1N6079 1N6080 5FF05 5FF10 1N6081 5FF15 January 7, 1998 # AXIAL LEADED HERMETICALLY SEALED SUPERFAST RECTIFIER DIODE - · Very low reverse recovery time - Hermetically sealed in Metoxilite fused metal oxide - Low switching losses - Low forward voltage drop - Soft, non-snap off, recovery characteristics ## QUICK REFERENCE DATA - $V_R = 50 150V$ - = 5.0A - $t_{rr} = 30nS$ - $V_{\rm F} = 0.97V$ # ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified) | | Symbol | 1N6079
5FF05 | 1N6080
5FF10 | 1N6081
5FF15 | Unit | |--|--------------------|-----------------|-----------------------|-----------------|------| | Working reverse voltage | V _{RWM} | 50 | 100 | 150 | V | | Repetitive reverse voltage | VRRM | 50 | 100 | 150 | v | | Average forward current (@ 55°C, lead length 0.375") | I _{F(av)} | 4 | — 5.0 — | | Α | | Repetitive surge current (@ 55°C in free air, lead length 0.375") | I _{FRM} | 4 | | - | A | | Non-repetitive surge current (tp = 8.3mS, @ V _R & T _{jmax}) | IFSM | • | | | A | | Storage temperature range | TSTG | 4 | -65 to +150 | - | °C | | Operating temperature range | TOP | - | -65 to +150 | - | °C | ### **MECHANICAL** These products are qualified to MIL-S-19500/503. They can be supplied fully released as JAN, JANTX, and JANTXV versions. These products are qualified in Europe to DEF STAN 59-61 (PART 80)/030 available to F and FX levels. 1N6079 1N6080 5FF05 5FF10 5FF15 1N6081 January 7, 1998 # ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified) | | Symbol | 1N6079 1N6080 1N6081
5FF05 5FF10 5FF15 | Unit | |--|--------------------|---|------------------| | Average forward current max. $T_A = 55^{\circ}C$ | | | | | for sine wave | IF(AV) | ← 2.0 ← | A | | Average forward current max.
$T_L = 70^{\circ}\text{C}$; $L = 0$ "
$T_L = 55^{\circ}\text{C}$; $L = 3/8$ " | I _{F(AV)} | 12.0 | Α | | for sine wave | I _{F(AV)} | ← 4.8 ← | Α | | for square wave | IF(AV) | 5.0 | Α | | I^2 t for fusing (t = 8.3mS) max. | I ² t | ← 127 ← → | A ² S | | Forward voltage drop max.
@ $I_F = 5.0A$, $T_j = 25^{\circ}C$ | V _F | 0.97 | V | | Reverse current max.
@ V_{RWM} , $T_j = 25^{\circ}C$ | I_R | 10 | μА | | @ V_{RWM} , $T_j = 100^{\circ}C$ | IR | ← 500 ← | μΑ | | Reverse recovery time max. 0.5A I _F to 1.0A I _R . Recovers to 0.25A I _{RR} . | t _{rr} | → 30 → | nS | | Junction capacitance typ. @ $V_R = 5V$, $f = 1MHz$ | Cj | ← 230 ← | ρF | | | | | | # THERMAL CHARACTERISTICS | | Symbol | 1N6079
5FF05 | 1N6080
5FF10 | 1N6081
5FF15 | Unit | |---|--------------------------|-----------------|------------------|-----------------|------| | Thermal resistance - junction to lead
Lead length = 0.375"
Lead length = 0.0" | R _{OJL}
Rojl | 4 | — 23.5—
— 5 — | | °C/W | | Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper. | R _{0JA} | - | 75 | | °C/W | 1N6079 5FF05 5FF10 5FF15 1N6080 1N6081 January 7, 1998 Fig 1. Forward voltage drop as a function of forward current Fig 3. Transient thermal impedance characteristic. Fig 2. Maximum power versus lead temperature Fig 4. Typical junction capacitance as a function of reverse voltage. 1N6079 5FF05 1N6080 1N6081 5FF10 5FF15 January 7, 1998 Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation. Fig 6. Forward power dissipation as a function of forward current, for square wave operation. Fig 7. Maximum repetitive forward current as a function of pulse width at 55° C; $R_{\theta JL} = 20 {\circ}$ C/W; V_{RWM} during 1 - δ. Fig 8. Maximum repetitive forward current as a function of pulse width at 100° C; $R_{\theta JL} = 80^{\circ}$ C/W; V_{RWM} during 1 - δ .