

Ultra-Low Offset Voltage Operational Amplifier

1.0 **SCOPE**

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

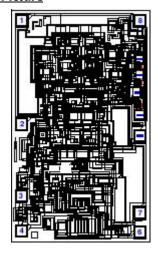
The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die_Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/OP07

Part Number. The complete part number(s) of this specification follow: 2.0

> Part Number Description

OP07-000C Ultra-Low Offset Voltage Operational Amplifier


OP07R000C Radiation Tested Ultra-Low Offset Voltage Operational Amplifier

3.0 **Die Information**

3.1 **Die Dimensions**

Die Size	Die Thickness	Bond Pad Metalization
57 mil x 93 mil	19 mil ± 2 mil	Al/Cu

3.2 **Die Picture**

- 1. V_{IO} TRIM
- -INPUT
- 3. +INPUT
- $4. -V_S$
- 5. NC
- **OUTPUT** 6.
- 7. $+V_{S}$
- V_{IO} TRIM

ASD0012516 Information furnished by Analog Devices is believed to be accurate and reliable.

However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

OP07

3.3 Absolute Maximum Ratings 1/

Supply Voltage (V _S)	±22V dc
Input Voltage (V _{IN}) <u>2/</u>	±22V dc
Differential Input Voltage	±30V dc
Output Short Circuit Duration	Indefinite
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Ambient Operating Temperature Range	55°C to +125°C

Absolute Maximum Ratings Notes:

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Samples Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I-Dice Electrical Characteristics							
Parameter	Symbol Conditions 1/		Limit Min	Limit Max	Units		
Input Offset Voltage	V _{IO}		-25	+25	μV		
Land Dies Comme	+I _{IB}		-2	+2	A		
Input Bias Current	-I _{IB}		-2	+2	nA		
Input Offset Current	l _{IO}		-2	+2	nA		
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V \text{ to } \pm 18V$	-10	10	μV/V		
Input Voltage Range	IVR		±13		V		
Common Mode Rejection Ratio	CMRR	$V_{CM} = IVR$	110		dB		
Supply Current	ls	No Load		4	mA		
0	Vop	$R_L = 1k\Omega$	±10				
Output Voltage Swing		$R_L = 2k \Omega$		→ ∨			
Open Loop Voltage Gain	Avs	$V_{OUT} = \pm 10V$, $R_L = 2k\Omega$	300		V/mV		
Slew Rate	+SR, -SR	$V_{IN}=\pm5V,A_{VS}=1$	0.08		V/µs		

Table I Notes:

 $1/V_S = \pm 15V$, $V_{CM} = 0V$, and $T_A = 25$ °C, unless otherwise specified.

^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

^{2/} For supply voltage less than ±22V, the absolute maximum input voltage is equal to the supply voltage.

	Table II - Ele	ctrical Characte	eristics for Qual	Samples				
Parameter	Symbol	Conditions <u>1/</u>		Sub- groups	Limit Min	Limit Max	Units	
				1	-25	25		
Input Offset Voltage	V _{IO}			2, 3	-60	60	μV	
			M, D, L. R <u>3</u> /	1	-400	400	1	
		$V_{CM} = 0V$		1	-2	2		
Input Offset Current	l _{IO}	V CM=	= UV	2, 3	-4	4	nA	
			M, D, L. R <u>3</u> /	1	-25	25		
				1		4		
Supply Current <u>2</u> /	ls			2, 3		5	mA	
			M, D, L. R <u>3</u> /	1		4		
Input Offset Voltage Temperature Sensitivity <u>2</u> /	ΔVIO/Δt			2, 3	-0.6	0.6	μV/°C	
Input Voltage Range <u>2</u> /	IVR			1, 2, 3	-13	13	V	
Davier Cumply Dejection Datio 2/	DCDD	$Vs = \pm 3V$ to $\pm 18V$		1	-10	10	μV/V	
Power Supply Rejection Ratio <u>2</u> /	PSRR			2, 3	-20	20		
Input Offset Adjustment Range <u>2</u> /	+VIO ADJ			1	0.5		mV	
input Onset Aujustinent kange <u>2</u> /	-VIOadj			1		-0.5	mV	
0.1.1.1/1	.,,	$R_L = 1k\Omega$		122	-10	10	,,	
Output Voltage Swing <u>2</u> /	Vop	RL=	2kΩ	1, 2, 3	-12	12	V	
	Avs	Vout = ± 10 V, R _L = 2 k Ω		1	300			
Open Loop Voltage Gain				2, 3	200		V/mV	
			M, D, L. R <u>3</u> /	1	100			
Common Mode Rejection Ratio <u>2</u> /	CMDD	V _{CM} = IVR		1	110		dB	
Common wode Rejection Ratio <u>2</u> /	CMRR			2, 3	106		ub	
Slew Rate <u>2</u> /	±SR	$V_{IN} = \pm 5V, AV = 1$		4	0.08		V/µS	

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)

	Symbol	Sub-	Post Burn In Limit		Post Life Test Limit		Life	
Parameter		groups	Min	Max	Min	Max	Test Delta	Units
Input Offset Voltage	V _{IO}	4	-60	60	-135	135	±75	
		5, 6			-170	170		μV
Input Bias Current	+I _{IB}	1	-3	+3	-4	+4	±1	
		2, 3			-6	+6		^
	- I _{IB} -	1	-3	+3	-4	+4	±1	nA
		2, 3			-6	+6		
Input Offset Current		1	-3	+3	-4	+4		A
	l _{io}	2, 3			-6	+6		nA

5.0 <u>Life Test/Burn-In Information</u>

- **5.1** HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- **5.3** Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	2 Nov. 2001
В	Change PSRR range from ± 4.5 to ± 20 V to ± 3 to ± 18 V on Table I. Update web address	20 Dec. 2001
С	Add radiation part. Update web address	Feb. 10, 2003
D	Die picture labeled incorrectly, update to current revision.	July 22, 2003
Е	Update 1.0 Scope description.	23 Jul. 2007
F	Update header/footer & add to 1.0 scope description.	Feb. 13,2008
G	Add Junction Temperature+150°C to 3.3 Absolute Max. Ratings	March 31, 2008
Н	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	June 5, 2009
I	Updated fonts and sizes to ADI standards	Sept 27, 2011

www.analog.com