

RS9116 n-Link[™] and WiSeConnect[™] Wi-Fi® and Dual-Mode Bluetooth® 5 Wireless Connectivity B00 Module Solution

Overview

1.1 Features

Wi-Fi

- Compliant to single-spatial stream IEEE 802.11 b/g/n with single band support
- Support for 20 MHz channel bandwidth
- Transmit power up to +18 dBm with integrated PA
- Receive sensitivity as low as -96 dBm
- Data Rates: 802.11b: Up to 11 Mbps; 802.11g: Up to 54 Mbps; 802.11n: MCS0 to MCS7
- Operating Frequency Range: 2412 MHz 2484 MHz

Bluetooth

- Transmit power up to +16 dBm with integrated PA
- Receive sensitivity: LE: -92 dBm, LR 125 Kbps: -102 dBm
- Compliant to dual-mode Bluetooth 5
- <8 mA transmits current in Bluetooth 5 mode, 2 Mbps data rate
- Data rates: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps, 3 Mbps
- Operating Frequency Range: 2.402 GHz 2.480 GHz
- Bluetooth 2.1 + EDR, Bluetooth Low Energy 4.0 / 4.1 / 4.2 / 5.0
- Bluetooth Low Energy 1 Mbps, 2 Mbps and Long-Range modes
- Bluetooth Low Energy Secure connections
- Bluetooth Low Energy supports central role and peripheral role concurrently
- Bluetooth auto rate and auto TX power adaptation
- Scatternet* with two Secondary roles while still being visible

RF Features

 Integrated baseband processor with calibration memory, RF transceiver, high-power amplifier, balun, and T/R switch

Power Consumption

 Wi-Fi Standby Associated mode current: 55 uA @ 1 second beacon listen interval

LGA Module (7.90 x 4.63) mm

- Wi-Fi 1 Mbps Listen current: 14 mA
- Wi-Fi LP chain Rx current: 19 mA
- Deep sleep current <1 uA, Standby current (RAM retention) < 10 uA

Operating Conditions

- Wide operating supply range: 1.75 V to 3.63 V
- RF Power Amplifier supports 3.0 V to 3.63 V
- Operating temperature: -40 °C to +85 °C (Industrial grade)

Size

• Small Form Factor: 7.90 x 4.63 x 0.9 mm

Evaluation Kit

• Single Band EVK: RS9116X-SB-EVK2

Software Operating Modes

- Hosted mode (n-Link[™]): Wi-Fi stack, Bluetooth stack and profiles and all network stacks reside on the host processor
- Embedded mode (WiSeConnect[™]): Wi-Fi stack, TCP/IP stack, IP modules, Bluetooth stack and some profiles reside in RS9116; Some of the Bluetooth profiles reside in the host processor

Hosted Mode (n-Link[™])

- Available host interfaces: SDIO 2.0 and USB HS
- Application data throughput up to 50 Mbps (Hosted Mode) in 802.11n with 20MHz bandwidth.
- Host drivers for Linux
- Support for Client mode, Access point mode (Up to 16 clients), Concurrent Client and Access Point mode, Enterprise Security
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

Embedded Mode (WiSeConnect™)

- Available host interface: UART, SPI, and USB CDC, SDIO
- Support for Embedded Client mode, Access Point mode (Up to 8 clients), Concurrent Client and Access Point mode, and Enterprise Security

- Supports advanced security features: WPA2/WPA3 - Personal and WPA/WPA2 -Enterprise*
- Integrated TCP/IP stack, HTTP/HTTPS, SSL/TLS, MQTT
- Bluetooth inbuilt stack support for L2CAP, RFCOMM, SDP, SPP, GAP
- Bluetooth profile support for GAP, SDP, SPP, GATT, L2CAP, RFCOMM
- Wireless firmware update and provisioning
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

Security

- Accelerators: AES128/256 in Embedded Mode
- WPA2/WPA3 Personal and WPA/WPA2 -Enterprise for Client*

Software and Regulatory Certification

- Wi-Fi Alliance*
- Bluetooth Qualification*
- Regulatory certifications (FCC, IC, CE/ETSI, MIC, and UKCA) *

* SW features depends on the firmware version. For a detailed list of software features and available profiles, refer to the Software Reference Manuals or contact Silicon Labs for availability.

All power and performance numbers are under ideal conditions.

1.2 Applications

Wearables

Smart Watches, Wristbands, Fitness Monitors, Smart Glasses, etc.

Smart Home

Smart Locks, Motion/Entrance Sensors, Water Leak Sensors, Smart Plugs/Switches, LED Lights, Door-Bell Cameras, Washers/Dryers, Refrigerators, Thermostats, Consumer Security Cameras, Voice Assistants, etc.

Other Consumer Applications

Toys, Anti-Theft Tags, Smart Dispensers, Weighing Scales, Blood Pressure Monitors, Blood Sugar Monitors, Portable Cameras, etc.

Other Applications (Medical, Industrial, Retail, Agricultural, Smart City, etc.)

Healthcare Tags, Medical Patches/Pills, Infusion Pumps, Sensors/Actuators in Manufacturing, Electronic Shelf Labels, Agricultural Sensors, Product Tracking Tags, Smart Meters, Parking Sensors, Street LED Lighting, Automotive After-Market, Security Cameras, etc.

1.3 Description

Silicon Labs' RS9116 single band B00 module provides a comprehensive multi-protocol wireless connectivity solution including 802.11 b/g/n (2.4 GHz), 802.11j, dual-mode Bluetooth 5. The module offers a high throughput and an extended range with power-optimized performance. The module is FCC, IC, MIC, ETSI/CE (including EN 300 328 v2.2.2), and UKCA certified.

1.4 Block Diagrams

Figure 1. B00 Module Block Diagram with Internal Flash

Figure 2. RS9116 Connectivity Hardware Block Diagram

Figure 3. Hosted Software Architecture

Figure 4. Embedded Software Architecture

Customer can connect multiple hosts, but only one host interface can be active after power-on.

NOTE: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit <u>www.silabs.com/about-us/inclusive-lexicon-project</u>

Table of Contents

1	Overview	
	1.1 Features	
	1.2 Applications	
	1.3 Description	
	1.4 Block Diagrams	
2	RS9116 B00 Module Pinout and Pin Description	7
	2.1 Pin Diagram	7
	2.2 Pin Description	8
	2.2.1 RF & Control Interfaces	
	2.2.2 Power & Ground Pins	8
	2.2.3 Host & Peripheral Interfaces	
_	2.2.4 Miscellaneous Pins	
3	RS9116 B00 Module Specifications	
	3.1 Absolute Maximum Ratings	
	3.2 Recommended Operating Conditions	
	3.3 DC Characteristics	
	3.3.1 Reset Pin	
	3.3.2 Power Sequence.	27
	3.3.3 Hardware Resetting Sequence after Power On3.3.4 Digital Input Output Signals	32 22
	3.3.5 USB	
	3.3.6 Pin Capacitances	
	3.4 AC Characteristics	
	3.4.1 Clock Specifications	
	3.4.2 SDIO 2.0 Secondary	
	3.4.3 SPI Secondary	36
	3.4.4 USB	
	3.4.5 UART	
	3.4.6 I2C Main and Secondary	39
	3.4.7 I2S/PCM Main and Secondary	40
	3.4.8 GPIO Pins 3.5 RF Characteristics	
	3.5.1 WLAN 2.4 GHz Transmitter Characteristics	
	3.5.2 WLAN 2.4 GHz Receiver Characteristics on High-Performance (HP) RF Chain	
	3.5.3 WLAN 2.4 GHz Receiver Characteristics on Low-Power (LP) RF Chain	
	3.5.4 Bluetooth Transmitter Characteristics on High-Performance (HP) RF Chain	
	3.5.5 Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain	49
	3.5.6 Bluetooth Receiver Characteristics on High-Performance (HP) RF Chain	49
	3.5.7 Bluetooth Receiver Characteristics on Low-Power (LP) RF Chain	
	3.6 Typical Current Consumption	
	3.6.1 3.3 V	
4	RS9116 B00 Module Detailed Description	
	4.1 Overview	
	4.2 Module Features	
	4.2.1 WLAN	
	4.2.2 Bluetooth	
	4.2.3 RF Transceiver	
	4.2.4 Host Interfaces 4.2.5 Wireless Coexistence Manager	
	4.2.6 Software	
	4.2.7 Security	
	4.2.8 Power Management	
	4.2.9 Low Power Modes	
	4.2.10 Memory	
5	RS9116 B00 Module Reference Schematics, BOM and Layout Guidelines	. 63
	5.1 SDIO/SPI/UART	63
	5.1.1 Schematics	. 63
	5.1.2 Bill of Materials	
	5.2 USB/USB-CDC	
	5.2.1 Schematics	
	5.2.2 Bill of Materials	
-	5.3 Layout Guidelines	
6	RS9116 B00 Module Package Description	
	6.1 Dimensions	
	6.2 Package Outline	
	6.3 Pin Locations	. 72

	6.3.1 PCB Landing Pattern	. 74
7	RS9116 B00 Module Certification and Ordering Information	.75
	7.1 Certification Information	.75
	7.2 Compliance and Certification	.75
	7.2.1 Eederal Communication Commission Statement	. 75
	7.2.2 Industry Canada / ISED Statement	. 76
	 7.2.2 Industry Canada / ISED Statement. 7.2.3 Regulatory Module Integration Instructions	. 77
	7.2.4 MIC	78
	7.2.5 Qualified Antenna Types	. 78
	7.3 Marking Information	.79
	7.3.1 Certification Marking	. 79
	7.3 Marking Information	. 79
	7.4 Module Package	. 79
	7.5 Ordering Information	.80
8	RS9116 B00 Module Documentation and Support	. 81
	8.1 Resource Location	
9	RS9116 B00 Module Revision History	

2 RS9116 B00 Module Pinout and Pin Description

2.1 Pin Diagram

Figure 5. RS9116 B00 Pin Diagram

2.2 Pin Description

2.2.1 RF & Control Interfaces

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description
RF_PORT1	A18	NA	Inout	NA	Connect to Antenna with a 50 Ω impedance as per the Reference Schematics.
RESET_N	J1	UULP_VBATT_1	Input	NA	Active-low reset asynchronous reset signal.
POC_OUT	G5	UULP_VBATT_1	Output	NA	Power On Control Output. This is internally generated. Initially, it is low. But it becomes high when the supplies (VBATT, UULP_VOUTSCDC) are valid.
POC_IN	G3	UULP_VBATT_1	Input	NA	Power On Control Input. This is an input to the chip. It should be made high only after supplies are valid to ensure the IC is in safe state until valid power supply is available.

Table 1. RF & Control Interfaces

2.2.2 Power & Ground Pins

Pin Name	Туре	Pin Number	Direction	Description
UULP_VBATT_1	Power	F6	Input	Always-on VBATT Power supply to the UULP domains
UULP_VBATT_2	Power	F4	Input	Always-on VBATT Power supply to the UULP domains
RF_VBATT	Power	J13	Input	Always-on VBATT Power supply to the RF
VINBCKDC	Power	B2	Input	Power supply for the on-chip Buck
VOUTBCKDC	Power	B5	Output	Output of the on-chip Buck

Pin Name	Туре	Pin Number	Direction	Description
VINLDOSOC	Power	A6	Input	Power supply for SoC LDO. Connect to VOUTBCKDC as per the Reference Schematics
VOUTLDOSOC	Power	B3	Output	Output of SoC LDO
VINLDO1P8	Power	C3	Input	Power supply for 1.8V LDO
VOUTLDOAFE	Power	K18	Output	Output of AFE LDO
IO_VDD_1	Power	G9	Input	I/O Supply for GPIOs. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
IO_VDD_2	Power	J15, K5	Input	I/O Supply for GPIOs. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
IO_VDD_3	Power	D10	Input	I/O Supply for GPIOs. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
SDIO_IO_VDD	Power	B14	Input	I/O Supply for SDIO I/Os. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
ULP_IO_VDD	Power	B7	Input	I/O Supply for ULP GPIOs
PA2G_AVDD	Power	H16	Input	Power supply for the 2.4 GHz RF Power Amplifier
RF_AVDD	Power	H14, L12	Input	Power supply for the 2.4 GHz RF and AFE.Connect to VOUTBCKDC as per the Reference Schematics
RF_AVDD_BTTX	Power	J18	Input	Power supply for Bluetooth Transmit circuit.Connect to VOUTLDOAFE as per the Reference Schematics.
AVDD_1P3	Power	K14	Input	Power supply for the 2.4 GHz RF.Connect to VOUTBCKDC as per the Reference Schematics.
UULP_VOUTSCDC	Power	D2	Output	UULP Switched Cap DCDC Output
UULP_VOUTSCDC_RE TN	Power	B1	Output	UULP Retention Supply Output
UULP_AVDD	Power	C1	Input	Power supply for the always-on digital and ULP peripherals. Connect to UULP_VOUTSCDC as per the Reference Schematics.
C_VDD	Power	E9, J5, K8	Input	Power supply for the digital core. Connect to the VOUTLDOSOC as per the Reference Schematics.

Pin Name	Туре	Pin Number	Direction	Description
USB_AVDD_3P3	Power	A10	Input	Power Supply for the USB interface
USB_AVDD_1P1	Power	C9	Input	Power supply for the USB core
GND	Ground	A16, B6, B15, B16, B17, B18, C7, C15, C17, C18, D4, D16, E5, E15, E17, E18, F2, F8, G1, G7, G18, H12, H17, J11, J17, K11, K12, K13, K15, K16, K17, L1, L14, L16, L18		Common ground pins

Table 2. Power and Ground Pins

2.2.3 Host & Peripheral Interfaces

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Descriptio	on ^{1,2,3,4}	
GPIO_6	D14	IO_VDD_1	Inout	HighZ	Default: HighZ		
					Sleep: Hig	hZ	
						In be configured b he following	by software to
					• I2S_D	OUT - I2S interfa	ce output data.
					• PCM_I data.	DOUT - PCM inte	erface output
GPIO_7	D17	IO_VDD_1	Inout	HighZ	Default: H	ghZ	
					Sleep: HighZ		
						In be configured b he following	by software to
				• I2S_CI	LK - I2S interface	clock.	
					PCM_CLK - PCM inte	CLK - PCM interfa	ace clock.
GPIO_8/UART1_RX	X G15 IO_VDD_1 I		Inout	HighZ	Host	Default	Sleep
					UART	UART1_RX - UART Host	HighZ

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description	1,2,3,4	
						interface serial input.	
					Non UART	HighZ	HighZ
						e UART interface is supp SeConnect™.	
GPIO_9/UART1_TX	F17	IO_VDD_1	Inout	HighZ	Host	Default	Sleep
					UART H interfac	UART1_TX - UART Host interface serial output.	
					Non UART	HighZ	HighZ
					The UART interface is suppo WiSeConnect™.	orted only in	
GPIO_10	F14	IO_VDD_1	Inout	HighZ	Default: HighZ		
					Sleep: HighZ		
					This pin can be configured by software to be any of the following		
					• I2S_DIN	: I2S interface i	nput data.
					PCM_DI	N - PCM interfa	ace input data.
GPIO_11	G17	IO_VDD_3	Inout	HighZ	Default: Hig	hZ.	
					Sleep: HighZ		
					This pin can be configured by software be any of the following		by software to
					I2S_WS: I2S interface Word Select.		Nord Select.
					 PCM_FSYNC: PCM inte Synchronization signal. 		
GPIO_12	F16	IO_VDD_1	Inout	HighZ	Default: Hig	hZ	
					Sleep: HighZ	7	

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					This pin can be configured by software to be any of the following
					 UART1_RTS - UART interface Request to Send output, if UART Host Interface flow control is enabled.
					The UART interface is supported only in WiSeConnect™.
GPIO_13	L8	IO_VDD_3	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					• EXT_FLASH_RESET - Reset signal to an external Flash IC, if connected
GPIO_15	A12	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					• UART1_CTS - UART interface Clear to Send input, if UART Host Interface flow control is enabled.
					• UART1_TRANSPARENT_MODE - UART Host interface Transparent Mode, Indication that module has entered into TRANSPERENT_MODE
					• TSF_SYNC - Transmit Synchronization Function signal to indicate to the Host when a packet is transmitted. The signal is toggled once at the end of every transmitted packet.
					The UART interface is supported only in WiSeConnect™.

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description	1,2,3,4	
SDIO_CLK/SPI_CLK	D12	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_CLK - SDIO interface clock	HighZ
				SPI Seconda interface	SPI Seconda	Secondary interface	
					Non SDIO, SPI	HighZ	HighZ
					The SPI inter WiSeConnec	rface is support ct™.	ed only in
SDIO_CMD/SPI_CSN	B13 S	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_CMD - SDIO interface CMD signal	HighZ
					SPI	SPI_CSN - Active-low Chip Select signal of SPI Secondary interface	HighZ
					Non SDIO, SPI	HighZ	HighZ
					The SPI inter WiSeConnec	rface is support ct™.	ed only in
SDIO_D0/SPI_MOSI	SDIO SD	Default	Sleep				
				SDIO	SDIO_D0 - SDIO	HighZ	

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description	1,2,3,4	
						interface Data0 signal	
					SPI	SPI_MOSI - SPI Secondary interface Main-Out- Secondary - In signal	HighZ
					Non SDIO, SPI	HighZ	HighZ
					The SPI inter WiSeConnec	face is support t™.	ed only in
SDIO_D1/SPI_MISO	B12	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_D1 - SDIO interface Data1 signal	HighZ
					SPI	SPI_MISO - SPI Secondary interface Main-In- Secondary - Out signal	HighZ
					Non SDIO, SPI	HighZ	HighZ
					The SPI inter WiSeConnec	face is support t™.	ed only in
SDIO_D2/SPI_INTR	B11	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_D2 - SDIO	HighZ

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description	1,2,3,4	
						interface Data2 signal	
					SPI	SPI_INTR - SPI Secondary interface Interrupt Signal to the Host	HighZ
					Non SDIO, SPI	HighZ	HighZ
					The SPI inter WiSeConnec	face is support t™.	ed only in
SDIO_D3/	C11 SDIO_IO_VDD	SDIO_IO_VDD	Inout	Pullup	Host	Default	Sleep
USB_CDC_DIS					SDIO	SDIO_D3 - SDIO interface Data3 signal	HighZ
					USB	USB_CDC_ DIS - USB- CDC Active- High Disable Signal	HighZ
				HighZ	Non SDIO, SPI, USB	HighZ	HighZ
					The SPI inter WiSeConnec	face is support t™.	ed only in
GPIO_46	L10	IO_VDD_1	Inout		Part Number	Default	Sleep
					RS9116W- SB00-B00- ABC	HighZ	HighZ

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description	1,2,3,4	
GPIO_47	K10	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep
					RS9116W- SB00-B00- ABC	HighZ	HighZ
GPIO_48	O_48 H8 IO_VDD_1 Inout HighZ	HighZ	Part Number	Default	Sleep		
					RS9116W- SB00-B00- ABC	HighZ	HighZ
GPIO_49	O_49 J9 IO_VDD_1 Inout HighZ	HighZ	Part Number	Default	Sleep		
					RS9116W- SB00-B00- ABC	HighZ	HighZ
GPIO_50	K9	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep
					RS9116W- SB00-B00- ABC	HighZ	HighZ
GPIO_51 H10	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep	
					RS9116W- SB00-B00- ABC	HighZ	HighZ
GPIO_52	G11	IO_VDD_1	Inout	HighZ	Default: High	ηΖ	

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					Sleep: HighZ
GPIO_53	G13	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
GPIO_54	F10	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
GPIO_55	E13	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
GPIO_56	E11	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
GPIO_57	F12	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
ULP_GPIO_0	A2	ULP_IO_VDD	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					• WLAN_ACTIVE*: Active-High signal to indicate to an external Bluetooth IC that WLAN transmission is active. Part of the 3-wire coexistence interface.
					*This pin is intended to act as WLAN_ACTIVE for wireless coexistence. It is however not available in the current firmware. Please contact Silicon Labs to learn about availability in the future versions.
ULP_GPIO_1	B4	ULP_IO_VDD	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following

Pin Name	Pin Number	I/O Supply Domain	Directio	n Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					 BT_ACTIVE*: Active-High signal from an external Bluetooth IC that it is transmitting. Part of the 3-wire coexistence interface. *This pin is intended to act as BT_ACTIVE for Bluetooth coexistence. It is however not available in the current firmware. Please contact Silicon Labs to learn about availability in the future versions.
ULP_GPIO_4	L2	ULP_IO_VDD	Inout	HighZ	Default: HighZ
ULP_GPIO_5	КЗ	ULP_IO_VDD	Inout	HighZ	Default: LP_WAKEUP_IN This is LP Powersave Wakeup indication from Device
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					 LP_WAKEUP_IN: This is LP Powersave Wakeup indication to Device from HOST
					 HOST_WAKEUP_INDICATION: This is used as indication from Host to dev that host is ready to take the packet and Device can transfer the packet to host. This is supported only in UART host mode. The UART interface is supported only in WiSeConnect[™].
ULP_GPIO_6	H4	ULP_IO_VDD	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					 WAKEUP_FROM_Dev* - Used as a wakeup indication to host from device

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					• BT_PRIORITY**: Active-high signal from an external Bluetooth IC that indicates that the Bluetooth transmissions are a higher priority.
					*For Wake-on-Wireless, it is recommended to use an external weak pull-down or pull-up resistor. It is recommended to use weak pull-down resistor in new designs. Software has to be configured suitably for using either pull- down or pull-up resistor.
					**This pin is intended to act as BT_PRIORITY for Bluetooth coexistence. It is however not available in the current firmware. Please contact Silicon Labs to learn about availability in the future versions.
ULP_GPIO_7	A1	ULP_IO_VDD	Inout	HighZ	Default: HighZ
ULP_GPIO_8	C5	ULP_IO_VDD	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					 LED0: Control signal to an external LED.
					 (*LED0 functionality currently not available in both, WiSeConnect[™] and n-Link[®] modules)
ULP_GPIO_9/ UART2_TX	E7	ULP_IO_VDD	Inout	HighZ	Default: UART2_TX- Debug UART Interface serial output
					Sleep: HighZ
					UART2_TX: Debug UART interface serial output.
ULP_GPIO_10	A4	ULP_IO_VDD	Inout	HighZ	Default: HighZ

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					• I2C_SCL: I2C interface clock.
ULP_GPIO_11	J3	ULP_IO_VDD	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					• I2C_SDA: I2C interface data.
UULP_VBAT_GPIO_0	J2	UULP_VBATT_1	Output	High	Default: EXT_PG_EN
					Sleep: SLEEP_IND_FROM_DEV / EXT_PG_EN
					This pin can be configured by software to be any of the following
					• SLEEP_IND_FROM_DEV: This signal is used to send an indication to the Host processor. An indication is sent when the chip enters (logic low) and exits (logic high) the ULP Sleep mode.
					• EXT_PG_EN: Active-high enable signal to an external power gate which can be used to control the power supplies other than Always-ON VBATT Power Supplies in ULP Sleep mode.
UULP_VBAT_GPIO_2/	К2	UULP_VBATT_1	Input	HighZ	Default: HOST_BYP
HOST_BYP_ULP_WAK EUP					Sleep: ULP_WAKEUP
					This signal has two functionalities – one during the bootloading process and one after the bootloading. During bootloading, this signal is an active-high input to indicate that the bootloader should bypass any inputs from the Host processor and

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					continue to load the default firmware from Flash. After bootloading, this signal is an active-high input to indicate that the module should wakeup from its Ultra Low Power (ULP) sleep mode. The bootloader bypass functionality is supported only in WiSeConnect [™] .
UULP_VBAT_GPIO_3	K4	UULP_VBATT_1	Inout	HighZ	Default: HighZ
					Sleep: XTAL_32KHZ_IN / SLEEP_IND_FROM_DEV This pin can be configured by software to
					be any of the following
					• XTAL_32KHZ_IN: This pin can be used to feed external clock from a host processor or from external crystal oscillator
					• SLEEP_IND_FROM_DEV: This signal is used to send an indication to the Host processor. An indication is sent when the chip enters (logic low) and exits (logic high) the ULP Sleep mode.
UULP_VBAT_GPIO_4	E3	UULP_VBATT_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					 XTAL_32KHZ_IN: This pin can be used to feed external clock from a host processor or from external crystal oscillator
JP0	L4	VIN_3P3	Input	Pullup	Default: JP0
					Sleep: HighZ
					JP0 - Reserved. Connect to a test point for debug purposes.

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description 1,2,3,4
JP1	L6	VIN_3P3	Input	Pullup	Default: JP1
					Sleep: HighZ
					JP1 - Reserved. Connect to a test point for debug purposes.
JP2	K6	VIN_3P3	Input	Pullup	Default: JP2
					Sleep: HighZ
					JP2 - Reserved. Connect to a test point for debug purposes.
JNC	К7	VIN_3P3	NC	Pullup	Default: JNC
					Sleep: HighZ
					JNC - Reserved. Connect to a test point for debug purposes.
USB_DP	B9	USB_AVDD_3P3	Inout	NA	Positive data channel from the USB connector.
USB_DM	B10	USB_AVDD_3P3	Inout	NA	Negative data channel from the USB connector.
USB_ID	B8	USB_AVDD_3P3	Input	NA	ID signal from the USB connector.
					If USB_ID pin is not connected to the host, then use a weak-pull down resistor on this pin.
USB_VBUS	D8	USB_AVDD_3P3	Input	NA	5V USB VBUS signal from the USB connector. This pin is used just for detecting USB.
USB_TXRTUNE	A8	USB_AVDD_3P3	Input	NA	USB Transmitter resistor tune analog signal which needs to be connected to an external 200 Ω resistor to adjusts the USB's high-speed source impedance

Table 3. Host and Peripheral Interfaces

- 1. "Default" state refers to the state of the device after initial boot loading and firmware loading is complete.
- 2. "Sleep" state refers to the state of the device after entering Sleep state which is indicated by Active-Low "SLEEP_IND_FROM_DEV" signal.
- 3. Please refer to " **RS9116N Open-Source Driver Technical Reference Manual** " for software programming information in hosted mode.
- 4. Please refer to " **RS9116W SAPI Programming Reference Manual** " for software programming information in embedded mode.
- 5. There are some functionalities, such as SLEEP_IND_FROM_DEV, that are available on multiple pins. However, these pins have other multiplexed functionalities. Any pin can be used based on the required functionality. Customer must note the default states before using appropriate pin.
- 6. In the application, wherever RS9116 is connected to external host, during power-off state, the host should ensure that all the pins (analog or digital) connected to the RS9116 are not driven. Else, the pins must be grounded.
- 7. JP0, JP1, JP2 and JNC are reserved. Connect these pins to test points for debug purposes. Do not drive these pins.

2.2.4 Miscellaneous Pins

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description
NC	A14, D6, E1, E2, H2, H6, G2, J7, K1	NA	NA	NA	No connect.

Table 4. Miscellaneous Pins

3 RS9116 B00 Module Specifications

3.1 Absolute Maximum Ratings

Functional operation above maximum ratings are not guaranteed and may damage the device. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min	Max	Units
T _{store}	Storage temperature	-40	+125	°C
T _{j(max)}	Maximum junction temperature	-	+125	°C
UULP_VBATT_1	Always-on VBATT supply to the UULP Domains	-0.5	3.63	V
UULP_VBATT_2	Always-on VBATT supply to the UULP Domains	-0.5	3.63	V
RF_VBATT	Always-on VBATT Power supply to the RF	-0.5	3.63	V
VINBCKDC	Power supply for the on-chip Buck	-0.5	3.63	V
FBDC1P3	Feedback signal for on-chip Buck	-0.5	1.8	V
VINLDOSOC	Power supply for SoC LDO	-0.5	1.8	V
VINLDO1P8	Power supply for 1.8V LDO	-0.5	3.63	V
IO_VDD_1	I/O supplies for GPIOs	-0.5	3.63	V
IO_VDD_2	I/O supplies for GPIOs	-0.5	3.63	V
IO_VDD_3	I/O supplies for GPIOs	-0.5	3.63	V
SDIO_IO_VDD	I/O supplies for SDIO I/Os	-0.5	3.63	V
ULP_IO_VDD	I/O supplies for ULP GPIOs	-0.5	3.63	V
PA2G_AVDD	Power supply for the 2.4 GHz RF Power Amplifier	-0.5	3.63	V
RF_AVDD_BTTX	Power supply for Bluetooth Transmit circuit.	-0.5	1.22	V
RF_AVDD	Power supply for the 2.4 GHz RF and AFE	-0.5	1.98	V
AVDD_1P3	Power supply for the 2.4 GHz RF	-0.5	1.98	V
UULP_AVDD	Power supply for the always-on digital and ULP peripherals	-0.5	1.21	V
EFUSE_AVDD	Power supply for the on-chip eFuse	-0.5	2.3	V
C_VDD	Power supply for the digital core	-0.5	1.26	V
DDR_IO_VDD	I/O supply for the DDR interface pins	-0.5	1.98	V
USB_AVDD_3P3	Power supply for the USB interface	-0.5	3.63	V
USB_AVDD_1P1	Power supply for the USB core	-0.5	1.26	V
USB_VBUS	USB VBUS signal from the USB connector	-0.5	5.25	V
I _{max}	Maximum Current consumption in TX mode	-	400	mA
P _{max}	RF Power Level Input to the chip	-	10	dBm
I _{Pmax}	Peak current rating for power supply	-	500	mA

Table 5. Absolute Maximum Ratings

3.2 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
Tambient	Ambient temperature	-40	25	85	°C
UULP_VBATT_1	Always-on VBATT supply to the UULP Domains	1.75/3.0	1.85/3.3	1.98/3.63	V
UULP_VBATT_2	Always-on VBATT supply to the UULP Domains	1.75/3.0	1.85/3.3	1.98/3.63	V
RF_VBATT	Always-on VBATT Power supply to the RF	1.75/3.0	1.85/3.3	1.98/3.63	V
VINBCKDC	Power supply for the on-chip Buck	1.75/3.0	1.85/3.3	1.98/3.63	V
VINLDOSOC	Power supply for SoC LDO	1.1	1.35	1.55	V
VINLDO1P8	Power supply for 1.8V LDO	1.75/3.0	1.85/3.3	1.98/3.63	V
IO_VDD_1	I/O supply for GPIOs	1.75/3.0	1.85/3.3	1.98/3.63	V
IO_VDD_2	I/O supply for GPIOs	1.75/3.0	1.85/3.3	1.98/3.63	V
IO_VDD_3	I/O supply for GPIOs	1.75/3.0	1.85/3.3	1.98/3.63	V
ULP_IO_VDD	I/O supply for ULP GPIOs	1.75/3.0	1.85/3.3	1.98/3.63	V
SDIO_IO_VDD	I/O supply for SDIO I/Os	1.75/3.0	1.85/3.3	1.98/3.63	V
PA2G_AVDD	Power supply for the 2.4 GHz RF Power Amplifier	3.0	3.3	3.63	V
RF_AVDD_BTTX	Power supply for Bluetooth Transmit circuit.	1.0	1.1	1.22	V
RF_AVDD	Power supply for the 2.4 GHz RF and AFE	1.3	1.4	1.8	V
AVDD_1P3	Power supply for the 2.4 GHz RF	1.3	1.4	1.8	V
UULP_AVDD	Power supply for the always-on digital and ULP peripherals	0.95	1.0	1.21	V
EFUSE_AVDD	Power supply for the on-chip eFuse	1.75	1.85	1.98	V
C_VDD	Power supply for the digital core (Low Power	0.95	1.0	1.05	V
	Mode) Power supply for the digital core (High Performance Mode)	0.99	1.1	1.21	V
USB_AVDD_3P3	Power supply for the USB interface	3.0	3.3	3.63	V
USB_AVDD_1P1	Power supply for the USB core	0.99	1.1	1.21	V
USB_VBUS	USB VBUS signal from the USB connector	4.75	5	5.25	V

Table 6. Recommended Operating Conditions

3.3 DC Characteristics

3.3.1 Reset Pin

Symbol	Parameter	Min	Тур	Max	Unit
VIH	High level input voltage @ 3.3 V	0.8 * VDD	-	-	V
V IT	High level input voltage @ 1.8 V	1.17	-	- - 0.3 * VDD 0.63	V
VIL	Low level input voltage @ 3.3 V	-	-	0.3 * VDD	V
VIL	Low level input voltage @ 1.8 V	-	-	0.63	V
V _{hys}	Hysteresis voltage	0.05 * VDD	-	-	V

Table 7. Reset Pin

All numbers are at typical operating conditions unless otherwise stated.

3.3.2 Power Sequence

The POC_IN and RESET_N signals should be controlled from external sources such as R/C circuits, and/or other MCU's GPIOs. Below waveforms show power sequence (Up & Down) requirements under various application needs. Note that below waveforms are not to scale.

3.3.2.1 Power-Up and Down Sequence with External 1.4V supply and POC_IN

The diagram below shows connections of various power supply voltages, POC_IN and RESET_N. These connections can be used when:

- System PMU (outside RS9116) can provide 1.4V supply, and hence the internal Buck regulator in RS9116 can be disabled.
- The 1.1V supply is still derived from LDO SoC (internal to RS9116).
- POC_IN is controlled externally.

NOTE:

- 1. A typical connection diagram is shown above. Some of the supply pins shown above may or may not be present in the IC/Module. Check the Pinout table in this datasheet and connect accordingly.
- 2. * = Provide the supply voltages as per the specifications mentioned in this datasheet.
- 3. ** = USB power supply input connection is required if USB interface is present and used. Otherwise, follow the connection as shown in Reference Schematics.

- 1. 3.3 V/1.85 V/VBATT supply shown above must be connected to the power supply pins of IC/Module. For example, SDIO_IO_VDD, ULP_IO_VDD, UULP_VBATT_1, etc.
- 2. Above POC_IN waveform is applicable if it is externally driven. Otherwise, that particular waveform can be ignored, and the RESET_N timing can be considered after/before external power supplies ramp-up/down.

3.3.2.2 Power-Up and Down Sequence with External POC_IN

The diagram below shows connections of various power supply voltages, POC_IN and RESET_N. These connections can be used when:

- System PMU cannot provide 1.4 V or 1.1 V supplies and the internal buck and LDO of RS9116 are used.
- POC_IN is controlled externally.

1. A typical connection diagram is shown above. Check the Reference Schematics for connections of other power supplies.

NOTE:

1. 3.3 V/1.85 V/VBATT supply shown above must be connected to the power supply pins of IC/Module. For example, SDIO_IO_VDD, ULP_IO_VDD, UULP_VBATT_1, etc.

3.3.2.3 Power-Up and Down Sequence with POC_IN connected internally

The diagram below shows connections of various power supply voltages, POC_IN and RESET_N. The typical applications of this connection can be as follows. This connection is **Not Recommended for New Design**.

- System cannot provide external 1.4 V & 1.1 V supplies and the internal buck and LDO of RS9116 are used.
- POC_IN is looped back from POC_OUT.

NOTE:

- 1. 1. A typical connection diagram is shown above. Check the Reference Schematics for connections of other power supplies.
- 2. POC_OUT can be connected to POC_IN if the supply voltage is 3.3 V only. Else, POC_IN must be driven externally.
- 3. This connection is **Not Recommended for New Design**, and it is recommended to drive POC_IN externally as shown in the above section. If POC_IN cannot be driven externally, then an RC circuit delay can be provided in between POC_IN and POC_OUT, for delaying the POC_OUT signal reaching POC_IN.

1. 3.3 V/1.85 V/VBATT supply shown above must be connected to the power supply pins of IC/Module. For example, SDIO_IO_VDD, ULP_IO_VDD, UULP_VBATT_1, etc.

3.3.2.4 Power-Up Sequence with EXT_PG_EN used to Control Supply Voltages

The EXT_PG_EN functionality (available on one of the pins) can be used to control supply voltages other than UULP_VBATT supplies (Always-ON VBATT Power supplies). If EXT_PG_EN functionality is enabled, it will be '1' by default immediately after power-on. The diagram below shows typical connections of EXT_PG_EN and UULP_VBATT pins. Use one of the application connections shown above in conjunction to the below. The main purpose of this connection diagram and waveform is to show the EXT_PG_EN connection and its waveform in relation to the others.

NOTE:

- 1. 1. A typical connection diagram is shown above. Some of the supply pins shown above may not be present in the SoC/module. Check the Pin Out table in this datasheet and connect accordingly.
- 2. * = Provide the supply voltages as per the specifications mentioned in the datasheet.
- 3. Typical Power circuitry can be a Power Gate (Transistor or IC based), or a Voltage Regulator.

- 1. The waveform shown above is for a typical connection. POC_IN can be connected based on one of the above application diagrams, and its waveform/timing depends on the connection.
- 2. As per the EXT_PG_EN signaling, other power supplies ramp-up as per the power circuitry implementation. Hence, the start and ramp-up timing of other power supplies does not have any timing requirement.
- 3.3.2.5 Power-Up Sequence with USB as Host Interface

The timing waveform below is for the case when USB is used as the host interface. USB_VBUS should be supplied at 5 V, and it should follow this timing waveform with respect to USB_AVDD_3P3.

USB_AVDD_3P3 is part of the input power supply to RS9116.

This waveform should be followed in conjunction with the applicable waveform given in the above sections.

3.3.3 Hardware Resetting Sequence after Power On

During power-up of the RS9116, a power-up sequence must be followed as per the requirements mentioned in the above section. In some applications, there is a need to reset the RS9116 for a second time or beyond after power-up. Follow the below timing diagram in such cases. Because the POC_IN and RESET_N are applied externally, the present state of the device will be lost.

If POC_IN cannot be applied externally or POC_OUT is looped back to POC_IN, then a second reset (or beyond) cannot be applied.

3.3.4 Digital Input Output Signals

Symbol	Parameter	Min	Тур	Max	Unit
VIH	High level input voltage @3.3 V	2.0	-	-	V
	High level input voltage @1.8 V	1.17	-	-	V
VIL	Low level input voltage @3.3 V	-	-	0.8	V
	Low level input voltage @1.8 V	-	-	0.63	V
V _{hys}	Hysteresis voltage	0.1 VDD	-	-	V
V _{OL}	Low level output voltage	-	-	0.4	V
V _{OH}	High level output voltage	VDD-0.4	-	-	V
Iol	Low level output current	-	4.0	-	mA
I _{OH}	High level output current	-	4.0	-	mA

Table 8. Digital I/O Signals

- All numbers are at typical operating conditions unless otherwise stated.
- SDIO signals will be at 8 mA drive strength.

3.3.5 USB

Parameter	Conditions	Min	Тур	Max	Units
Vcm DC (DC level measured at receiver connector)	HS Mode LS/FS Mode	-0.05 0.8	-	0.5 2.5	V
Crossover Voltages	LS Mode FS Mode	1.3 1.3	-	2 2	V
Power supply ripple noise (Analog 3.3V)	< 160 MHz	-50	-	50	mV

Table 9. USB

3.3.6 Pin Capacitances

Symbol	Parameter	Min	Тур	Max	Unit
Cio	Input/output capacitance, digital pins only	-	-	2.0	pF

3.4 AC Characteristics

Table 10. Pin Capacitances

3.4.1 Clock Specifications

RS9116 chipsets require two primary clocks:

- Low frequency 32 kHz clock for sleep manager and RTC
 - o Internal 32 kHz RC clock is used for applications with low timing accuracy requirements
 - o 32 kHz crystal clock is used for applications with high timing accuracy requirements
- High frequency 40 MHz clock for the ThreadArch® processor, baseband subsystem and the radio
 - o 40 MHz clock is integrated inside the module, and no external clock needs to be provided

The chipsets have integrated internal oscillators including crystal oscillators to generate the required clocks. Integrated crystal oscillators enable the use of low-cost passive crystal components. Additionally, in a system where

an external clock source is already present, the clock can be reused. The following are the recommended options for the clocks for different functionalities:

Functionality	Default Clock option	Other Clock option	Comments
Wi-Fi or Wi-Fi + BLE Connectivity	Internal 32 kHz RC oscillator calibrated to <200ppm	-	32 kHz XTAL Oscillator clock is optional. No significant power consumption impact on connected power numbers (<10uA).
Wi-Fi + BT or Wi-Fi + BT + BLE Connectivity with low power Audio Streaming operation (A2DP Source)	32 kHz XTAL oscillator input on UULPGPIO	Internal 32 kHz RC oscillator calibrated to <200ppm	32 kHz XTAL Oscillator clock is important for Low-power Audio Streaming operation (A2DP Source).

There is no impact on sleep/deep-sleep power consumption with/without 32 kHz XTAL oscillator clock

32 kHz XTAL sources:

Option 1: From Host MCU/MPU LVCMOS rail to rail clock input on UULPGPIO

Option 2: External Xtal oscillator providing LVCMOS rail to rail clock input on UULPGPIO (Nano-drive clock should not be supplied).

3.4.1.1 32 kHz Clock

The 32 kHz clock selection can be done through software. RC oscillator clock is not suited for high timing accuracy applications and can increase system current consumption in duty-cycled power modes.

3.4.1.1.1 RC Oscillator

Parameter	Parameter Description	Min	Тур	Max	Units
F _{osc}	Oscillator Frequency		32.0		kHz
F _{osc_Acc}	Frequency Variation with Temp and Voltage		1.2		%
Jitter	RMS value of Edge jitter (TIE)		91		ns
Peak Period Jitter	Peak value of Cycle Jitter with 6σ variation		789		ns

Table 11. 32 kHz RC Oscillator

3.4.1.1.2 32 kHz External Oscillator

An external 32 kHz low-frequency clock can be fed through the XTAL_32KHZ_IN functionality.

Figure 6. External 32 kHz Oscillator - Rail to Rail

Parameter	Parameter Description	Min	Тур	Max	Units
Fosc	Oscillator Frequency		32.768		kHz
F _{osc_Acc}	Frequency Variation with Temp and Voltage	-100		100	ppm
Duty cycle	Input duty cycle	30	50	70	%
Vac	Input AC peak-peak voltage swing at input pin.	-0.3	-	VBATT +/- 10%	Vpp

Table 12. 32 kHz External Oscillator Specifications

3.4.2 SDIO 2.0 Secondary

3.4.2.1 Full Speed Mode

Parameter	Parameter Description	Min	Тур	Max	Unit
T _{sdio}	SDIO_CLK	-	-	25	MHz
Ts	SDIO_DATA/SDIO_CMD, input setup time	4	-	-	ns
Th	SDIO_DATA/SDIO_CMD, input hold time	1	-	-	ns
T _{od}	SDIO_DATA/SDIO_CMD, clock to output delay	-	-	13	ns
CL	Output Load	5	-	10	pF

Table 13. AC Characteristics - SDIO 2.0 Secondary Full Speed Mode

Figure 7. Interface Timing Diagram for SDIO 2.0 Secondary Full Speed Mode

3.4.2.2 High Speed Mode

Parameter	Parameter Description	Min	Тур	Max	Unit
T _{sdio}	SDIO_CLK	25	-	50	MHz
Ts	SDIO_DATA/SDIO_CMD, input setup time	4	-	-	ns
T _h	SDIO_DATA/SDIO_CMD, input hold time	1	-	-	ns
T _{od}	SDIO_DATA/SDIO_CMD, clock to output delay	2.5	-	13	ns
CL	Output Load	5	-	10	pF

Table 14. AC Characteristics - SDIO 2.0 Secondary High-Speed Mode

3.4.3 SPI Secondary

3.4.3.1 Low Speed Mode

Parameter	Parameter Description	Min	Тур	Max	Unit
T _{spi}	SPI_CLK	0	-	25	MHz
T _{cs}	SPI_CSN to output delay	-	-	7.5	ns
T _{cst}	SPI CSN to input setup time	4.5	-	-	-
Ts	SPI_MOSI, input setup time	1.33	-	-	ns
T _h	SPI_MOSI, input hold time	1.2	-	-	ns
T _{od}	SPI_MISO, clock to output delay	-	-	8.75	ns
CL	Output Load	5	-	10	pF

Table 15. AC Characteristics - SPI Secondary Low Speed Mode

3.4.3.2 High Speed Mode

Parameter	Parameter Description	Min	Тур	Max	Unit
T _{spi}	SPI_CLK	25	-	80	MHz
T _{cs}	SPI_CSN to output delay	-	-	7.5	ns
T _{cst}	SPI CSN to input setup time	4.5	-	-	-
Ts	SPI_MOSI, input setup time	1.33	-	-	ns
T _h	SPI_MOSI, input hold time	1.2	-	-	ns
T _{od}	SPI_MISO, clock to output delay	2.5	-	8.75	ns
CL	Output Load	5	-	10	pF

Table 16. AC Characteristics - SPI Secondary High Speed Mode

Figure 10. Interface Timing Diagram for SPI Secondary High Speed Mode

3.4.3.3 Ultra-High-Speed Mode

Parameter	Parameter Description	Min	Тур	Max	Unit
T _{spi}	SPI_CLK	-	-	100	MHz
Ts	SPI_MOSI, input setup time	1.33	-	-	ns
Th	SPI_MOSI, input hold time	1.2	-	-	ns
T _{od}	SPI_MISO, clock to output delay	1.5	-	8.75	ns

silabs.com | Building a more connected world.

Parameter	Parameter Description	Min	Тур	Мах	Unit
CL	Output Load	5	-	10	pF

Table 17. AC Characteristics - SPI Secondary Ultra-High-Speed Mode

Figure 11. Interface Timing Diagram for SPI Secondary Ultra-High-Speed Mode

3.4.4 USB

3.4.4.1 Low Speed Mode

Parameter	Parameter Description	Min	Тур	Мах	Unit
Tr	Rise Time	75	-	300	ns
Tf	Fall Time	75	-	300	ns
Jitter	Jitter	-	-	10	ns

Table 18. AC Characteristics - USB Low Speed Mode

3.4.4.2 Full Speed Mode

Parameter	Parameter	Min	Тур	Мах	Unit
Tr	Rise Time	4	-	20	ns
T _f	Fall Time	4	-	20	ns
Jitter	Jitter	-	-	1	ns

Table 19. AC Characteristics - USB Full Speed Mode

3.4.4.3 High Speed Mode

Parameter	Parameter Description	Min	Тур	Мах	Unit
Tr	Rise Time	0.5	-	-	ns
Tf	Fall Time	0.5	-	-	ns
Jitter	Jitter	-	-	0.1	ns

3.4.5 UART

Table 20. AC Characteristics - USB High Speed Mode

Parameter	Parameter Description	Min	Тур	Max	Unit
Tuart	CLK	0	-	20	MHz
T _{od}	Output delay	0	-	10	ns
Ts	Input setup time	0	-	5	ns

Parameter	Parameter Description	Min	Тур	Max	Unit
CL	Output load	5	-	25	pF

Table 21. AC Characteristics - UART

3.4.6 I2C Main and Secondary

3.4.6.1 Fast Speed Mode

Parameter	Parameter Description	Min	Тур	Max	Unit
Ti2c	SCL	100	-	400	KHz
Tlow	clock low period	1.3	-	-	us
T _{high}	clock high period	0.6	-	-	us
T _{sstart}	start condition, setup time	0.6	-	-	us
Thstart	start condition, hold time	0.6	-	-	us
Ts	data, setup time	100	-	-	ns
T _{sstop}	stop condition, setup time	0.6	-	-	us
CL	Output Load	5	-	10	pF

Table 22. AC Characteristics - I2C Fast Speed Mode

Figure 12. Interface Timing Diagram for I2C Fast Speed Mode

3.4.6.2 High Speed Mode

Parameter	Parameter Description	Min	Тур	Мах	Unit
Ti2c	SCL	0.4	-	3.4	MHz
T _{low}	clock low period	160	-	-	ns
T _{high}	clock high period	60	-	-	ns
T _{sstart}	start condition, setup time	160	-	-	ns
T _{hstart}	start condition, hold time	160	-	-	ns
Ts	data, setup time	10	-	-	ns
Th	data, hold time	0	-	70	ns
T _{sstop}	stop condition, setup time	160	-	-	ns
CL	Output Load	5	-	10	pF

Table 23. AC Characteristics - I2C High Speed Mode

Figure 13. Interface Timing Diagram for I2C High Speed Mode

3.4.7 I2S/PCM Main and Secondary

3.4.7.1 Main Mode

Negedge driving and posedge sampling for I2S Posedge driving and negedge sampling for PCM

Parameter	Parameter Description	Min	Тур	Max	Unit
T _{i2s}	i2s_clk	0	-	25	MHz
Ts	i2s_din, i2s_ws setup time	10	-	-	ns
Th	i2s_din, i2s_ws hold time	0	-	-	ns
T _{od}	i2s_dout output delay	0	-	12	ns
CL	i2s_dout output load	5	-	10	pF

Table 24. AC Characteristics – I2S/PCM Main Mode

Figure 14. Interface Timing Diagram for I2S Main Mode

3.4.7.2 Secondary Mode

Negedge driving and posedge sampling for I2S Posedge driving and negedge sampling for PCM

Parameter	Parameter Description	Min	Тур	Max	Unit
T _{i2s}	i2s_clk	0	-	25	MHz
Ts	i2s_din, i2s_ws setup time	8	-	-	ns
T _h	i2s_din, i2s_ws hold time	0	-	-	ns
T _{od}	i2s_dout output delay	0	-	17	ns

Parameter	Parameter Description	Min	Тур	Мах	Unit
CL	i2s_dout output load	5	-	10	pF

Figure 15. Interface Timing Diagram for I2S Secondary Mode

3.4.8 GPIO Pins

Parameter	Parameter Description	Conditions	Min	Тур	Мах	Unit
T _{rf}	Rise time	Pin configured as output; SLEW = 1(fast mode)	1.0	-	2.5	ns
T _{ff}	Fall time	Pin configured as output; SLEW = 1(fast mode)	0.9	-	2.5	ns
T _{rs}	Rise time	Pin configured as output; SLEW = 0(standard mode)	1.9	-	4.3	ns
T _{fs}	Fall time	Pin configured as output; SLEW = 0(standard mode)	1.9	-	4.0	ns
Tr	Rise time	Pin configured as input	0.3	-	1.3	ns
T _f	Fall time	Pin configured as input	0.2	-	1.2	ns

Table 26. AC Characteristics - GPIO Pins

3.5 RF Characteristics

All specifications are subject to change. Contact Silicon Labs for final numbers.

In the sub-sections below, all numbers are measured at typical operating conditions unless otherwise stated.

3.5.1 WLAN 2.4 GHz Transmitter Characteristics

3.5.1.1 Transmitter Characteristics with 3.3 V Supply

- TA = 25 °C, PA2G_AVDD/VINBCKDC = 3.3V. Remaining supplies are at typical operating conditions.
- The transmit power numbers are based on average performance across all channels.

Parameter	Condition	Notes	Min	Тур	Max	Units
Transmit Power for 20 MHz	DSSS - 1 Mbps	EVM< -9 dB	-	17	-	dBm
Bandwidth, compliant with IEEE mask and EVM	DSSS - 2 Mbps	EVM< -9 dB	-	16.5	-	dBm
	CCK- 5.5 Mbps	EVM< -9 dB	-	16.5	-	dBm
	CCK - 11 Mbps	EVM< -9 dB	-	16.5	-	dBm
	OFDM - 6 Mbps	EVM< -5 dB	-	17.5	-	dBm
	OFDM - 9 Mbps	EVM< -8 dB	-	17.5	-	dBm
	OFDM - 12 Mbps	EVM< -10 dB	-	17.5	-	dBm
	OFDM - 18 Mbps	EVM< -13 dB	-	16.5	-	dBm
	OFDM - 24 Mbps	EVM< -16 dB	-	15.5	-	dBm
	OFDM - 36 Mbps	EVM< -19 dB	-	13.5	-	dBm
	OFDM - 48 Mbps	EVM< -22 dB	-	13.5	-	dBm
	OFDM - 54 Mbps	EVM< -25 dB (See note section)	-	13.5	-	dBm
	MCS0 Mixed Mode	EVM< -5 dB	-	16.5	-	dBm
	MCS1 Mixed Mode	EVM< -10 dB	-	16.5	-	dBm
	MCS2 Mixed Mode	EVM< -13 dB	-	16.5	-	dBm
	MCS3 Mixed Mode	EVM< -16 dB	-	15.5	-	dBm
	MCS4 Mixed Mode	EVM< -19 dB	-	14	-	dBm
	MCS5 Mixed Mode	EVM< -22 dB	-	13	-	dBm
	MCS6 Mixed Mode	EVM< -25 dB (See note section)	-	13	-	dBm
	MCS7 Mixed Mode	(See note section)	-	10.5	-	dBm
Transmitter Emissions (6 Mbps @ Maximum Power)	776-794 MHz	CDMA2000	-	-158	-	dBm/Hz
waxiiiuiii r uwer)	869–960 MHz	CDMAOne, GSM850	-	-158	-	dBm/Hz
	1450–1495 MHz	DAB	-	-158	-	dBm/Hz
	1570–1580 MHz	GPS	-	-145	-	dBm/Hz
	1592–1610 MHz	GLONASS	-	-120	-	dBm/Hz

Parameter	Condition	Notes	Min	Тур	Max	Units
	1710–1800 MHz	DSC-1800- Uplink	-	-128	-	dBm/Hz
	1805–1880 MHz	GSM 1800	-	-111	-	dBm/Hz
	1850–1910 MHz	GSM 1900	-	-125	-	dBm/Hz
	1910–1930 MHz	TDSCDMA, LTE	-	-134	-	dBm/Hz
	1930–1990 MHz	GSM1900, CDMAOne, WCDMA	-	-132	-	dBm/Hz
	2010–2075 MHz	TDSCDMA	-	-134	-	dBm/Hz
	2110–2170 MHz	WCDMA	-	-130	-	dBm/Hz
	2305–2370 MHz	LTE Band 40	-	-110	-	dBm/Hz
	2370–2400 MHz	LTE Band 40	-	-95	-	dBm/Hz
	2496–2530 MHz	LTE Band 41	-	-115	-	dBm/Hz
	2530–2560 MHz	LTE Band 41	-	-121	-	dBm/Hz
	2570–2690 MHz	LTE Band 41	-	-127	-	dBm/Hz
	5000–5900 MHz	WLAN 5G	-	-148	-	dBm/Hz
Harmonic Emissions (1 Mbps @	4.8-5.0 GHz	2nd Harmonic	-	-48	-	dBm/MHz
Maximum Power)	7.2-7.5 GHz	3rd Harmonic	-	-43	-	dBm/MHz

Table 27. WLAN 2.4 GHz Transmitter Characteristics (3.3V)

- 1. There is a variation of up to +/-1dB in power across channels.
- 2. To meet FCC emission limits, band edge channels (1 and 11) TX power has to be reduced up to 6 dB in lower data rates and up to 3 dB in higher data rates. The radiated power in band edge is a strong function of the antenna properties. Refer to the AN1337 application note for more details on the certifications.
- 3. Across the temperature range of -40 °C to +85 °C, the output power may degrade by up to 2 dB at -40 °C and by up to 5 dB at +85 °C.
- 4. There may be a reduction in EVM of up to 1 dB in 54 Mbps data rate, and 2 dB in MCS6 data rate.
- 5. EVM for MCS7 data rate may not meet IEEE spec of -27dB.
- 6. IEEE spectral mask limits may be crossed in lower data rates in some channels, and if required power may be backed off by 1-2dB.
- 7. There is a +/-2dB of 3 sigma (99.7%) part-to-part power variation.

3.5.2 WLAN 2.4 GHz Receiver Characteristics on High-Performance (HP) RF Chain

TA = 25 °C. Parameters are measured at antenna port on channel 1 (2412 MHz)

- All WLAN receiver sensitivity numbers and adjacent channel numbers are at < 10% PER limit. Packet sizes are 1024 bytes for 802.11 b/g data rates and 4096 bytes for 802.11 n data rates.
- For WLAN ACI cases, the desired signal power is 3 dB above standard defined sensitivity level.

Parameter	Condition/Notes	Min	Тур	Max	Units
Sensitivity for 20 MHz	1 Mbps DSSS	-	-95	-	dBm
Bandwidth ⁽¹⁾	2 Mbps DSSS	-	-89.5	-	dBm
	5.5 Mbps CCK	-	-87.5	-	dBm
	11 Mbps CCK	-	-85.5	-	dBm
	6 Mbps OFDM	-	-89	-	dBm
	9 Mbps OFDM	-	-88	-	dBm
	12 Mbps OFDM	-	-88.5	-	dBm
	18 Mbps OFDM	-	-86.5	-	dBm
	24 Mbps OFDM	-	-82.5	-	dBm
	36 Mbps OFDM	-	-78.5	-	dBm
	48 Mbps OFDM	-	-75	-	dBm
	54 Mbps OFDM	-	-73	-	dBm
	MCS0 Mixed Mode	-	-88	-	dBm
	MCS1 Mixed Mode	-	-85.5	-	dBm
	MCS2 Mixed Mode	-	-83	-	dBm
	MCS3 Mixed Mode	-	-80.5	-	dBm
	MCS4 Mixed Mode	-	-77	-	dBm
	MCS5 Mixed Mode	-	-72	-	dBm
	MCS6 Mixed Mode	-	-70	-	dBm
	MCS7 Mixed Mode	-	-69.5	-	dBm
Maximum Input Level for PER	802.11 b	-	0	-	dBm
below 10%	802.11g	-	-10	-	dBm
	802.11n	-	-10	-	dBm
RSSI Accuracy Range		-3	-	3	dB
Blocking level for 3 dB RX	776–794 MHz	-	-4	-	dBm
Sensitivity Degradation (Data rate 6Mbps OFDM, Desired	824–849 MHz	-	-4	-	dBm
signal at -79dBm)	880–915 MHz	-	-4	-	dBm
	1710–1785 MHz	-	-14	-	dBm
	1850–1910 MHz	-	-13	-	dBm
	1920–1980 MHz	-	-15	-	dBm
	2300–2400 MHz	-	-60	-	dBm
	2570–2620 MHz	-	-23	-	dBm
	2545–2575 MHz	-	-22	-	dBm
Return Loss		-10	-	-	dB
Adjacent Channel Interference	1 Mbps DSSS	-	36	-	dB

Parameter	Condition/Notes	Min	Тур	Max	Units
	11 Mbps DSSS	-	37	-	dB
	6 Mbps OFDM	-	38	-	dB
	54 Mbps OFDM	-	22	-	dB
	MCS0 Mixed Mode	-	38	-	dB
	MCS7 Mixed Mode	-	20	-	dB
Alternate Adjacent Channel	1 Mbps DSSS	-	44	-	dB
Interference	11 Mbps DSSS	-	35	-	dB
	6 Mbps OFDM	-	46	-	dB
	54 Mbps OFDM	-	30	-	dB
	MCS0 Mixed Mode	-	46	-	dB
	MCS7 Mixed Mode	-	28	-	dB

Table 28. WLAN 2.4 GHz Receiver Characteristics on HP RF Chain

- 1. Receiver sensitivity may be degraded by up to 6.5 dB for channels 5,6,7,8,13 & 14 due to the desensitization of the receiver by harmonics of the system clock (40 MHz).
- 2. There may be a degradation of up to 2 dB across the operating temperature range of -40 °C to +85 °C.

3.5.3 WLAN 2.4 GHz Receiver Characteristics on Low-Power (LP) RF Chain

TA = 25 °C. Parameters are measured at antenna port on channel 1 (2412 MHz)

Parameter	Condition	Min	Тур	Max	Units
Sensitivity for 20 MHz Bandwidth ⁽¹⁾	1 Mbps DSSS	-	-93	-	dBm
	2 Mbps DSSS	-	-86.5	-	dBm
	5.5 Mbps CCK	-	-84.5	-	dBm
	11 Mbps CCK	-	-81.5	-	dBm
	6 Mbps OFDM	-	-86.5	-	dBm
	9 Mbps OFDM	-	-86	-	dBm
	12 Mbps OFDM	-	-85.5	-	dBm
	18 Mbps OFDM	-	-83	-	dBm
	24 Mbps OFDM	-	-80.5	-	dBm
	36 Mbps OFDM	-	-76.5	-	dBm
	MCS0 Mixed Mode	-	-85.5	-	dBm
	MCS1 Mixed Mode	-	-83.5	-	dBm
	MCS2 Mixed Mode	-	-81	-	dBm

Parameter	Condition	Min	Тур	Max	Units
	MCS3 Mixed Mode	-	-78	-	dBm
	MCS4 Mixed Mode	-	-74	-	dBm
Maximum Input Level for PER	802.11 b	-	5	-	dBm
below 10%	802.11g	-	-10	-	dBm
	802.11n	-	-10	-	dBm
RSSI Accuracy Range		-3	-	3	dB
Blocking level for 3 dB RX	776–794 MHz	-	-4	-	dBm
Sensitivity Degradation (Data rate 6Mbps OFDM, Desired	824–849 MHz	-	-4	-	dBm
signal at -79dBm)	880–915 MHz	-	-4	-	dBm
	1710–1785 MHz	-	-14	-	dBm
	1850–1910 MHz	-	-13.5	-	dBm
	1920–1980 MHz	-	-18	-	dBm
	2300–2400 MHz	-	-60	-	dBm
	2570–2620 MHz	-	-25	-	dBm
	2545–2575 MHz	-	-26	-	dBm
Return Loss		-10	-	-	dB
Adjacent Channel Interference	1 Mbps DSSS	-	40	-	dB
	11 Mbps DSSS	-	36	-	dB
	6 Mbps OFDM	-	42	-	dB
	36 Mbps OFDM	-	30	-	dB
	MCS0 Mixed Mode	-	40	-	dB
	MCS4 Mixed Mode	-	30	-	dB
Alternate Adjacent Channel	1 Mbps DSSS	-	50	-	dB
Interference	11 Mbps DSSS	-	38	-	dB
	6 Mbps OFDM	-	48	-	dB
	36 Mbps OFDM	-	38	-	dB
	MCS0 Mixed Mode	-	48	-	dB
	MCS4 Mixed Mode	-	36	-	dB

Table 29. WLAN 2.4 GHz Receiver Characteristics on LP RF Chain

- 1. Receiver sensitivity may be degraded by up to 6.5 dB for channels 5,6,7,8,13 & 14 due to the desensitization of the receiver by harmonics of the system clock (40 MHz).
- 2. There may be a degradation of up to 2 dB across the operating temperature range of -40 °C to +85 °C.

3.5.4 Bluetooth Transmitter Characteristics on High-Performance (HP) RF Chain

3.5.4.1 Transmitter Characteristics with 3.3 V Supply

TA = 25 °C, PA2G_AVDD/VINBCKDC = 3.3 V. Remaining supplies are at typical operating conditions. Parameters are measured at antenna port. $^{(1)}$

• For Bluetooth C/I cases, the desired signal power is 3 dB above standard defined sensitivity level.

Parameter	Condition	Min	Тур	Мах	Units
Transmit Power	BR	-	12	-	dBm
	EDR 2Mbps	-	12	-	dBm
	EDR 3Mbps	-	11	-	dBm
	LE 1Mbps	-	18	-	dBm
	LE 2Mbps	-	18	-	dBm
	LR 500 Kbps	-	18	-	dBm
	LR 125 Kbps	-	18	-	dBm
Power Control Step	BR, EDR	-	3	-	dB
Adjacent Channel Power M-N = 2	BR	-	-	-20	dBm
	EDR	-	-	-20	dBm
	LE	-	-	-20	dBm
	LR	-	-	-20	dBm
Adjacent Channel Power M-N > 2	BR	-	-	-40	dBm
	EDR	-	-	-40	dBm
	LE	-	-	-30	dBm
	LR	-	-	-30	dBm
BR Modulation Characteristics	DH1	-25	-	- - - - - - - - - - - - - - - 20 -20 -20	kHz
	DH3	-40	-	40	kHz
	DH5	-40	-	40	kHz
	Drift Rate	-20	-	20	kHz/50 us
	Δf1 Avg	140	-	175	kHz
	Δf2 Max	115	-		kHz
EDR Modulation Characteristics	RMS DEVM, EDR2	-	10	-	%
	RMS DEVM, EDR3	-	6	-	%
	99% DEVM, EDR2	-	17	-	%
	99% DEVM, EDR3	-	12	-	%

Parameter	Condition		Min	Тур	Max	Units
	peak DEVM, EDR2		-	22	-	%
	peak DEVM, EDR3		-	16	-	%
BLE Modulation Characteristics	Δf1 Avg		225	-	275	kHz
	Δf2 Max		185	-	-	kHz
	∆f2 Avg/∆f1 Avg		0.8	-	-	-
Transmitter Emissions (BR	776-794 MHz	CDMA2000	-	-160	-	dBm/Hz
@Maximum output power)	869–960 MHz	CDMAOne, GSM850	-	-160	-	dBm/Hz
	1450–1495 MHz	DAB	-	-160	-	dBm/Hz
	1570–1580 MHz	GPS	-	-160	-	dBm/Hz
	1592–1610 MHz	GLONASS	-	-160 ⁽²⁾	-	dBm/Hz
	1710–1800 MHz	DSC-1800- Uplink	-	-115	-	dBm/Hz
	1805–1880 MHz	GSM 1800	-	-148	-	dBm/Hz
	1850–1910 MHz	GSM 1900	-	-148	-	dBm/Hz
	1910–1930 MHz	TDSCDMA, LTE	-	-135	-	dBm/Hz
	1930–1990 MHz	GSM1900, CDMAOne, WCDMA	-	-101	-	dBm/Hz
	2010–2075 MHz	TDSCDMA	-	-148	-	dBm/Hz
	2110–2170 MHz	WCDMA	-	-115	-	dBm/Hz
	2305–2370 MHz	LTE Band 40	-	-140	-	dBm/Hz
	2370–2400 MHz	LTE Band 40	-	-134	-	dBm/Hz
	2496–2530 MHz	LTE Band 41	-	-125	-	dBm/Hz
	2530–2560 MHz	LTE Band 41	-	-138	-	dBm/Hz
	2570–2690 MHz	LTE Band 41	-	-138	-	dBm/Hz
	5000–5900 MHz	WLAN 5G	-	-148	-	dBm/Hz

 Table 30. Bluetooth Transmitter Characteristics on HP RF Chain 3.3 V

- 1. There is a variation of up to +/-1 dB in power across channels.
- Noise-floor is -160 dBm/Hz with spurious tone power of -66 dBm at 1601.33 MHz when transmitted signal is at 2402 MHz.
- 3. Across the temperature range of -40 °C to +85 °C, the output power may degrade by up to 2 dB at -40 °C and by up to 5 dB at +85 °C.
- 4. There is a +/-2 dB of 3 sigma (99.7%) part-to-part power variation.

3.5.5 Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain

TA = 25 °C. Parameters are measured at antenna port and applicable to PA2G_AVDD/VINBCKDC=3.3V

• For Bluetooth C/I cases, the desired signal power is 3 dB above standard defined sensitivity level.

Parameter	Condition/Notes	Min	Тур	Max	Units
Transmit Power	LE 1Mbps	-	-	-3.5	dBm
	LE 2Mbps	-	-	-3.5	dBm
	LR 500 Kbps	-	-	-3.5	dBm
	LR 125 kbps	-	-	-3.5	dBm
Adjacent Channel Power M-N = 2	LE	-	-	-20	dBm
	LR	-	-	-20	dBm
Adjacent Channel Power M-N >	LE	-	-	-30	dBm
	LR	-	-	-30	dBm
BR Modulation Characteristics	DH1	-25	-	25	kHz
	DH3	-40	-	40	kHz
	DH5	-40	-	40	kHz
	Drift Rate	-20	-	20	kHz
	Δf1 Avg	140	-	175	kHz
	Δf2 Max	115	-	-	kHz
BLE Modulation Characteristics	Δf1 Avg	225	-	275	kHz
	Δf2 Max	185	-	-	kHz
	Δf2 Avg/Δf1 Avg	0.8	-	-	-

Table 31. Bluetooth Transmitter Characteristics on LP 0 dBm RF Chain

- 1. There is a variation of up to 2 dB in power across parts and channels.
- Noise-floor is -160 dBm/Hz with spurious tone power of -66 dBm at 1601.33 MHz when transmitted signal is at 2402 MHz.
- 3. Across the temperature range of -40 °C to +85 °C, the output power may degrade by up to 2 dB at -40 °C and by up to 5 dB at +85 °C.

3.5.6 Bluetooth Receiver Characteristics on High-Performance (HP) RF Chain

TA = 25 °C. Parameters are measured at antenna port and applicable to PA2G_AVDD/VINBCKDC=3.3 V

Parameter	Condition/Notes	Min	Тур	Max	Units
Sensitivity, Dirty TX off ^{(1), (2)}	BR (1 Mbps), 339 bytes, DH5 Packet, BER= 0.1%	-	-90	-	dBm

Parameter	Condition/Notes	Min	Тур	Мах	Units
	EDR2 (2 Mbps), 679 bytes, 2-DH5 Packet, BER= 0.01%	-	-91	-	dBm
	EDR3 (3 Mbps), 1020 bytes, 3- DH5 Packet, BER= 0.01%	-	-85	-	dBm
	LE (1 Mbps), 37 bytes, PER=30.8%	-	-92	-	dBm
	LE (2 Mbps), 37 bytes, PER=30.8%	-	-90	-	dBm
	LR (500 Kbps), 37 bytes, PER=30.8%	-	-99	-	dBm
	LR (125 Kbps), 37 bytes, PER=30.8%	-	-103	-	dBm
Maximum Input Level	BR, EDR2, EDR3, BER= 0.1%	-	-16	-	dBm
	LE 1Mbps, 2Mbps, PER=30.8%	-	10	-	dBm
	LR 500kps, 125kbps, PER=30.8%	-	10	-	dBm
C/I Performance	BR, co-channel, BER=0.1%	9	-	-	dB
	BR, adjacent +1/-1 MHz, BER=0.1%	-2	-	-	dB
	BR, adjacent +2/-2 MHz BER=0.1%	-19	-	-	dB
	BR, adjacent >= ±3 MHz BER=0.1%	-19	-	-	dB
	BR, Image channel BER=0.1%	-11	-	-	dB
	BR, adjacent to Image channel BER=0.1%	-22	-	-	dB
	EDR2, co-channel BER=0.1%	11	-	-	dB
	EDR2, adjacent +1/-1 MHz BER=0.1%	-2	-	-	dB
	EDR2, adjacent +2/-2 MHz BER=0.1%	-17	-	-	dB
	EDR2, adjacent >= ±3 MHz BER=0.1%	-17	-	-	dB
	EDR2, Image channel BER=0.1%	-9	-	-	dB
	EDR2, adjacent to Image channel BER=0.1%	-22	-	-	dB
	EDR3, co-channel BER=0.1%	19	-	-	dB
	EDR3, adjacent +1/- MHz BER=0.1%	3	-	-	dB
	EDR3, adjacent +2/-2 MHz BER=0.1%	-12	-	-	dB
	EDR3, adjacent >= ±3 MHz BER=0.1%	-12	-	-	dB
	EDR3, Image channel BER=0.1%	-2	-	-	dB

arameter	Condition/Notes	Min	Тур	Max	Units
	EDR3, adjacent to Image channel BER=0.1%	-15	-	-	dB
	LE 1Mbps, co-channel PER=30.8%	-	11	-	dB
	LE 1Mbps, adjacent +1 MHz PER=30.8%	-	1	-	dB
	LE 1Mbps, adjacent -1 MHz PER=30.8%	-	-1	-	dB
	LE 1Mbps, adjacent +2 MHz PER=30.8%	-	-22	-	dB
	LE 1Mbps, adjacent -2 MHz PER=30.8%	-	-21	-	dB
	LE 1Mbps, adjacent +3 MHz PER=30.8%	-	-20	-	dB
	LE 1Mbps, adjacent -3 MHz PER=30.8%	-	-27	-	dB
	LE 1Mbps, adjacent >= ±4 MHz PER=30.8%	-	-33	-	dB
	LE 1Mbps, Image channel PER=30.8%	-	-22	-	dB
	LE 1Mbps, +1MHz adjacent to Image channel PER=30.8%	-	-31	-	dB
	LE 1Mbps, -1MHz adjacent to Image channel PER=30.8%	-	-20	-	dB
	LE 2Mbps, co-channel PER=30.8%	-	11	-	dB
	LE 2Mbps, adjacent +2 MHz PER=30.8%	-	-4	-	dB
	LE 2Mbps, adjacent -2 MHz PER=30.8%	-	-4	-	dB
	LE 2Mbps, adjacent +4 MHz PER=30.8%	-	-13	-	dB
	LE 2Mbps, adjacent -4 MHz PER=30.8%	-	-16	-	dB
	LE 1Mbps, adjacent >= ±6 MHz PER=30.8%	-	-32	-	dB
	LE 1Mbps, Image channel PER=30.8%	-	-13	-	dB
	LE 1Mbps, +2MHz adjacent to Image channel PER=30.8%	-	-24	-	dB
	LE 1Mbps, -2MHz adjacent to Image channel PER=30.8%	-	-4	-	dB

Table 32. Bluetooth Receiver Characteristics on HP RF Chain

- 1. **BR, EDR:** Receiver sensitivity is degraded by up to 9 dB for channels 38,78 due to the desensitization of the receiver by harmonics of the system clock (40MHz)
- 2. **BLE, LR:** Receiver sensitivity is degraded by up to 11.5 dB for channels 19,29,30,39 due to the desensitization of the receiver by harmonics of the system clock (40MHz)
- 3. There may be a degradation of up to 2 dB across the operating temperature range of -40 °C to +85 °C.

3.5.7 Bluetooth Receiver Characteristics on Low-Power (LP) RF Chain

TA = 25 °C. Parameters are measured at antenna port and applicable to PA2G_AVDD/VINBCKDC=3.3 V

Parameter	Condition/Notes	Min	Тур	Мах	Units
Sensitivity, Dirty TX off ^{(1), (2)}	BR (1 Mbps), 339 bytes, DH5 Packet BER= 0.1%	-	-85	-	dBm
	EDR2 (2 Mbps), 679 bytes, 2-DH5 Packet, BER= 0.01%	-	-83	-	dBm
	LE (1 Mbps), 37 bytes, PER=30.8%	-	-89	-	dBm
	LE (2 Mbps), 37 bytes, PER=30.8%	-	-87	-	dBm
	LR (500 Kbps), 37 bytes, PER=30.8%	-	-97	-	dBm
	LR (125 Kbps), 37 bytes, PER=30.8%	-	-101	-	dBm
Maximum Input Level	BR, EDR2 BER= 0.1%	-	-16	-	dBm
	LE 1Mbps, 2Mbps PER=30.8%	-	3	-	dBm
	LR 500kps, 125kbps PER=30.8%	-	10	-	dBm
BER Floor		-	1e-4	-	%
C/I Performance	BR, co-channel BER= 0.1%	9	-	-	dB
	BR, adjacent +1/-1 MHz, BER=0.1%	-2	-	-	dB
	BR, adjacent +2/-2 MHz BER=0.1%	-19	-	-	dB
	BR, adjacent >= ±3 MHz BER=0.1%	-19	-	-	dB
	BR, Image channel BER=0.1%	-11	-	-	dB
	BR, adjacent to Image channel BER=0.1%	-22	-	-	dB
	EDR2, co-channel BER=0.1%	11	-	-	dB
	EDR2, adjacent +1/-1 MHz BER=0.1%	-2	-	-	dB
	EDR2, adjacent +2/-2 MHz BER=0.1%	-17	-	-	dB

Parameter	Condition/Notes	Min	Тур	Мах	Units
	EDR2, adjacent >= ±3 MHz BER=0.1%	-17	-	-	dB
	EDR2, Image channel BER=0.1%	-9	-	-	dB
	EDR2, adjacent to Image channel BER=0.1%	-22	-	-	dB
	LE 1Mbps, co-channel PER=30.8%	-	11	-	dB
	LE 1Mbps, adjacent +1 MHz PER=30.8%	-	0	-	dB
	LE 1Mbps, adjacent -1 MHz PER=30.8%	-	-2	-	dB
	LE 1Mbps, adjacent +2 MHz PER=30.8%	-	-22	-	dB
	LE 1Mbps, adjacent -2 MHz PER=30.8%	-	-23	-	dB
	LE 1Mbps, adjacent +3 MHz PER=30.8%	-	-21	-	dB
	LE 1Mbps, adjacent -3 MHz PER=30.8%	-	-25	-	dB
	LE 1Mbps, adjacent >= ±4 MHz PER=30.8%	-	-32	-	dB
	LE 1Mbps, Image channel PER=30.8%	-	-26	-	dB
	LE 1Mbps, +1MHz adjacent to Image channel PER=30.8%	-	-34	-	dB
	LE 1Mbps, -1MHz adjacent to Image channel PER=30.8%	-	-21	-	dB
	LE 2Mbps, co-channel PER=30.8%	-	10	-	dB
	LE 2Mbps, adjacent +2 MHz PER=30.8%	-	-4	-	dB
	LE 2Mbps, adjacent -2 MHz PER=30.8%	-	0	-	dB
	LE 2Mbps, adjacent +4 MHz PER=30.8%	-	-12	-	dB
	LE 2Mbps, adjacent -4 MHz PER=30.8%	-	-16	-	dB
	LE 2Mbps, adjacent >= ±6 MHz PER=30.8%	-	-33	-	dB
	LE 2Mbps, Image channel PER=30.8%	-	-12	-	dB
	LE 2Mbps, 2MHz adjacent to Image channel PER=30.8%	-	-23	-	dB
	LE 2Mbps, -2MHz adjacent to Image channel PER=30.8%	-	-4	-	dB

Table 33. Bluetooth Receiver Characteristics on LP RF Chain

- 1. **BR, EDR:** Receiver sensitivity is degraded by up to 9 dB for channels 38,78 due to the desensitization of the receiver from harmonics of the system clock (40MHz)
- 2. **BLE, LR:** Receive sensitivity is degraded by up to 11.5 dB for channels 19,29,30,39 due to the desensitization of the receiver from harmonics of the system clock (40MHz)
- 3. There may be a degradation of up to 2 dB across the operating temperature range of -40 °C to +85 °C.

3.6 Typical Current Consumption

3.6.1 3.3 V

3.6.1.1 WLAN

Parameter	Description	Value	Units
1 Mbps Listen	LP Chain	13.82	mA
1 Mbps RX Active	LP Chain	19.67	mA
6 Mbps RX Active	HP Chain	48.2	mA
72 Mbps RX Active	HP Chain	48.2	mA
11 Mbps TX Active	Tx Power = Maximum (18dBm) Tx Power = 8dBm	270 130	mA mA
6 Mbps TX Active	Tx Power = Maximum (18dBm) Tx Power = 8dBm	285 130	mA mA
54 Mbps TX Active	Tx Power = Maximum (15dBm) Tx Power = 8dBm	200 130	mA mA
72 Mbps TX Active	Tx Power = Maximum (12dBm)	180	mA

Parameter	Description	Value	Units
	Tx Power = 8dBm	130	mA
Deep Sleep	GPIO Wake up	0.9	uA
Standby	State retained	13.1	uA
Standby Associated, DTIM = 1		293	uA
Standby Associated, DTIM = 3		119	uA
Standby Associated, DTIM = 10		51	uA

3.6.1.2 Bluetooth BR and EDR

Parameter	Description	Value	Units
TX Active Current, 1 Mbps BR	LP chain, Tx Power = -2 dBm	9.9	mA
	HP chain, Tx Power = Maximum (12 dBm)	130	mA
RX Active Current, 1 Mbps BR	LP chain	10.2	mA
	HP chain	26.7	mA
TX Active Current, 2 Mbps EDR	HP chain, Tx Power = Maximum (12 dBm)	130	mA
RX Active Current, 2 Mbps EDR	LP chain	10.2	mA
	HP chain	26.7	mA
TX Active Current, 3 Mbps EDR	HP chain, Tx Power = Maximum (12 dBm)	140	mA
RX Active Current, 3 Mbps EDR	HP chain	26.7	mA
Deep Sleep	GPIO Wake up	0.9	uA
Standby	State RAM retained	13.1	uA

3.6.1.3 Bluetooth LE

Parameter	Description	Value	Units
TX Active Current	LP chain, Tx Power = -2 dBm	8.9	mA
	LP Chain, Tx Power = 2 dBm	-	mA
	HP Chain, Tx Power = Maximum (18 dBm)	190	mA
RX Active Current	LP chain	10.9	mA
	HP chain	26.7	mA
Deep Sleep	GPIO Wakeup	0.9	uA
Standby	State retained	13.1	uA
Advertising, Unconnectable	Advertising on all 3 channels	22.4	uA
	Advertising Interval = 1.28s		
	Tx Power = -2 dBm, LP chain		
Advertising, Connectable	Advertising on all 3 channels	30.1	uA
	Advertising Interval = 1.28s		
	Tx Power = -2 dBm, LP chain		
Connected	Connection Interval = 1.28s	21.8	uA

Parameter	Description	Value	Units
	No Data Tx Power = -2 dBm, LP chain		
Connected	Connection Interval = 200ms No Data	72	uA
	Tx Power = -2 dBm, LP chain		

4 RS9116 B00 Module Detailed Description

4.1 Overview

RS9116 B00 module is based on Silicon Labs' RS9116 ultra-low-power, single spatial stream, 802.11n + BT/BLE5.0 Convergence SoC. The RS9116 B00 module provides low-cost CMOS integration of a multi-threaded MAC processor (ThreadArch®), baseband digital signal processing, analog front-end, crystal oscillator, calibration eFuse, 2.4GHz RF transceiver, integrated power amplifier, match, bandpass filters (BPF), antenna diversity switch (DPDT) and Quad-SPI Flash thus providing a fully integrated solution for a range of hosted and embedded wireless applications. With Silicon Labs embedded four-threaded processor and on-chip ROM and RAM, these chipsets enable integration into low-cost and zero host load applications. With an integrated PMU and support for a variety of digital peripherals, RS9116 enables very low-cost implementations for wireless hosted and embedded applications. It can be connected to a host processor through SDIO, USB, SPI or UART interfaces. Wireless firmware upgrades and provisioning are supported.

4.2 Module Features

4.2.1 WLAN

- Compliant to single-spatial stream IEEE 802.11 b/g/n with single band support
- Support for 20 MHz channel bandwidth
- Transmit power up to +18 dBm with integrated PA
- Receive sensitivity as low as -96 dBm
- Data Rates: 802.11b: Up to 11 Mbps; 802.11g: Up to 54 Mbps; 802.11n: MCS0 to MCS7
- Operating Frequency Range: 2412 MHz 2484 MHz

4.2.1.1 MAC

- Conforms to IEEE 802.11b/g/n/j standards for MAC
- Dynamic selection of fragment threshold, data rate, and antenna depending on the channel statistics
- Hardware accelerators for WEP 64/128-bit and AES
- WPA, WPA2, and WMM support
- AMPDU and AMSDU aggregation for high performance
- Firmware downloaded from host based on application
- Hardware accelerators for DH (for WPS)

4.2.1.2 Baseband Processing

- Supports DSSS for 1, 2 Mbps and CCK for 5.5, 11 Mbps
- Supports all OFDM data rates (6, 9, 12, 18, 24, 36, 48, 54 Mbps, MCS0 to MCS7), and Short GI in Hosted mode
- Supports IEEE 802.11n single-stream modes with data rates up to 72 Mbps
- Supports long, short, and HT preamble modes
- High-performance multipath compensation in OFDM, DSSS, and CCK modes

4.2.2 Bluetooth

- Transmit power up to +16 dBm with integrated PA
- Receive sensitivity: LE: -92 dBm, LR 125 Kbps: -102 dBm
- Compliant to dual-mode Bluetooth 5
- <8 mA transmits current in Bluetooth 5 mode, 2 Mbps data rate
- Data rates: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps, 3 Mbps

- Operating Frequency Range: 2.402 GHz 2.480 GHz
- Bluetooth 2.1 + EDR, Bluetooth Low Energy 4.0 / 4.1 / 4.2 / 5.0
- Bluetooth Low Energy 1 Mbps, 2 Mbps and Long-Range modes
- Bluetooth Low Energy Secure connections
- Bluetooth Low Energy supports central role and peripheral role concurrently
- Bluetooth auto rate and auto TX power adaptation
- Scatternet* with two Secondary roles while still being visible

* For a detailed list of software features and available profiles, refer to the Software Reference Manuals or contact Silicon Labs for availability.

4.2.2.1 MAC

4.2.2.1.1 Link Manager

- Creation, modification & release of logical links
- Connection establishment between Link managers of two Bluetooth devices
- Link supervision is implemented in Link Manager
- Link power control is done depending on the inputs from Link Controller
- Enabling & disabling of encryption & decryption on logical links
- Services the data transport requests from L2CAP and provides required QOS
- Support for security using ECDH hardware accelerator

4.2.2.1.2 Link Controller

- Encodes and decodes header of BT packets
- Manages flow control, acknowledgment, retransmission requests, etc.
- Stores the last packet status for all logical transports
- Chooses between SCO & ACL buffers depending on the control information coming from BBP resource manager
- Indicates the success status of packet transmission to upper layers
- Indicates the link quality to the LMP layer

4.2.2.1.3 Host Controller

- Receives & decodes commands received from the Bluetooth Host.
- Propagates the decoded commands to respective modules
- Responsible for transmitting and receiving packets from and to Host
- Formats the responses coming from other modules of Bluetooth Controller as events and sends them to the Host.

4.2.2.1.4 Device Manager

- Controls Scan & Connection processes
- Controls all BT Device operations except data transport operations
- Storing link keys
- BT Controller state transition management
- Slot synchronization & management
- Access contract management

• Scheduler

4.2.2.2 Baseband Processing

- Supports GFSK (1 Mbps), EDR-DQPSK, EDR-D8PSK
- Supports BLE and Bluetooth long range
- Supports Data rates up to 3 Mbps

4.2.3 RF Transceiver

- Integrated 2.4 GHz transceiver with highly programmable operating modes
- Internal oscillator with 40 MHz crystal
- Inbuilt automatic boot up and periodic calibration enables ease of integration

4.2.4 Host Interfaces

- SDIO
- Version 2.0-compatible
- o Supports 1-bit and 4-bit SDIO modes
- Operation up to a maximum clock speed of 50 MHz
- SPI Interface
 - Operation up to a maximum clock speed of 100 MHz
- USB 2.0
 - Supports 480Mbps "High Speed" (HS), 12Mbps "Full Speed" (FS) and 1.5Mbps "Low Speed" (LS) serial data transmission
 - o Support USB CDC and device mode
- UART
- \circ Supports variable baud rates between 9600 and 3686400 bps
- $\circ~$ AT command interface for configuration and data transmission/reception

NOTE: Hosted mode (n-Link) supports USB 2.0 and SDIO. Embedded Mode (WiSeConnect) supports SPI, USB CDC, SDIO, and UART.

4.2.4.1 Auto Host Detection

RS9116 detects the host interface automatically after connecting to respective host controllers like SDIO, SPI, UART, USB and USB-CDC. SDIO/SPI host interface is detected through the hardware packet exchanges. UART host interface is detected through the software based-on the received packets on the UART interface. USB-Device mode interface is detected through the hardware based-on VBUS signal level. The host interface detection between USB & USB-CDC will be taken care by the firmware based on the USB_CDC_DIS GPIO. This Host configuration is stored in always-on domain registers after detection (on power up) and reused this information at each wakeup.

4.2.5 Wireless Coexistence Manager

- Arbitration between Wi-Fi, Bluetooth, and Bluetooth Low Energy
- Application aware arbitration
- Adaptive frequency hopping (AFH) in Bluetooth is based on WLAN channel usage
- Pre inter thread interrupts generation for radio switching
- QoS assurance across different traffics

4.2.6 Software

The RS9116 software package supports 802.11 b/g/n Client, Access Point (Up to 16 clients), Concurrent Client and Access Point mode, Enterprise Security, dual-mode BT 5.0 functionality on a variety of host platforms and operating

systems. The software package includes complete firmware, reference drivers, application profiles and configuration graphical user interface (GUI) for Linux operating systems. The Wi-Fi driver has support for a simultaneous access point, and client mode. Bluetooth host driver utilizes Opensource host stacks like BlueZ for Linux. The application layer supports all profiles supported by BlueZ on Linux. It has a wireless coexistence manager to arbitrate between protocols.

The RS9116 software package is available in two flavors

- Hosted mode (n-Link[™]): Wi-Fi stack, Bluetooth stack and profiles, and all network stacks reside on the host processor. Support for multiple Virtual Access Points available.
- Embedded mode (WiSeConnect™): Wi-Fi stack, TCP/IP stack, IP modules, Bluetooth stack and some profiles reside in RS9116; Some of the Bluetooth profiles reside in the host processor

NOTE: Please refer to the Software Manuals (TRM and PRM) in <u>RS9116 Document Library</u> for more details.

4.2.6.1 Hosted Mode (n-Link[™])

- Available host interfaces: SDIO 2.0 and USB HS
- Application data throughput up to 50 Mbps (Hosted Mode) in 802.11n with 20MHz bandwidth.
- Host drivers for Linux
- Support for Client mode, Access point mode (Up to 16 clients), Concurrent Client and Access Point mode, Enterprise Security
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

4.2.6.2 Embedded Mode (WiSeConnect™)

- Available host interface: UART, SPI, SDIO, and USB CDC
- Support for Embedded Client mode, Access Point mode (Up to 8 clients), Concurrent Client and Access Point mode, and Enterprise Security
- Supports advanced security features: WPA/WPA2-Personal and Enterprise
- Integrated TCP/IP stack, HTTP/HTTPS, SSL/TLS, MQTT
- Bluetooth inbuilt stack support for L2CAP, RFCOMM, SDP, SPP, GAP
- Bluetooth profile support for GAP, SDP, SPP, GATT, L2CAP, RFCOMM
- Wireless firmware update and provisioning
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

* For a detailed list of software features and available profiles, refer to the Software Reference Manuals or contact Silicon Labs for availability.

4.2.7 Security

RS9116 supports multiple levels of security capabilities available for the development of IoT devices.

- Accelerators: AES128/256 in Embedded Mode
- WPA/WPA2-Personal, WPA/WPA2 Enterprise for Client

* For a detailed list of software features and available profiles, refer to the Software Reference Manuals or contact Silicon Labs for availability.

4.2.8 Power Management

The RS9116 chipsets have an internal power management subsystem, including DC-DC converters and linear regulators. This subsystem generates all the voltages required by the chipset to operate from a wide variety of input sources.

- LC DC-DC switching converter for RF and Digital blocks
 - Wide input voltage range (1.85 to 3.6V) on pin VINBCKDC
 - Output 1.4V and 300mA maximum load on pin VOUTBCKDC
- SC DC-DC Switching converter for Always-ON core logic domain
 - Wide input voltage range (1.85 to 3.6V) on pin UULP_VBATT_1 and UULP_VBATT_2
 - o Output 1.05V
- LDO SOC Linear regulator for digital blocks
 - Input 1.4V from LC DC-DC or external regulated supply on pin VINLDOSOC
 - Output 1.15V and 300mA maximum load on pin VOUTLDOSOC
- LDO RF and AFE Linear regulator for RF and AFE
 - Input 1.4V from LC DC-DC or external regulated supply on pin RF_AVDD
 - Output 1.1V and 20mA maximum load on pin VOUTLDOAFE
- 4.2.8.1 Output Voltage Ranges

Pin Description	Supply V	oltage (V)
_	Min	Max
VOUTLDOSOC	1.05	1.21
VOUTBCKDC	1.25	1.55
VOUTLDOAFE	1.0	1.22
UULP_VOUTSCDC	1.0	1.21
UULP_VOUTSCDC_RETN	0.715	1.21

Table 34. Min and Max Specifications of Various Output Voltages

The output voltages from the IC/module will be reflected as per specifications only after the firmware is loaded. VOUTLDOAFE specifications are applicable whenever RF is initialized, and its maximum value can vary up to $\pm 3\%$ across temperature range.

4.2.9 Low Power Modes

It supports Ultra-low power consumption with multiple power modes to reduce the system energy consumption.

- Dynamic Voltage and Frequency Scaling
- Low Power (LP) mode with only the host interface active
- Deep sleep (ULP) mode with only the sleep timer active with and without RAM retention
- Wi-Fi standby associated mode with automatic periodic wake-up
- Automatic clock gating of the unused blocks or transit the system from Normal to LP or ULP modes

4.2.9.1 ULP Mode

In Ultra Low Power mode, the deep sleep manager has control over the other subsystems and processors and controls their active and sleep states. During deep sleep, the always-on logic domain operates on a lowered supply and a 32 kHz low-frequency clock to reduce power consumption. The ULP mode supports the following wake-up options:

- Timeout wakeup Exit sleep state after programmed timeout value.
- GPIO Based Wakeup: Exit sleep state when GPIO goes High/Low based on programmed polarity.
- Analog Comparator Based wakeup Exit sleep state on an event at the analog comparator.

- RTC Timer wakeup Exit Sleep state on timeout of RTC timer
- WatchDog Interrupt based wakeup Exit Sleep state upon watchdog interrupt timeout.

ULP mode is not supported in the USB interface mode

4.2.9.2 LP Mode

In Low Power mode, Network processor maintains system state and gate all internal high frequency clocks. But host interface is ready to accept any command from host controller.

The LP mode supports the following wake-up options:

- Host Request Exit sleep state on a command from HOST controller. whenever a command from the host is received, the processor serves the request with minimum latency and the clock is gated immediately after the completion of the operation to reduce power consumption
- GPIO based wakeup Wakeup can be initiated through a GPIO pin
- Timeout wakeup Exit sleep state after the programmed timeout value

4.2.10 Memory

4.2.10.1 On-chip Memory

The ThreadArch® processor has the following memory:

- On-chip 384Kbytes SRAM for the wireless stack.
- 512Kbytes of ROM which holds the Secure primary bootloader, Network Stack, Wireless stacks, and security functions.
- 16Kbytes of Instruction cache enabling eXecute In Place (XIP) with quad SPI flash memory.
- eFuse of 512 bytes (used to store primary boot configuration, security, and calibration parameters)

4.2.10.2 Serial Flash

The RS9116 utilizes a serial Flash to store processor instructions and other data. The SPI Flash Controller is a 1/2/4wired interface for serial access of data from Flash. It can be used in either Single, Dual or Quad modes. Instructions are read using the Direct Fetch mode while data transfers use the Indirect Access mode. The SPI Flash Controller in RS9116 has been designed with programmable options for most of the single and multi-bit operations. RS9116 B00 module has 4 Mbytes internal flash memory.

User cannot use Flash for application code, but certificates can be loaded. For more details about loading certificates, refer to following documents:

- SAPI Reference Guide
- AT Command Reference Manual

5 RS9116 B00 Module Reference Schematics, BOM and Layout Guidelines

- 1. Customers should include provision for programming or updating the firmware at manufacturing.
- 2. If using UART, we recommend bringing out the SPI lines to test points, so designers could use the faster interface for programming the firmware as needed.
- 3. If using SPI as host interface, then firmware programming or update can be done through the host MCU, or if designer prefers to program standalone at manufacturing, then it is recommended to have test points on the SPI signals.
- 4. If SDIO/SPI/UART interface is not used, then their respective IO domains must still be connected to the power supply.

NOTE:

Refer and follow <u>AN1345 Hardware Design checklist</u> application note.

5.1 SDIO/SPI/UART

5.1.1 Schematics

The below diagram shows the typical schematic with SDIO/SPI/UART Host Interface and Internal Flash.

- 1. PA2G_AVDD can be driven by 3.3V source irrespective of other sources for Maximum Transmit Output power.
- 2. The supplies can be driven by different voltage sources within the recommended operating conditions specified in Specifications section.
- 3. SDIO_IO_VDD can be driven by a different source irrespective of other sources to support different interfaces.
- 4. In SDIO mode, pull-up resistors should be present on SDIO_CMD & SDIO Data lines as per the SDIO physical layer specification, version 2.0.
- 5. In SPI mode, ensure that the input signals, SPI_CSN and SPI_CLK are not floating when the device is powered up and reset is deasserted. This can be done by ensuring that the host processor configures its signals (outputs) before deasserting the reset. SPI_INTR is the interrupt signal driven by the Secondary device. This signal may be configured as Active-high or Active-low. If it is active-high, an external pull-down resistor is required. If it is active-low, an external pull-up resistor is required. The following action can be carried out by the host processor during power-up of the device, and before/after ULP Sleep mode.
 - a. To use the signal in the Active-high or Active-low mode, ensure that, during the power up of the device, the Interrupt is disabled in the Host processor before deasserting the reset. After deasserting the reset, the Interrupt needs to be enabled only after the SPI initialization is done and the Interrupt mode is programmed to either Active-high or Active-low mode as required.
 - b. The Host processor needs to disable the interrupt before the ULP Sleep mode is entered and enable it after SPI interface is reinitialized upon wakeup from ULP Sleep.
- 6. In UART mode, ensure that the input signals, UART_RX and UART_CTS are not floating when the device is powered up and reset is deasserted. This can be done by ensuring that the host processor configures its signals (outputs) before deasserting the reset.
- 7. Resistor "R1" should not be populated if UART is used as Host Interface.

5.1.2 Bill of Materials

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
1	2	C2, C3	10uF	CAP CER 10UF 10V X5R 0805	0805	Murata	GRM21BR61A106KE19L
2	3	C4, C5, C10	1uF	CAP CER 1UF 10V 10% X5R 0402	0402	Murata	GRM155R61A105KE15D
3	6	C1, C6, C7, C8, C9, C11	0.1uF	CAP CER 0.1UF 10V X5R 0402	0402	Murata	GRM155R61A104KA01D
4	1	Z1	8.2pF	CER CHP 8.2P +/-0.25P C0G 0201 25V	0201	Murata	GRM0335C1E8R2CD01D
5	1	J1		Antenna/U.FL			

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
6	1	L1	1uH	FIXED IND 1UH 2.0A 95 MOHM SMD	0805	Murata	DFE201210U-1R0M=P2
7	1	R1	33E	RES SMD 33 OHM 5% 1/10W	0402	Panasonic	ERJ-2GEJ330X
8	1	U1		Wireless Single Band Module		Silicon Labs	RS9116N-SB00-B00-B00 / RS9116W-SB00-B00-B24 / RS9116W-SB00-B00-B2A
9	2	Z2, Z3		Optional Capacitors for Antenna Matching	0201		

Table 35. Bill of Materials with SDIO/SPI/UART Host Interface

5.2 USB/USB-CDC

5.2.1 Schematics

The below diagram shows the typical schematic with USB/USB-CDC Host Interface and Internal Flash.

Figure 17. Schematics with USB/USB-CDC Host Interface

- 1. PA2G_AVDD can be driven by 3.3V source irrespective of other sources for Maximum Transmit Output power.
- 2. The supplies can be driven by different voltage sources within the recommended operating conditions specified in Specifications section.
- 3. Ensure that the pin USB_CDC_DIS is left unconnected to ensure normal USB functionality.
- 4. Resistor "R1" should not be populated if normal USB is used as Host Interface.

5.2.2 Bill of Materials

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
1	2	C2, C3	10uF	CAP CER 10UF 10V X5R 0805	0805	Murata	GRM21BR61A106KE19L
2	3	C4, C5, C10	1uF	CAP CER 1UF 10V 10% X5R 0402	0402	Murata	GRM155R61A105KE15D
3	8	C1, C6, C7, C8, C9, C11, C13, C14	0.1uF	CAP CER 0.1UF 10V X5R 0402	0402	Murata	GRM155R61A104KA01D
4	1	Z1	8.2pF	CER CHP 8.2P +/-0.25P C0G 0201 25V	0201	Murata	GRM0335C1E8R2CD01D
5	1	J1		Antenna/U.FL			
6	1	L1	1uH	FIXED IND 1UH 2.0A 95 MOHM SMD	0805	Murata	DFE201210U-1R0M=P2
7	1	R1	4.7K	RES SMD 4.7K OHM 1% 1/16W 0402	0402	Yageo	RC0402FR-074K7L
8	1	R2	200E	RES SMD 200 OHM 1% 1/20W 0201	0201	Yageo	RC0201FR-07200RL
9	1	U1		Wireless Single Band Module		Silicon Labs	RS9116N-SB00-B00-B00 / RS9116W-SB00-B00-B24 / RS9116W-SB00-B00-B2A
10	2	Z2, Z3		Optional Capacitors for Antenna Matching	0201		

Table 36. Bill of Materials with USB/USB-CDC Host Interface

5.3 Layout Guidelines

- 1. The following Supply Pins needs to be STAR routed from the Supply Source
 - a. VINBCKDC
 - b. UULP_VBATT_1
 - c. UULP_VBATT_2
 - d. RF_VBATT
 - e. VINLDO1P8
 - f. PA2G_AVDD
 - g. ULP_IO_VDD
 - h. SDIO_IO_VDD
 - i. IO_VDD_1, IO_VDD_2, IO_VDD_3
- 2. The RF_PORT1 (Module Pin No. A18) signal may be directly connected to an on-board chip antenna or terminated in an RF connector of any form factor for enabling the use of external antennas.
- 3. There need to be DC blocking capacitors (8.2pF) on RF_PORT1 if they are connected to Antenna
- 4. The RF trace on RF_PORT1 should have a characteristic impedance of 50 Ohms. Any standard 50 Ohms RF trace (Microstrip or Coplanar wave guide) may be used. The width of the 50 Ohms line depends on the PCB stack, e.g., the dielectric of the PCB, thickness of the copper, thickness of the dielectric and other factors. Consult the PCB fabrication unit to get these factors right.
- To evaluate transmit and receive performance like Tx Power and EVM, Rx sensitivity and the like, an RF connector would be required. A suggestion is to place a 'microwave coaxial connector with switch' between RF_PORT1 and the antenna.
- 6. The layout Guidelines for the BUCK are as follows:
 - a. Minimize the loop area formed by inductor switching node, output capacitors & input capacitors. This helps keep high current paths as short as possible. Keeping high current paths shorter and wider would help decrease trace inductance & resistance. This would significantly help increase the efficiency in high current applications. This reduced loop area would also help in reducing the radiated EMI that may affect nearby components.
 - b. VINBCKDC Capacitor should be very close to the Module Pin & the Ground Pad of the capacitor should have direct vias to the Ground Plane underneath.
 - c. Buck Inductor should be close to Module VOUTBCKDC pin and buck capacitor should be placed closed to the Inductor; the Ground Pad of the capacitor should have direct vias to the Ground Plane underneath.
 - d. The Ground Plane underneath the Buck Inductor in the Top Layer should be made as an isolated copper patch and should descend down to the Second Layer (Main Ground) through multiple Vias.
 - e. The path from VOUTBCKDC to VINLDOSOC is a high current path. The Trace should be as short & wide as possible and is recommended to run a Grounded Shield Traces on either side of this High Current Trace
 - f. The Capacitor on VINLDOSOC should be very close to the Module Pin & the Ground Pad of the capacitor should have direct vias to the Ground Plane underneath.
- 7. For USB, it is recommended that the components and their values in the BoM be adhered to.
- 8. It is highly recommended that the two USB differential signals (USB_DP and USB_DN) be routed in parallel with a spacing (say, a) which achieves 90 Ω of differential impedances, 45 Ω for each trace.

Figure 18 Spacing between USB_DP and USB_DM

9. To minimize crosstalk between the two USB differential signals (USB_DP and USB_DN) and other signal traces routed close to them, it is recommended that a minimum spacing of 3 x a be maintained for low-speed non-periodic signals and a minimum spacing of 7 x a be maintained for high-speed periodic signals.

Figure 19 Spacing for Low-speed and High-speed signals around USB_DP/USB_DN

- 10. It is recommended that the total trace length of the signals between the RS9116 module and the USB connector be less than 450mm.
- 11. If the USB high-speed signals are routed on the Top layer, best results will be achieved if Layer2 is a ground plane. Furthermore, there must be only one ground plane under high-speed signals to avoid the high-speed signals crossing to another ground plane.

USB_DP		USB_DP			
Ground Plane		Ground Plane 1		Ground Plane 2	
USB_DN		U	SB_DN		
GOOD		BAD			

Figure 20 Signals and the Ground Plane

- 12. Each GND pin must have a separate GND via.
- 13. All decoupling capacitors placement must be as much close as possible to the corresponding power pins, and the trace lengths as short as possible.
- 14. Ensure all power supply traces widths are sufficient enough to carry corresponding currents.
- 15. Add GND copper pour underneath IC/Module in all layers, for better thermal dissipation.

The antenna layout guidelines for single band modules without antenna are below: -

The choice of antenna depends on the application. However, if an on-chip antenna is to be used, we recommend the Fractus FR05-S1-N-0-102.

There should be no metal planes or traces in the region under the PCB antenna. The Ground plane should be removed from under and both sides of the antenna. Follow the rules listed in the figure below while doing the layout for the chip antenna.

- The above figure shows the antenna footprint details for 0.8 mm thickness FR4 PCB.
- This layout guidelines are as per antenna part guidelines. For more details, please refer to the antenna datasheet.

The recommended Chip Antennas are λ /4 antennas. They require an external ground plane for proper functioning. The length of the ground plane behind the antenna (from the feed point of antenna to backwards) should be at least 25mm – the longer the ground plane the better the performance.

It is recommended to characterize the antenna portion using a Network Analyzer. Electrical performance of any chip antenna is influenced by the physical characteristics of the surrounding ground plane, feed line, other devices, and materials. This can be used as an advantage by manipulating certain parameters to affect resonant frequency and matching.

These parameters are listed below:

- 1. Ground plane configuration
- 2. Distance from antenna
- 3. Topology around antenna
- 4. Feed point transmission line impedance
- 5. Trace width
- 6. Trace length
- 7. Matching Network
- 8. PCB substrate thickness
- 9. PCB substrate dielectric constant.

NOTE:

Refer and follow AN1343 B00 Board Layout Guidelines Application Note.

6 RS9116 B00 Module Package Description

6.1 Dimensions

Parameter	Value (LxWxH)	Units					
Module Dimensions	7.9 x 4.63 x 0.9	mm					
Tolerance	±0.1	mm					
Table 07 Mashila Dimensiona							

6.2 Package Outline

6.3 Pin Locations

All coordinates in the table below are in millimeters, and in TOP VIEW.

Pin Numb er		Coordin		X- Coordin ate	Y- Coordin ate	Pin Numb er	Coordin		Pin Numb er	X- Coordin ate	Y- Coordin ate
A1	-3.4	2	C9	-0.2	1.2	F14	1.8	0	J17	3	-1.2
A2	-3.0	2	C11	0.6	1.2	F16	2.6	0	J18	3.4	-1.2
A4	-2.2	2	C13	1.4	1.2	F17	3	0	K1	-3.4	-1.6
A6	-1.4	2	C15	2.2	1.2	G1	-3.4	-0.4	K2	-3.0	-1.6

Pin Numb er	X- Coordin ate	Y- Coordin ate									
A8	-0.6	2	C17	3	1.2	G2	-3.0	-0.4	K3	-2.6	-1.6
A10	0.2	2	C18	3.4	1.2	G3	-2.6	-0.4	K4	-2.2	-1.6
A12	1	2	D2	-3.0	0.8	G5	-1.8	-0.4	K5	-1.8	-1.6
A14	1.8	2	D4	-2.2	0.8	G7	-1.0	-0.4	K6	-1.4	-1.6
A16	2.6	2	D6	-1.4	0.8	G9	-0.2	-0.4	K7	-1.0	-1.6
A18	3.4	2	D8	-0.6	0.8	G11	0.6	-0.4	K8	-0.6	-1.6
B1	-3.4	1.6	D10	0.2	0.8	G13	1.4	-0.4	K9	-0.2	-1.6
B2	-3.0	1.6	D12	1	0.8	G15	2.2	-0.4	K10	0.2	-1.6
B3	-2.6	1.6	D14	1.8	0.8	G17	3	-0.4	K11	0.6	-1.6
B4	-2.2	1.6	D16	2.6	0.8	G18	3.4	-0.4	K12	1	-1.6
B5	-1.8	1.6	D17	3	0.8	H2	-3.0	-0.8	K13	1.4	-1.6
B6	-1.4	1.6	E1	-3.4	0.4	H4	-2.2	-0.8	K14	1.8	-1.6
B7	-1.0	1.6	E2	-3.0	0.4	H6	-1.4	-0.8	K15	2.2	-1.6
B8	-0.6	1.6	E3	-2.6	0.4	H8	-0.6	-0.8	K16	2.6	-1.6
B9	-0.2	1.6	E5	-1.8	0.4	H10	0.2	-0.8	K17	3	-1.6
B10	0.2	1.6	E7	-1.0	0.4	H12	1	-0.8	K18	3.4	-1.6
B11	0.6	1.6	E9	-0.2	0.4	H14	1.8	-0.8	L1	-3.4	-2.0
B12	1	1.6	E11	0.6	0.4	H16	2.6	-0.8	L2	-3.0	-2.0
B13	1.4	1.6	E13	1.4	0.4	H17	3	-0.8	L4	-2.2	-2.0
B14	1.8	1.6	E15	2.2	0.4	J1	-3.4	-1.2	L6	-1.4	-2.0
B15	2.2	1.6	E17	3	0.4	J2	-3.0	-1.2	L8	-0.6	-2.0
B16	2.6	1.6	E18	3.4	0.4	J3	-2.6	-1.2	L10	0.2	-2.0
B17	3	1.6	F2	-3.0	0	J5	-1.8	-1.2	L12	1	-2.0
B18	3.4	1.6	F4	-2.2	0	J7	-1.0	-1.2	L14	1.8	-2.0
C1	-3.4	1.2	F6	-1.4	0	J9	-0.2	-1.2	L16	2.6	-2.0
C3	-2.6	1.2	F8	-0.6	0	J11	0.6	-1.2	L18	3.4	-2.0
C5	-1.8	1.2	F10	0.2	0	J13	1.4	-1.2			
C7	-1.0	1.2	F12	1	0	J15	2.2	-1.2			

Table 38. Pin Locations

6.3.1 PCB Landing Pattern

Figure 23. PCB Landing Pattern

7 RS9116 B00 Module Certification and Ordering Information

7.1 Certification Information

This section will outline the regulatory certification information for the RS9116 modules for the countries listed below. This information will be updated when available.

- 1. United States
- 2. Canada
- 3. Europe
- 4. Japan
- 5. United Kingdom
- 6. Other Regulatory Jurisdictions

The RS9116 single band B00 module from Silicon Labs has undergone modular certification for FCC, IC, MIC, CE/ETSI (including EN 300 328 v2.2.2), and UKCA. Note that any changes to the module's configuration including (but not limited to) the programming values of the RF Transceiver and Baseband can cause the performance to change beyond the scope of the certification. These changes, if made, may result in the module having to be certified afresh.

7.2 Compliance and Certification

RS9116 - B0014 module is FCC/IC/CE/MIC/UKCA certified. This section outlines the regulatory information for the RS9116 - B0014 module. This allows integrating the module in an end product without the need to obtain subsequent and separate approvals from these regulatory agencies. This is valid in the case no other intentional or un-intentional radiator components are incorporated into the product and no change in the module circuitry. Without these certifications, an end product cannot be marketed in the relevant regions. RF Testing Software is provided for any end product certification requirements.

7.2.1 Federal Communication Commission Statement

This device complies with FCC Rules Part 15. Operation is subject to the following two conditions:

- This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a class B digital device, pursuant to Part 15 of the Federal Communications Commission (FCC) rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by doing one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

7.2.1.1 FCC Caution

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

7.2.1.2 Radiation Exposure Statements

This equipment must be installed and operated in accordance with provided instructions and the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

7.2.1.3 FCC Label Instructions

The outside of final products that contains this module device must display a label referring to the enclosed module. This exterior label can use wording such as: "Contains Transmitter Module FCC ID: XF6-B001P4V2P1", or

"Contains FCC ID: XF6-B001P4V2P1", Any similar wording that expresses the same meaning may be used.

7.2.2 Industry Canada / ISED Statement

This product meets the applicable Innovation, Science and Economic Development Canada technical specifications.

Ce produit repond aux specifications techniques applicables a l'innovation, Science et Developpement economique Canada.

7.2.2.1 Radiation Exposure Statement

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

1) This device may not cause interference, and

2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le present appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisee aux deux conditions suivantes:

1) l'appareil ne doit pas produire de brouillage;

2) l'utilisateur de l'appareil doit accepter tout brouillage radioelectrique subi, meme si le brouillage est susceptible d'en compromettre le fonctionnement.

7.2.2.2 Labeling and User Information

Innovation, Science and Economic Development Canada ICES003 Compliance Label: CAN ICES-3 (B)/NMB-3(B)

The RS9116 - B0014 module has been labeled with its own IC ID number (8407A-B001P4V2P1) and if the IC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. This exterior label can use following wording: Contains Transmitter Module IC: 8407A-B001P4V2P1 or Contains IC: 8407A-B001P4V2P1 User manuals for license-exempt radio apparatus shall contain the above mentioned statement or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both

Le module RS9116 - B0014 a été étiqueté avec son propre numéro d'ID IC (8407A-B001P4V2P1) et si l'ID IC n'est pas visible lorsque le module est installé dans un autre périphérique, alors l'extérieur du produit fini dans lequel le module est installé doit également afficher une étiquette faisant référence au module inclus. Cette étiquette extérieure peut être libellée comme suit: Contient le module émetteur IC: 8407A-B001P4V2P1 ou contient IC: 8407A-B001P4V2P1. Les manuels d'utilisation d'appareils radio exemptés de licence doivent contenir l'énoncé susmentionné ou une notification équivalente à un endroit bien en évidence dans le manuel d'utilisation. ou alternativement sur l'appareil ou les deux

7.2.3 Regulatory Module Integration Instructions

7.2.3.1 List of Applicable FCC Rules

This device complies with part 15.247 of the FCC Rules.

7.2.3.2 Summarize the Specific Operational Use Conditions

This module can be used in household electrical appliances as well as lighting equipment(s). The input voltage to the module should be nominally 1.8-3.3 Vdc, typical and the ambient temperature of the module should not exceed 85°C. This module using two kinds of antennas, PCB antenna with maximum gain is 1.00 dBi. Other antenna arrangement is not covered

7.2.3.3 Limited Module Procedures

Not applicable

7.2.3.4 Trace Antenna Designs

Not applicable

7.2.3.5 RF Exposure Considerations

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by§ 2. 1093.by this certification. The antenna is not field replaceable. If the antenna needs to be changed, the certification should be re-applied.

7.2.3.6 Antennas

Provision for Chip Antenna or other Antennae

7.2.3.7 Label and Compliance Information

Already in the manual

7.2.3.8 Information on Test Modes and Additional Testing Requirements

a) The modular transmitter has been fully tested by the module grantee on the required number of channels, modulation types, and modes, it should not be necessary for the host installer to re-test all the available transmitter modes or settings. It is recommended that the host product manufacturer, installing the modular transmitter, perform some investigative measurements to confirm that the resulting composite system does not exceed the spurious emissions limits or band edge limits (e.g., where a different antenna may be causing additional emissions).

b) The testing should check for emissions that may occur due to the intermixing of emissions with the other transmitters, digital circuitry, or due to physical properties of the host product (enclosure). This investigation is especially important when integrating multiple modular transmitters where the certification is based on testing each of them in a stand-alone configuration. It is important to note that host product manufacturers should not assume that because the modular transmitter is certified that they do not have any responsibility for final product compliance.

c) If the investigation indicates a compliance concern the host product manufacturer is obligated to mitigate the issue. Host products using a modular transmitter are subject to all the applicable individual technical rules as well as to the general conditions of operation in Sections 15.5, 15.15, and 15.29 to not cause interference. The operator of the host product will be obligated to stop operating the device until the interference has been corrected

7.2.3.9 Additional Testing, Part 15 Sub Part B Disclaimer

The final host / module combination needs to be evaluated against the FCC Part 15Bcriteria for unintentional radiators in order to be properly authorized for operation as a Part15 digital device.

7.2.3.10 Steps for TX Verification

Already in the manual

7.2.3.11 Other in User Manual

The host integrator installing this module into their product must ensure that the final composite product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation and should refer to guidance in KDB 996369.

7.2.3.12 Frequency Spectrum to be Investigated

For host products with certified modular transmitter, the frequency range of investigation of the composite system is specified by rule in Sections 15.33(a)(1) through (a)(3), or the range applicable to the digital device, as shown in Section 15.33(b)(1), whichever is the higher frequency range of investigation.

7.2.3.13 Operating the Host Product

When testing the host product, all the transmitters must be operating. The transmitters can be enabled by using publicly available drivers and turned on, so the transmitters reactive. In certain conditions it might be appropriate to use a technology-specific call box (test set) where accessory devices or drivers are not available. When testing for emissions from the unintentional radiator, the transmitter shall be placed in the receive mode or idle mode, if possible. If receive mode only is not possible then, the radio shall be passive (preferred) and/or active scanning. In these cases, this would need to enable activity on the communication BUS (i.e., PCIe, SDIO, USB) to ensure the unintentional radiator circuitry is enabled. Testing laboratories may need to add attenuation or filters depending on the signal strength of any active beacons (if applicable) from the enabled radio(s). See ANSI C63.4, ANSI C63.10 and ANSI C63.26 for further general testing details.

7.2.4 MIC

Telefication, operating as Conformity Assessment Body (CAB ID Number:211) with respect to Japan, declares that the RS9116 – B0014 complies with Technical Regulations Conformity Certification of specified Radio equipment (ordinance of MPT N° 37,1981)

- The validity of this Certificate is limited to products, which are equal to the one examined in the type-examination
- When the manufacturer (or holder of this certificate) is placing the product on the Japanese market, the product must be affixed with the following Specified Radio Equipment marking R211-210209 for RS9116 B0014.

7.2.5 Qualified Antenna Types

This device has been designed to operate with the antennas listed below. Antennas not included in this list or having a gain greater than listed gains in each region are strictly prohibited for use with this device. The required antenna impedance is 50 ohms.

Any antenna that is of the same type and of equal or less directional gain can be used without a need for retesting. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that permitted for successful communication. Using an antenna of a different type or gain more than certified gain will require additional testing.

Brand	Antenna Model	Antenna Type	Gain (2.4 GHz)	Qualified Region
Fractus	FR05-S1-N-0-102	PCB Trace Antenna	1.70 dBi	FCC/IC, CE, MIC, UKCA
Taoglas	GW.34.5153	Dipole Antenna	5.89 dBi	FCC/IC, CE, MIC, UKCA
Walsin	RFPCA500609IMAB301	PCB Antenna	4.53 dBi	MIC

Table 39. Qualified Antenna Types for B00 Module

7.3 Marking Information

7.3.1 Certification Marking

The following certification markings will be provided on the shipment package of the RS9116 - B0014 module.

Marking		Description
Compliance Marks	F©	FCC Compliance Mark
	CE	CE Compliance Mark
	ŧ	MIC Compliance Mark
	UK CA	UKCA Compliance Mark

7.3.2 Module Marking

The figure and table below illustrate the marking on the Single band module and explains the marking on the module.

Figure 24. Module Marking Information

Marking		Description
Part Number	РРРРРРРРР	Part Number Designation.
Lot Code Information	TTTTT YYWW	TTTTTT – A trace or manufacturing code. The first letter is the device revision (B = Silicon Rev 1.4).
		YY – Last two digits of the assembly year
		WW – Two-digit work week when the device was assembled

7.4 Module Package

Package Code	Package Type, Pins	Dimensions (mm)	Frequency Band	Integrated Antenna
B00	LGA, 126	7.8 x 4.63 x 0.9	Single Band (2.4 GHz)	No

Table 40. B00 Module Package

7.5 Ordering Information

Model Number	Part Number	Wireless and Memory
	Hosted Con	nectivity (n-Link)
RS9116-B0014	RS9116N-SB00-B00-B00	SBW + BT 5 with internal flash; Rev 1.4 Silicon
	Embedded Conn	ectivity (WiSeConnect)
RS9116-B0014	RS9116W-SB00-B00-B24	SBW + BT 5 with internal flash; Rev 1.4 Silicon; Firmware version: 1.2.24
RS9116-B0014	RS9116W-SB00-B00-B2A	SBW + BT 5 with internal flash; Rev 1.4 Silicon; Firmware version: 2.0 or higher
	Table 41. Par	t Ordering Options

- SBW: Single Band Wi-Fi (2.4 GHz).
- Customer should include provision for programming or updating the firmware at manufacturing.

8 RS9116 B00 Module Documentation and Support

Silicon Labs offers a set of documents which provide further information required for evaluating and developing products and applications using RS9116. These documents are available in <u>RS9116 Document Library</u> on the Silicon Labs website. The documents include information related to Software releases, Evaluation Kits, User Guides, Programming Reference Manuals, Application Notes, and others.

For further assistance, you can contact Silicon Labs Technical Support here.

8.1 Resource Location

RS9116 Document Library: <u>https://docs.silabs.com/rs9116/</u> Technical Support: <u>http://www.silabs.com/support/</u>

9 RS9116 B00 Module Revision History

Revision No.	Version No.	Date	Changes
1	1.0	April, 2019	Initial version
2	1.0.1	May, 2019	 Updated host-based schematics. Combined SDIO, SPI & UART host interfaces into one schematic. Combined USB and USB-CDC host interfaces into one schematic
			Updated 32 KHz external oscillator specifications
			Updated antenna layout recommendations for single band antenna
			 Updated the Schematics for UART_RTS and UART_CTS Pin correction.
3	1.0.2	May, 2019	Renamed VOUTLDO1P8 as VINLDO1P8 in Pinout Description
			Removed 32KHz XTAL Pins and used UULP GPIO for feeding in the External Clock. Updated the below sections for the same
			Pinout Description.
			Specifications
			Reference Schematics
4	1.0.3	July, 2019	 Corrected the description of 32KHz external clock in Specifications section
			 Added external control for POC_IN in Specifications
			 Renamed LP_WAKEUP to LP_WAKEUP_IN and changed its description in Pinout table.
			 Added host detection details and updated network processor memory details in Detailed description.
			Updated PCB landing pattern in Package Description
			 Removed PLL_AVDD from Absolute Maximum Ratings and Recommended Operating conditions section
			 Corrected the initial state of SDIO_D3 to pullup and SDIO_D2 to HighZ.
5	1.0.4	November, 2019	Bluetooth ACI specs corrected (earlier version shows under Typ - should have been under "Min")
6	1.0.5	July, 2020	 Added note about voltage applied on external Buck Regulator for Typical Current Consumption at 1.85V.
			Updated Applications section.
			Updated 40 MHz Clock specifications.
			 Updated LED0 software configuration note for ULP_GPIO_8 under Pin Description.
			 Mentioned need for weak pull up resistor under Pin Description to use Wake-on-Wireless feature on ULP_GPIO_6.
			 Updated "Digital Input Output Signals" to separate readings at 3.3V and 1.8V.
			Wireless Updated Co-Existence modes in Features list.
			• The number of center roles supported by BLE changed from 8 to 6.
			 Added a note under Pin Description regarding functionalities that are available on multiple Pins, and their proper usage. Eg. SLEEP_IND_FROM_DEV

Revision No.	Version No.	Date	Changes
			 Updated Generic PCB Layout Guidelines. Updated Power Sequence Diagrams under DC Characteristics for POC_IN and POC_OUT. Features list updated. Reflow profile diagram updated. Updated Typical values for BLE ACI characteristics. Updated GPIO pin descriptions. Updated Bluetooth EDR 2 Mbps LP Chain Receiver specification. Removed Legacy Bluetooth Tx on LP Chain. Updated WLAN 2.4 GHz 3.3V/1.85V Transmitter specifications.
7	1.0.6	August, 2020	 Updated WEAN 2.4 GH2 3.5071.0507 Hansmitten specifications. Updated Features List removed redundant information. Updated Applications, and Software Architecture Diagrams. Updated pin descriptions - ULP_GPIO_0 and ULP_GPIO_6. Updated Software section with latest information. Rebranded to Silicon Labs.
8	1.0.7	September, 2020	 Updated Device Information with new nomenclature to include Silicon revision, and firmware version. Updated nomenclature in Pinout diagram, and Pin descriptions. Updated schematics to include the new nomenclature. SoC Ordering information updated with new OPNs; Device Nomenclature diagram updated.
9	1.0.8	June, 2021	 Module image updated with Silicon Labs logo. Added note under Software Architecture diagram on connecting and using multiple hosts at the same time. Included EN 300 328-v2.2.2 certification info. Removed redundant section 'Device Information'. Same information is available in section 'Ordering Information'. Pin names updated for consistency; included actual pin names along with signals; updated pins: UART1_RX, UART1_TX, UART2_TX, HOST_BYP_ULP_WAKEUP ULP_GPIOs in Pin Description referenced to ULP_IO_VDD instead of IO_VDD_1. Updated note on Wake-on-Wireless feature, under Description for pin ULP_GPIO_6. Removed ESD and Latch Up information from Absolute Ratings table. Updated Min and Max values for RF related pins to reflect only 3.3 V in Recommended Operating Conditions. Updated Min and Max values for IO pins to reflect both 1.8 V and 3.3 V related minimum (1.65/3.0), and maximum (1.98/3.6) values in Recommended Operating Conditions. Power-Up and Down Sequence with POC_IN connected internally. Included statement that this connection is NRND.

Revision No.	Version No.	Date	Changes
			• Updated V _{IH} , V _{OH} to show only Min values; V _{IL} , V _{OL} to show only Max values; I _{OL} , I _{OH} to show only Typ values.
			 Updated 32 kHz External Crystal Oscillator specifications to reflect correct Min and Max values for V_{ac}.
			• Removed 40 MHz crystal specification because the crystal is integrated inside the module. Added a note under Clock Specifications.
			• Timing data included for SDIO_CMD.
			Recommended Operating Conditions for PA2G_AVDD pin updated.
			Added caveats to the RF Characteristics.
			• Updated RF Specification section to include numbers at 3.3 V only.
			 Updated Note for IEEE spectral mask effects. Added mention of AN1337 application note for certification details.
			• Included output voltage power ranges under Power Management.
			• Typical Current Consumption section updated to include values at 3.3 V only.
			 Removed section on Serial Flash; B00 does not support External Flash.
			• Schematics updated to reflect correct voltage for PA2G_AVDD pin.
			• Reference Schematics updated to show DC Resistance at 95mohm max (from 70), and Isat at 1.0A min (from 1.5).
			 Updated Murata's 1uH inductor part in Schematics and BOM from DFE201210S-1R0M=P2 to DFE201210U-1R0M=P2.
			• Updated description for DFE201210S-1R0M=P2 in BOM to FIXED IND 1UH 2.0A 95 MOHM SMD (from 2.3A 70 MOHM SMD).
			 Updated Reference Schematics to reflect only 3.3 V input to RF pins.
			Removed External Flash Reference schematics.
			• Updated Antenna Layout guidelines for Fractus FR05-S1-N-0-102.
			Removed Device Nomenclature.
			Appended B0014 Certification information.
			 Removed Reflow Profile, Soldering and Baking instructions. Information available through the web based RFI system.
			Datasheet updated from Preliminary to Full Production.
10	1.0.9	December, 2022	Added UKCA certification details
11	1.0.10	March 2023	 Added a brief description for POC_IN and POC_OUT
			 Added conditions for the status of signals when they are driven by an external host
			 Added description on status of USB_ID pin when not in use
			 Added Power Up Sequence with EXT_PG_EN
			 Provided Hardware Resetting sequence information
			Updated Absolute Max Rating & Recommended Operating Condition for RF_AVDD_BTTX pin

Revision No.	Version No.	Date	Changes
			 Updated Digital Input Output Signals and added a note for SDIO signal
			 Added a note under Reference Schematics regarding power supply to IO domain when any interface/signal is not used
			 Updated Recommended Operating Conditions: UULP_VBATT_1/2, RF_VBATT, VINBCKDC, VINLDO1P8 pins to have supply voltages at both 1.85/3.3 V; Reference Schematics updated to reflect this information
			 Output Voltage Specs updated for VOUTLDOSOC, VOUTLDOAFE, UULP_VOUTSCDC, and UULP_VOUTSCDC_RETN pins. Added a note for VOUTLDOAFE under the specifications
			 Corrected Operating Voltage range and Temperature range under Features section
			 Included SDIO interface support for WiSeConnect.
			 Updated Baseband processing data rate up to 72 Mbps for 802.11n single stream modes
			 Minimum voltage rating for SDIO_IO_VDD, ULP_IO_VDD, and IO_VDD_1,2,3 pins updated to 1.75 V under Recommended Operating Conditions
			Certification symbols mentioned where applicable
			Added information about MIC certification
			Added Module Marking Information
			 Updated Notes in RF Characteristics section regarding Power variation across channels and part-to-part
			Updated EVM-related notes for MCS7
			 Added RAM size and certificates loading into Flash
			 Added Power-Up Sequence with USB as host interface
			Replaced TELEC with MIC in all relevant sections
			Removed SPI_ERR_INTR from Section 2.2.3
			 Notes added for JP0, JP1, JP2, and JNC pins
			Replaced CS to CSN in all relevant sections
			Removed SD-SPI from Section 4.2.4
			Added a column for model number in Section 7.5

Table 42. Revision History

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

www.silabs.com/loT

www.silabs.com/simplicity

www.silabs.com/quality

Support & Community www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs product shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Lab

Trademark Information

Silicon Laboratories Inc.[®], Silicon Laboratories[®], Silicon Labs[®], Silabs[®] and the Silicon Labs Iogo[®], Bluegiga[®], Bluegiga Logo[®], Clockbuilder[®], CMEMS[®], DSPLL[®], EFM[®], EFM32[®], EFR, Ember[®], Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember[®], EZLink[®], EZRadio[®], EZRadio[®], EZRadio[®], Gecko[®], Gecko OS, Gecko OS Studio, ISOmodem[®], Precision32[®], ProSLIC[®], Simplicity Studio[®], SiPHY[®], Telegesis, the Telegesis Logo[®], USBXpress[®], Zentri, the Zentri logo and Zentri DMS, Z-Wave[®], and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Hold-ings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

www.silabs.com