

Silicon Carbide (SiC) MOSFET – EliteSiC, 33 mohm, 650 V, M2, Power88

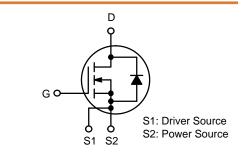
NTMT045N065SC1

Features

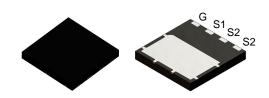
- Typ. $R_{DS(on)} = 33 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 45 \text{ m}\Omega$ @ $V_{GS} = 15 \text{ V}$
- Ultra Low Gate Charge $(Q_{G(tot)} = 105 \text{ nC})$
- Low Effective Output Capacitance (Coss = 162 pF)
- 100% Avalanche Tested
- $T_J = 175^{\circ}C$
- RoHS Compliant

Typical Applications

- SMPS (Switching Mode Power Supplies)
- Solar Inverters
- UPS (Uninterruptable Power Supplies)
- Energy Storage


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	650	V
Gate-to-Source Voltage	ge		V_{GS}	-8/+22	V
Recommended Operation Values of Gate – Source Voltage T _C < 175°C		V_{GSop}	-5/+18	V	
Continuous Drain Steady Current (Note 2) State		T _C = 25°C	I _D	55	Α
Power Dissipation (Note 2)			P _D	187	W
Continuous Drain Current (Notes 1, 2)	Steady State	T _C = 100°C	I _D	39	Α
Power Dissipation (Notes 1, 2)			P _D	94	W
Pulsed Drain Current (Note 3) T _C = 25°C			I _{DM}	197	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	ç
Source Current (Body Diode)			IS	45	Α
Single Pulse Drain-to-Source Avalanche Energy (I _L = 12 A _{pk} , L = 1 mH) (Note 4)			E _{AS}	72	mJ
Maximum Lead Temperature for Soldering, 1/8" from Case for 10 Seconds			TL	260	ç


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface mounted on a FR-4 board using1 in2 pad of 2 oz copper.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. Repetitive rating, limited by max junction temperature.
- 4. E_{AS} of 72 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 12 A, V_{DD} = 50 V, V_{GS} = 18 V.

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	50 mΩ @ 18 V	55 A

POWER MOSFET

TDFN4 8x8 2P CASE 520AB

MARKING DIAGRAM

045N 065SC1 AWLYWW

045N065SC1 = Specific Device Code
A = Assembly Location
WL = Wafer Lot
Y = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMT045N065SC1	TDFN4 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ heta JC}$	0.80	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{ hetaJA}$	45	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition	on Min	Тур	Max	Unit
OFF CHARACTERISTICS	-		•	-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650	_	_	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = 20$ mA, refer to 25°	C -	0.15	_	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 2$	25°C –	_	10	μΑ
		$V_{DS} = 650 \text{ V}$ $T_{J} = 1$	75°C –	_	1	mA
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = +18/-5 \text{ V}, V_{DS} = 0$	O V —	_	250	nA
ON CHARACTERISTICS			•			
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 8 \text{ mA}$	1.8	2.8	4.3	V
Recommended Gate Voltage	V_{GOP}		-5	_	+18	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 15 \text{ V}, I_D = 25 \text{ A}, T$	J = 25°C –	45	-	mΩ
		$V_{GS} = 18 \text{ V}, I_D = 25 \text{ A}, T$	J = 25°C –	33	50	
		$V_{GS} = 18 \text{ V}, I_D = 25 \text{ A}, T$	J = 175°C –	40	-	
Forward Transconductance	9FS	$V_{DS} = 10 \text{ V}, I_D = 25 \text{ A}$	-	16	-	S
CHARGES, CAPACITANCES & GATE RES	ISTANCE		•	•	•	•
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, } f = 1 \text{ MHz,}$	_	1870	_	pF
Output Capacitance	C _{OSS}	V _{DS} = 325 V	-	162	-	,
Reverse Transfer Capacitance	C _{RSS}		-	14	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/18 \text{ V}, V_{DS} = 50$	20 V, –	105	-	nC
Gate-to-Source Charge	Q _{GS}	$I_D = 25 A$	-	27	-	
Gate-to-Drain Charge	Q_{GD}		-	30	_	
Gate-Resistance	R_{G}	f = 1 MHz	-	3.1	-	Ω
SWITCHING CHARACTERISTICS	•		•			
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -5/18 \text{ V}, V_{DS} = 40$	00 V, –	13	-	ns
Rise Time	t _r	I_D = 25 A, R_G = 2.2 Ω , Inductive Load	-	14	-	
Turn-Off Delay Time	t _{d(OFF)}		-	26	-	
Fall Time	t _f		-	7	-	
Turn-On Switching Loss	E _{ON}		-	47	-	μJ
Turn-Off Switching Loss	E _{OFF}		-	33	-	
Total Switching Loss	E _{TOT}		-	80	-	
SOURCE-DRAIN DIODE CHARACTERIST	ics		,			
Continuous Source–Drain Diode Forward Current	I _{SD}	$V_{GS} = -5 \text{ V}, T_{J} = 25^{\circ}\text{C}$	-	-	45	А
Pulsed Source–Drain Diode Forward Current (Note 3)	I _{SDM}	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$	-	-	197	Α
	+	$V_{GS} = -5 \text{ V}, I_{SD} = 25 \text{ A},$		-	ł — — — — —	V

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise stated) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
SOURCE-DRAIN DIODE CHARACTERISTICS								
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/18 \text{ V}, I_{SD} = 25 \text{ A},$ $dI_{S}/dt = 1000 \text{ A}/\mu\text{s}$	_	20	-	ns		
Reverse Recovery Charge	Q _{RR}		_	108	-	nC		
Reverse Recovery Energy	E _{REC}		_	4.5	-	μJ		
Peak Reverse Recovery Current	I _{RRM}		_	11	-	Α		
Charge time	Ta		_	11	-	ns		
Discharge time	Tb	7	_	8.5	_	ns		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

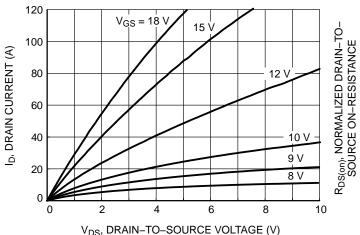


Figure 1. On-Region Characteristics

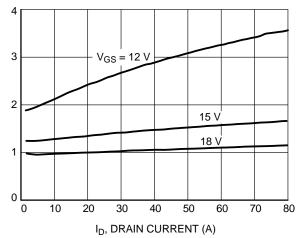


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

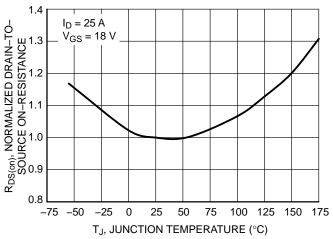


Figure 3. On–Resistance Variation with Temperature

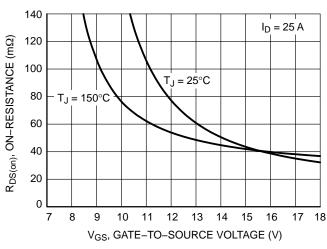


Figure 4. On-Resistance vs. Gate-to-Source Voltage

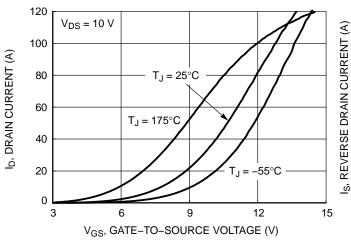


Figure 5. Transfer Characteristics

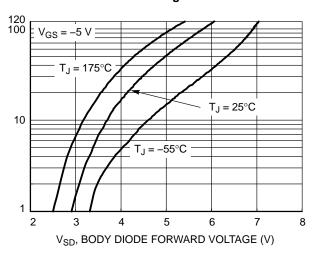


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS (Continued)

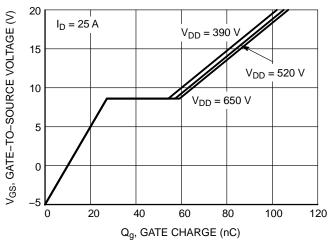


Figure 7. Gate-to-Source Voltage vs. Total Charge

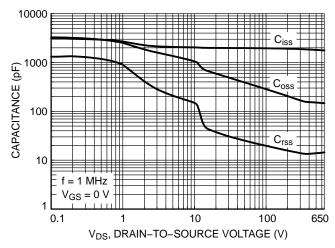


Figure 8. Capacitance vs. Drain-to-Source Voltage

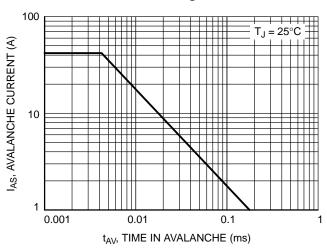


Figure 9. Unclamped Inductive Switching Capability

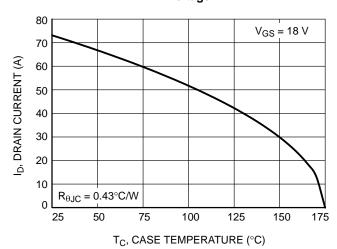


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

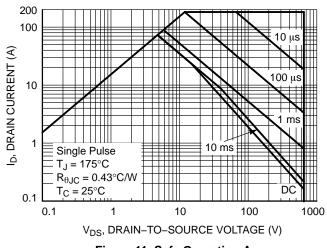


Figure 11. Safe Operating Area

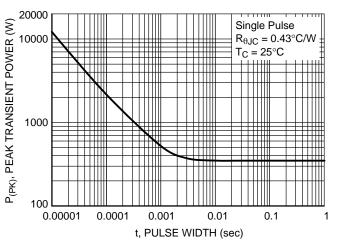


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Continued)

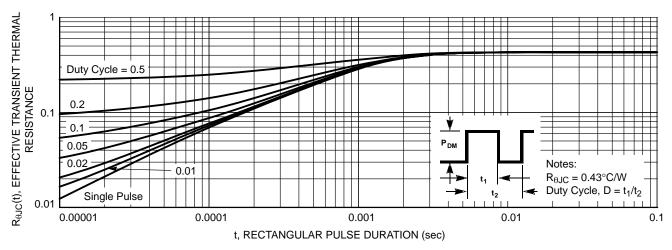


Figure 13. Transient Thermal Impedance

aaa C

В

Ė

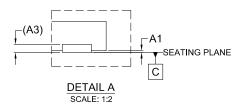
PIN 1

AREA

E3

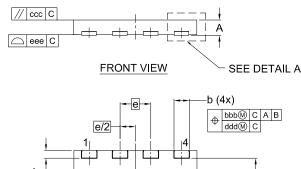
aaa C

TDFN4 8.00x8.00x1.00, 2.00P


CASE 520AB **ISSUE A**

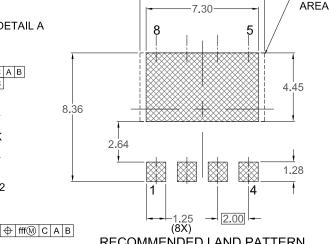
DATE 07 JUN 2024

NOTES:


Α

- A) DIMENSIONS AND TOLERANCING CONFIRM TO ASME Y14.5-2018.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

MILLIME	TEDS			
MILLIMETERS				
NOM	MAX.			
1.00	1.10			
	0.05			
0.20 RE	F			
1.00	1.10			
8.00 BS	SC .			
7.20	7.30			
8.00 BSC				
4.35	4.45			
3.60	3.70			
2.00 BSC				
1.00 BSC				
	_			
0.50	0.60			
0.10				
0.10				
0.05				
0.05				
0.10				
0.10				
	1.00 B 1.			


KEEP OUT

TOP VIEW

4

D

8.10

RECOMMENDED LAND PATTERN

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

D2

BOTTOM VIEW

XXXXXXX XXXXXXX **AWLYWW**

XXXX = Specific Device Code

= Assembly Location

= Wafer Lot Т = Year

⊕ fff∭ C A B

W = Work Week

E2

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON73688G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TDFN4 8.00x8.00x1.00, 2.00P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales