1N6079 1N6080

5FF05 5FF10

1N6081 5FF15

January 7, 1998

AXIAL LEADED HERMETICALLY SEALED SUPERFAST RECTIFIER DIODE

- · Very low reverse recovery time
- Hermetically sealed in Metoxilite fused metal oxide
- Low switching losses
- Low forward voltage drop
- Soft, non-snap off, recovery characteristics

QUICK REFERENCE DATA

- $V_R = 50 150V$
- = 5.0A
- $t_{rr} = 30nS$
- $V_{\rm F} = 0.97V$

ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	1N6079 5FF05	1N6080 5FF10	1N6081 5FF15	Unit
Working reverse voltage	V _{RWM}	50	100	150	V
Repetitive reverse voltage	VRRM	50	100	150	v
Average forward current (@ 55°C, lead length 0.375")	I _{F(av)}	4	— 5.0 —		Α
Repetitive surge current (@ 55°C in free air, lead length 0.375")	I _{FRM}	4		-	A
Non-repetitive surge current (tp = 8.3mS, @ V _R & T _{jmax})	IFSM	•			A
Storage temperature range	TSTG	4	-65 to +150	-	°C
Operating temperature range	TOP	-	-65 to +150	-	°C

MECHANICAL

These products are qualified to MIL-S-19500/503.

They can be supplied fully released as JAN, JANTX, and JANTXV versions.

These products are qualified in Europe to DEF STAN 59-61 (PART 80)/030 available to F and FX levels.

1N6079 1N6080 5FF05 5FF10

5FF15

1N6081

January 7, 1998

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified)

	Symbol	1N6079 1N6080 1N6081 5FF05 5FF10 5FF15	Unit
Average forward current max. $T_A = 55^{\circ}C$			
for sine wave	IF(AV)	← 2.0 ←	A
Average forward current max. $T_L = 70^{\circ}\text{C}$; $L = 0$ " $T_L = 55^{\circ}\text{C}$; $L = 3/8$ "	I _{F(AV)}	12.0	Α
for sine wave	I _{F(AV)}	← 4.8 ←	Α
for square wave	IF(AV)	5.0	Α
I^2 t for fusing (t = 8.3mS) max.	I ² t	← 127 ← →	A ² S
Forward voltage drop max. @ $I_F = 5.0A$, $T_j = 25^{\circ}C$	V _F	0.97	V
Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$	I_R	10	μА
@ V_{RWM} , $T_j = 100^{\circ}C$	IR	← 500 ←	μΑ
Reverse recovery time max. 0.5A I _F to 1.0A I _R . Recovers to 0.25A I _{RR} .	t _{rr}	→ 30 →	nS
Junction capacitance typ. @ $V_R = 5V$, $f = 1MHz$	Cj	← 230 ←	ρF

THERMAL CHARACTERISTICS

	Symbol	1N6079 5FF05	1N6080 5FF10	1N6081 5FF15	Unit
Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0.0"	R _{OJL} Rojl	4	— 23.5— — 5 —		°C/W
Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	R _{0JA}	-	 75		°C/W

1N6079

5FF05 5FF10 5FF15

1N6080 1N6081

January 7, 1998

Fig 1. Forward voltage drop as a function of forward current

Fig 3. Transient thermal impedance characteristic.

Fig 2. Maximum power versus lead temperature

Fig 4. Typical junction capacitance as a function of reverse voltage.

1N6079 5FF05 1N6080

1N6081

5FF10 5FF15

January 7, 1998

Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

Fig 6. Forward power dissipation as a function of forward current, for square wave operation.

Fig 7. Maximum repetitive forward current as a function of pulse width at 55° C; $R_{\theta JL} = 20 {\circ}$ C/W; V_{RWM} during 1 - δ.

Fig 8. Maximum repetitive forward current as a function of pulse width at 100° C; $R_{\theta JL} = 80^{\circ}$ C/W; V_{RWM} during 1 - δ .