symbol Limits Units **Parameter** 50 ٧ Maximum Reverse Voltage V_R Average Power Dissipation P_D 4 W °C Storage Temperature Range -65 to 175 T_{STG} Operating Temperature Range - 65 to 175 °C T_{OP} Thermal resistance. (25 °C contacts, free R_{θ} 37.5 °C/W

KEY FEATURES

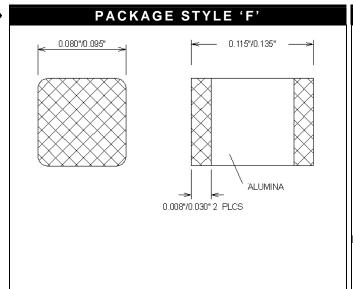
- High Power Surface Mount Package.
- Specified low distortion, low loss.
- Low bias current requirements.
- High zero bias impedance.
- Low inductance and capacitance.
- Compatible with automatic insertion equipment.
- RoHS compliant packaging Available¹

APPLICATIONS/BENEFITS

- Low Loss T/R Switching.
- Two Way Radio Antenna Switching.
- Available on Tape&Reel

Consult factory for details.

¹ The UX9401F is supplied with a RoHS compliant matte tin finish.



PIN DIODE SWITCHING DIODE-Ceramic Surface Mount

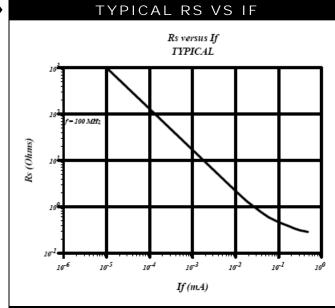
RoHS Compliant Version Available

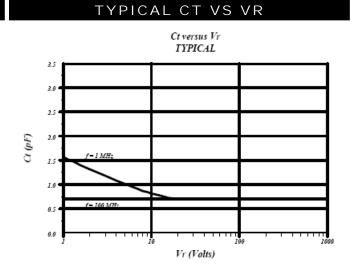
ELECTRICAL PARAMETERS @ 25°C (unless otherwise specified)						
Parameter	Symbol	Conditions	MIN.	TYPICAL	MAX	Units
Total Capacitance	Ст	V _R = 50V, F = 1 MHz		0.75	0.9	pF
Series Resistance	Rs	I _F = 50 mA, F = 100 MHz		0.5	0.75	Ohms
Parallel Resistance	R _P	f = 100MHz, Vr = 0V	5	10		kOhms
Carrier Lifetime	TL	I _F = 10 mA	2	4		μs
Reverse Current	I _R	V _R = 50			10	μΑ
Forward Voltage	V _F	I _F = 100mA			1.0	V
Transmit Harmonic Distortion		P_{IN} = 50 W F = 50 MHz I_F = 50 mA	80			-dB
Receive 3rd Order Harmonic Distortion		$F = 100 \text{ MHz}$ $V = 0 \text{ V}$ $F_A = 50 \text{ MHz}$ $F_B = 51 \text{ MHz}$	60			-dB

0.050" 0.060" 0.093"

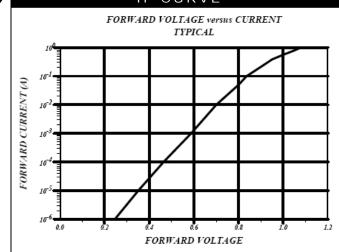
NOTES:

- These dimensions will match the terminals and provide for additional solder fillets at the outboard ends at least as wide as the terminals themselves, assuming accuracy of placement within 0.005"
- If the mounting method chosen requires use of an adhesive separate from the solder compound, a round (or square) spot of cement should be centrally located.




UM9401F

PIN DIODE SWITCHING DIODE-Ceramic Surface Mount


RoHS Compliant Version Available

IF CURVE

