

HALOGEN

FREE

Precision Monolithic Quad SPST CMOS Analog Switches

DESCRIPTION

The DG1411, DG1412, DG1413 are \pm 15 V precision monolithic quad single-pole single-throw (SPST) CMOS analog switches. Built on a new CMOS process, the Vishay Siliconix DG1411, DG1412, and DG1413 offer low on-resistance of 1.5 Ω . The low and flat resistance over the full signal range ensures excellent linearity and low signal distortion. The new CMOS platform provides low power dissipation, minimized parasitic capacitance, and low charge injection.

The devices operate from either a single 4.5 V to 24 V power supply, or from dual \pm 4.5 V to \pm 15 V power supplies. The analog switches don't require a V_L logic supply, while all digital inputs have 0.8 V and 2 V logic thresholds to ensure low-voltage TTL / CMOS compatibility.

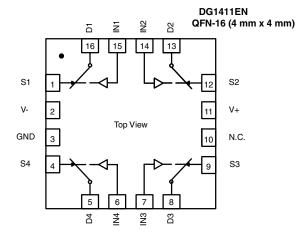
The DG1411, DG1412, and DG1413 are bi-directional and support analog signals up to the supply voltage when on, and block them when off. The devices each feature four independently selectable SPST switches. The DG1411 is normally closed, while the DG1412 is normally open. The DG1413 has two normally open and two normally closed switches with guaranteed break-before-make operation.

Combined with fast 100 ns switching times, the improved performance of the DG1411, DG1412, and DG1413 make the devices ideal for signal switching and relay replacement in data acquisition, industrial control and automation, communication, and A/V systems, in addition to medical instrumentation and automated test equipment.

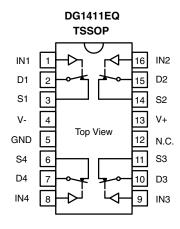
The switches are available in RoHS-compliant, halogen-free TSSOP16 and QFN16 4 mm by 4 mm packages.

FEATURES

- 35 V supply max. rating
- On-resistance: 1.5 Ω
- On-resistance flatness: 0.3 Ω
- Channel to channel ON-resistance match: 0.1 Ω
- · Supports single and dual supply operation
- Fully specified at ± 15 V, ± 5 V, and +12 V
- Integrated V_I supply
- 3 V logic compatible
- Low parasitic capacitance: C_{S(OFF)}: 11 pF, C_{D(ON)}: 87 pF
- · Rail to rail signal handling
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>


BENEFITS

- · Low insertion loss
- Low distortion
- · Break-before-make switching
- Low charge injection over the full signal range


APPLICATIONS

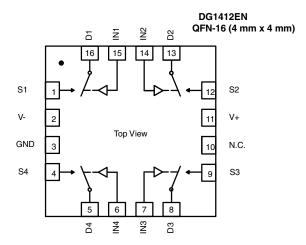
- Medical and Healthcare equipment
- Data acquisition system
- Industrial control and automation
- Test and measurement equipment
- · Communication systems
- Battery powered systems
- Sample and hold circuits
- Audio and video signal switching
- Relay replacement

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1411

TRUTH TABLE - DG1411						
LOGIC	SWITCH					
0	On					
1	Off					

Notes

- QFN EXPOSED PAD TIED TO V-
- N.C. = NO CONNECT
- Switches Shown for Logic "0" Input

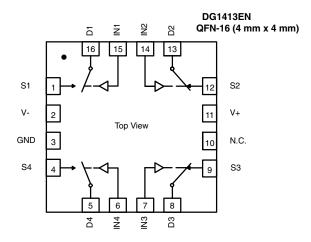

Document Number: 62749

www.vishay.com

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1412

DG 1412EQ									
TSSOP									
	\Box		\mathcal{J}						
IN1	1	\neg	_ ٰل	\forall	16	IN2			
D1	2	⊸ ^	^ ا	þ	15	D2			
S1	3		L		14	S2			
V-	4	Ton	View		13	V+			
GND	5				12	N.C.			
S4	6				11	S3			
D4	7	<u> </u>	ر ا	\sim	10	D3			
IN4	8	₩,	Ĺ	\forall	9	IN3			
					1				


DC1/112EO

TRUTH TABLE - DG1412							
LOGIC	SWITCH						
0	Off						
1	On						

Notes

- QFN EXPOSED PAD TIED TO V-
- N.C. = NO CONNECT
- Switches Shown for Logic "0" Input

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1413

	DG1413EQ								
		TSS	OP						
IN1		- \ \	Ğ	16	IN2				
D1	2	~^1	- ~	15	D2				
S1	3			14	S2				
V-	4			13	V+				
GND	5	Тор	View	12	N.C.				
S4	6			11	S3				
D4	7	⊸√A]	مہا	10	D3				
IN4	8	₩,	-كأ	9	IN3				

TRUTH TABLE - DG1413								
LOGIC	SWITCHES 1, 4	SWITCHES 2, 3						
0	Off	On						
1	On	Off						

Notes

- QFN EXPOSED PAD TIED TO V-
- N.C. = NO CONNECT
- Switches Shown for Logic "0" Input

www.vishay.com

Vishay Siliconix

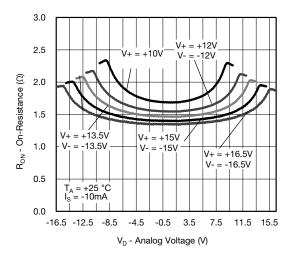
DEVICE OPTIONS											
PART NUMBER	CONFIGURATION	SWITCH FUNCTION	TEMPERATURE RANGE	PACKAGE							
DG1411EN-T1-GE4	Quad SPST	NC	-40 °C to +125 °C	QFN (4 mm x 4 mm) 16L (Variation 2)							
DG1412EN-T1-GE4	Quad SPST	NO	-40 °C to +125 °C	QFN (4 mm x 4 mm) 16L (Variation 2)							
DG1413EN-T1-GE4	Quad SPST	NC/NO	-40 °C to +125 °C	QFN (4 mm x 4 mm) 16L (Variation 2)							
DG1411EQ-T1-GE3	Quad SPST	NC	-40 °C to +125 °C	TSSOP-16							
DG1412EQ-T1-GE3	Quad SPST	NO	-40 °C to +125 °C	TSSOP-16							
DG1413EQ-T1-GE3	Quad SPST	NC/NO	-40 °C to +125 °C	TSSOP-16							

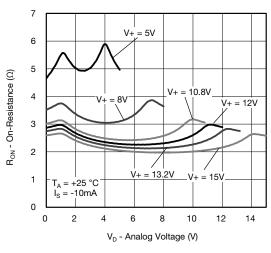
ABSOLUTE MAXIMUM RATIN	GS		
ELECTRICAL PARAMETER	CONDITIONS	LIMITS	UNIT
V+	Reference to GND	-0.3 V to +25 V	
V-	Reference to GND	+0.3 V to -25 V	
V+ to V-		+35	V
Analog Inputs (S or D)		V- (-0.3 V) to V+ (+0.3 V)	
Digital Inputs		GND (-0.3 V) to V+ (+0.3 V)	
	TSSOP-16, T _A = 25 °C	190	
Maximum Continuous Switch Current	QFN (4 mm x 4 mm) 16L, T _A = 25 °C	250	
	TSSOP-16, T _A = 125 °C	90	mA
	QFN (4 mm x 4 mm) 16L, T _A = 125 °C	100	
Maximum Pulse Switch Current	Pulse at 1 mS, 10 % duty cycle	500	
Thermal Resistance	TSSOP-16	130	°C/W
mermai Resistance	QFN (4 mm x 4 mm) 16L	32	
Temperature			
Operating Temperature		-40 to 125	
Max. Operating Junction Temperature		150	-°C
Operating Junction Temperature		125	
Storage Temperature		-65 to 150	

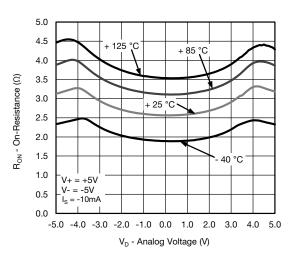
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

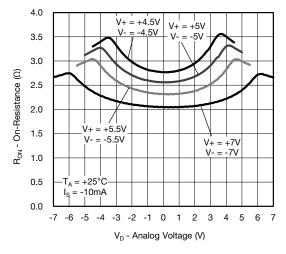
RECOMMENDED OPERATING RANGE								
ELECTRICAL	MINIMUM	MAXIMUM	UNIT					
IN	± 4.5	± 16.5	V					

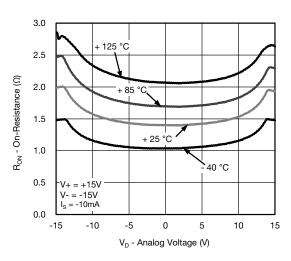
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED V+ = 15 V, V- = -15 V	+25 °C	-40 °C to +85 °C	-40 °C to +125 °C	TYP./MAX.	UNIT
		V _{INH} = 2 V, V _{INL} = 0.8 V					
Analog Switch	.,	T	l			1	.,
Analog Signal Range	V _{ANALOG}		4.5	V- to V+	ı	-	V
Drain-Source On-Resistance	R _{DS(on)}	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}; \text{ see fig. 23}$ V+ = +13.5 V, V- = -13.5 V	1.5	-	-	Тур.	Ω
On-nesistance		V+ = +13.5 V, V- = -13.5 V	1.8	2.3	2.6	Max.	
ON-Resistance Flatness	R _{flat(on)}	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$	0.3	0.45	0.48	- Max.	
			0.08	0.43	0.46	_	Ω
ON-Resistance Matching	$\Delta R_{DS(on)}$			- 0.10	0.01	Typ.	
			0.18	0.19	0.21	Max.	
Switch Off Leakage Current	I _S /I _{d(off)}	$V_{+} = +16.5 \text{ V}, V_{-} = -16.5 \text{ V}$ $V_{S} = \pm 10 \text{ V}, V_{D} = \pm 10 \text{ V}; \text{ see fig. 24}$	± 0.03	-	- 10.5	Тур.	
	. ,	V _S = ± 10 V, V _D = ± 10 V, See lig. 24	± 0.55	± 2	± 12.5	Max.	nA
Channel On Leakage Current	I _{d(on)}	$V_S = V_D = \pm 10 \text{ V}$; see fig. 25	± 0.15	-	-	Тур.	
	` ′		± 2	± 4	± 35	Max.	
Digital Control			T		1 -	1	1
Input, High Voltage	V _{INH}		-	-	2	V _{min.}	V
Input, Low Voltage	V _{INL}		-	-	0.8	V _{max} .	
Input Leakage	I _{IN}	$V_{IN} = V_{GND}$ or V+	0.005	-	-	Тур.	μA
		IN GIVE	-	-	± 0.1	Max.	·
Digital Input Capacitance	C _{IN}		3.5	-	-	Тур.	pF
Dynamic Characteristics							
Break-Before-Make Time	t _{OPEN}	$V_{S1} = V_{S2} = 10 \text{ V, see fig. 31;}$	36	-	-	Тур.	
	OPEN	$R_L = 300 \Omega, C_L = 35 pF$	-	-	10	Min.	ns
Turn-On Time	t _{ON}	ton	100	-	-	Тур.	
Turri-Ori Tirrie		$V_S = 10 \text{ V}$, see fig. 30	150	170	190	Max.	
Turn-Off Time		$R_L = 300 \Omega, C_L = 35 pF$	64	-	-	Тур.	
Turn-On Time	t _{OFF}		120	140	160	Max.	
Charge Injection	Q_{INj}	C_L = 1 nF, R_{GEN} = 0 Ω , V_S = 0 V see fig. 32	-20	-	-	Тур.	рС
Off Isolation	OIRR	$C_L = 5 \text{ pF}, R_L = 50 \Omega, 100 \text{ kHz}$	-80	-	-	Тур.	
Cross Talk	X _{TALK}	$C_L = 5 \text{ pF}, R_L = 50 \Omega, 1 \text{ MHz}$	-100	-	-	Тур.	dB
Insertion Loss		$f = 1$ MHz, $R_L = 50$ Ω, $C_L = 5$ pF	-0.08	-		Тур.	
Total Harmonic Distortion	THD	R_L = 110 Ω, 15 V_{p-p} , f = 20 Hz to 20 kHz	0.014	-	-	Тур.	%
Bandwidth, -3dB	BW	$C_L = 5 \text{ pF}, R_L = 50 \Omega$	210	-	-	Тур.	MHz
Source Off Capacitance	C _{S(off)}		11	-	-	Тур.	
Drain Off Capacitance	C _{D(off)}	f = 1 MHz, V _S = 0 V	24	-	-	Тур.	рF
Drain On Capacitance	C _{D(on)}	_	87	-	-	Тур.	
Power Requirements							
Power Supply Range		GND = 0 V		± 4.5/± 1	6.5 min./max	ζ.	V
.,,,		Digital Inputs 0 or V+	0.001	-	-	Тур.	
		V+ = +16.5 V, V- = -16.5 V	-	-	1	Max.	1
	I+		220	-	-	Typ.	
Power Supply Current		IN1 = IN2 = IN3 = IN4 = 5 V		_	380	Max.	μΑ
			0.001	_	-	Typ.	
	I-	Digital Inputs 0 or V+	0.001		_	ıγp.	ı

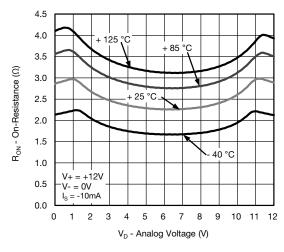

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPI V+ = 12 V, V- = 0 V V _{INH} = 2 V, V _{INL} = 0.8	+25 °C	-40 °C to +85 °C	-40 °C to +125 °C	TYP./MAX.	UNIT	
Analog Switch								
Analog Signal Range	V _{ANALOG}				0 V to V+	•		٧
Drain-Source	R _{DS(on)}	$V_S = 0 V \text{ to } 10 V, I_S = -10$		2.8	-	-	Тур.	Ω
On-Resistance	US(on)	see fig. 23, V+ = 10.8 V, V	'- = 0 V	3.5	4.3	4.8	Max.	32
ON-Resistance Flatness	R _{flat(on)}	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1$	0 mA	0.6	-	-	Тур.	
OTT Flooidtaffoo Flatificoo	· mat(on)	V5 = 0 V to 10 V, 15 = 1		1.1	1.2	1.3	Max.	Ω
ON-Resistance Matching	ΔR_{on}			0.08	-	-	Тур.	32
Olf Hediotarioe Matering	Δi ion			0.21	0.23	0.25	Max.	
0. 31-16. 0 (1)1 01	1 /1	V+ = 10.8 V, V- = 0		± 0.02	-	-	Тур.	
Switch Off Leakage Current	I _S /I _{d(off)}	$V_S = 1 \text{ V/10 V, } V_D = 10 \text{ V}$ see fig. 24	V/U V	± 0.55	± 2	± 12.5	Max.	nA
Channel On Leakage Current	1	$V_S = V_D = 1 \text{ V/10 V}$; see f	ia 25	± 0.15	1	-	Тур.	
Chamilei On Leakage Current	I _{d(on)}	v _S = v _D = 1 v/10 v, see 1	ig. 23	± 1.5	± 4	± 30	Max.	
Digital Control								
Input, High Voltage	V _{INH}			-	-	2	Min.	V
Input, Low Voltage	V_{INL}			-	-	0.8	Max.	V
Input Leakage	I _{IN}	$V_{IN} = V_{GND}$ or V+		0.001	i	-	Тур.	μΑ
input Leakage	'IN	VIN - VGND OI V+	VIN = VGND OI V+				Max.	μΛ
Digital Input Capacitance	C _{IN}			3.5	-	-	Тур.	pF
Dynamic Characteristics								
Break-Before-Make Time	topen	$V_{S1} = V_{S2} = 8 \text{ V}; \text{ see fig. 31},$		130	-	-	Тур.	
Broak Boloro Mako Timo	OPEN	$R_L = 300 \Omega, C_L = 35 \mu$	ρF	-	-	40	Min.	
Turn-On Time	t _{ON}			210	-	-	Тур.	ns
Tam on time	SON	$V_S = 8 \text{ V}$; see fig. 30		250	320	360	Max.	110
Turn-Off Time	t _{OFF}	$R_L = 300 \Omega, C_L = 35 \mu$	80	-	-	Тур.		
Tuni on time	OFF			135	165	190	Max.	
Charge Injection	Q_{INj}	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_{S}$ see fig. 32	_S = 6 V	14	-	-	Тур.	рC
Off Isolation	OIRR	D 50 O. C 5 pE	100 kHz	-80	-	-	Тур.	
Cross Talk	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$	1 MHz	-100	-	-	Тур.	dB
Insertion Loss		$f = 1$ MHz, $R_L = 50 \Omega$, C_L	= 5 pF	-0.16	-	-	Тур.	
Bandwidth, -3dB	BW	$R_L = 50 \Omega$, $C_L = 5 pl$	F	200	-	-	Тур.	MHz
Source Off Capacitance	C _{S(off)}			17	-	-	Тур.	
Drain Off Capacitance	C _{D(off)}	$f = 1 MHz, V_S = 6 V$,	30	-	-	Тур.	рF
Drain On Capacitance	C _{D(on)}		94	-	-	Тур.		
Power Requirements								
Power Supply Range		GND = 0 V, V- = 0 \	/		± 5/± 16	3.5 min./max		V
		Digital Inputs 0 or V	+	0.001	-	-	Тур.	
Power Supply Current	1.	V+ = 13.2 V		-	-	1	Max.	
Power Supply Current	l+	INI1 - INI2 - INI2 - INI4 -	INIA INIO INIO INIA 537		-	-	Тур.	μΑ
		IN1 = IN2 = IN3 = IN4 = 5 V		-	_	380	Max.	


PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED V+ = 5 V, V- = -5 V V _{INH} = 2 V, V _{INL} = 0.8 V	+25 °C	-40 °C to +85 °C	-40 °C to +125 °C	TYP./MAX.	UNIT
Analog Switch				•			
Analog Signal Range	V _{ANALOG}			0 to V+			V
Drain-Source	_	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$; see fig. 23,	3.3	-	-	Тур.	
On-Resistance	R _{DS(on)}	V+ = +4.5 V, V- = -4.5 V	4	4.9	5.4	Max.	
ON-Resistance Flatness	В	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$	0.9	-	-	Тур.	0
ON-nesistance riathess	R _{flat(on)}	V _S = ± 4.5 V, I _S = -10 IIIA	1.1	1.24	1.31	Max.	Ω
ON Posistance Matching	I Parietana Matakina AP				-	Тур.	
ON-Resistance Matching	ΔR_{on}		0.22	0.23	0.25	Max.	
		V+ = +5.5 V, V-= -5.5 V,	± 0.03	-	-	Тур.	
Switch Off Leakage Current	I _S /I _{d(off)}	$V_S = +/- 4.5 \text{ V}, V_D = -/+ 4.5 \text{ V};$ see fig. 24	± 0.55	± 2	± 12.5	Max.	nA
Observation Landau Comment		VO VD . 45 V 6 05	± 0.05	-	-	Тур.	100
Channel On Leakage Current	I _{d(on)}	$VS = VD = \pm 4.5 V$; see fig. 25	± 1	± 4	± 30	Max.	
Digital Control							
Input, High Voltage	V_{INH}		-	-	2	Min.	V
Input, Low Voltage	V_{INL}		-	-	0.8	Max.	V
Input Leakage	l	$V_{IN} = V_{GND}$ or V+	0.001	-	-	Тур.	μA
Iliput Leakage	I _{IN}	VIN = VGND OI V+	-	-	± 0.1	Max.	μΑ
Digital Input Capacitance	C _{IN}		3.5	-	-	Тур.	pF
Dynamic Characteristics							
Break-Before-Make Time	topen	$V_{S1} = V_{S2} = 3 \text{ V}; \text{ see fig. 31},$		-	-	Тур.	
Broak Bororo Mako Timo	OPEN	$R_L = 300 \Omega, C_L = 35 pF$	-	-	50	Min.	
Turn-On Time	t _{ON}		300	-	-	Тур.	ns
Tuni on Timo	UN	$V_S = 3 V$; see fig. 30,	400	465	510	Max.	110
Turn-Off Time	t _{OFF}	$R_L = 300 \Omega$, $C_L = 35 pF$	150	-	-	Тур.	
Tuni on time	OFF		290	320	380	Max.	
Charge Injection	Q_{INj}	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_S = 0 V;$ see fig. 32	22	-	-	Тур.	рС
Off Isolation	OIRR	D 50 0 5 F 5	z -80	-	-	Тур.	
Cross Talk	X _{TALK}	$R_L = 50 \Omega, C_L = 5 pF$	-100	-	-	Тур.	dB
Insertion Loss		$f = 1$ MHz, $R_L = 50$ Ω, $C_L = 5$ pF	-0.19	-	-	Тур.	
Bandwidth, -3dB	BW	$R_L = 50 \Omega$, $C_L = 5 pF$	200	-	-	Тур.	MHz
Source Off Capacitance	C _{S(off)}		18	=	-	Тур.	
Drain Off Capacitance	C _{D(off)}	$f = 1 MHz, V_S = 0 V$	31	-	-	Тур.	pF
Drain On Capacitance					-	Тур.	
Power Requirements							
Power Supply Range		GND = 0 V		± 4.5 V/±	16.5 min./ma	ax.	٧
	l+	Digital Inputs 0 V or V+	0.001	-	-	Тур.	
Power Supply Current	1+	V+ = +5.5 V, V- = -5.5 V	-	-	1	Max.	μΑ
i ower Supply Current	I-	Digital Inputs = 0 V or V+	0.001	-	-	Тур.	
	I- Digital Inputs = 0 V or V+		-	_	1	Max.	

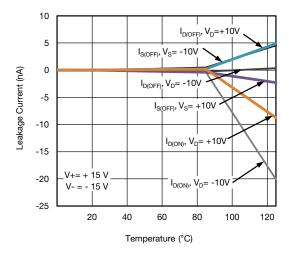

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


On-Resistance vs. Analog Voltage (DS1)

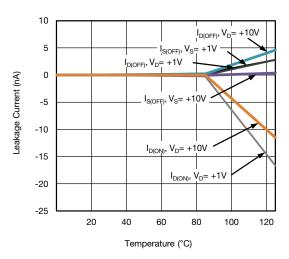

On-Resistance vs. Analog Voltage (DSS)


On-Resistance vs. Temperature (± 5 V)

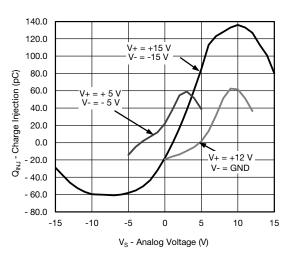
On-Resistance vs. Analog Voltage (DS2)

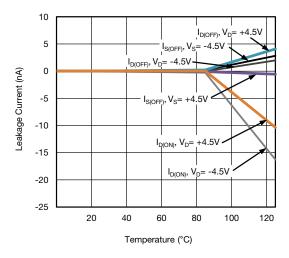


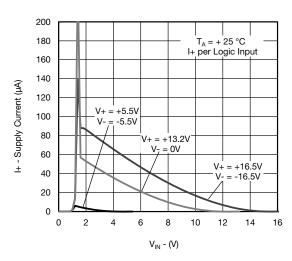
On-Resistance vs. Temperature (± 15 V)

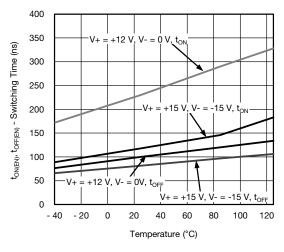


On-Resistance vs. Temperature (+12 V)

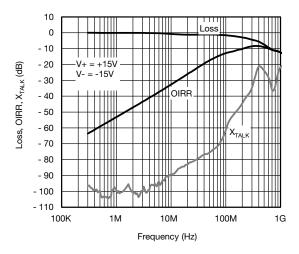

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

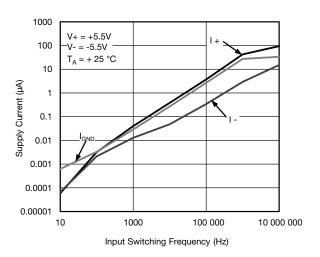

Leakage Current vs. Temperature (± 15 V)

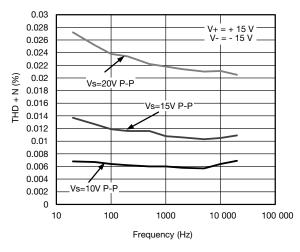

Leakage Current vs. Temperature (+12 V)

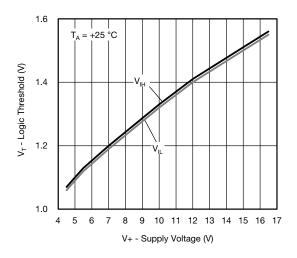

Charge Injection vs. Analog Voltage

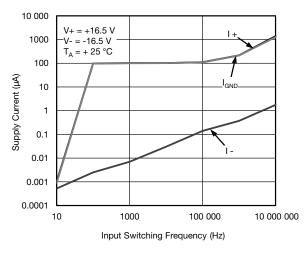
Leakage Current vs. Temperature (± 5 V)

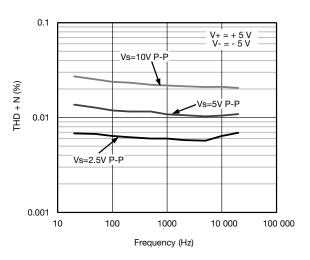

Supply Current vs. Logic Level


Switching Time vs. Temperature


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


BW, OIRR, X_{TALK} vs. Frequency


Supply Current vs. Switching Frequency (± 5.5 V)

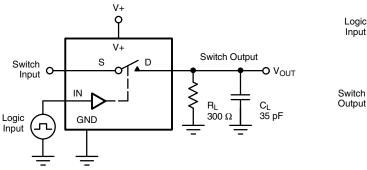

THD vs. Frequency (± 15 V)

Logic Threshold vs. Supply Voltage

Supply Current vs. Switching Frequency (± 16.5 V)

THD vs. Frequency (± 5 V)

50 %


Vishay Siliconix

 $t_r < 5 \text{ ns}$

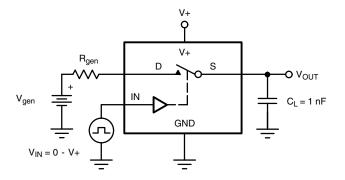
 $t_f < 5 \text{ ns}$

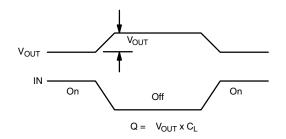
0.9 x V_{OUT}

TEST CIRCUITS

t_{ON}

0 V


 V_{INH}


Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{D} \left(\frac{R_{L}}{R_{L} + R_{ON}} \right)$$

Fig. 1 - Switching Time

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 2 - Charge Injection

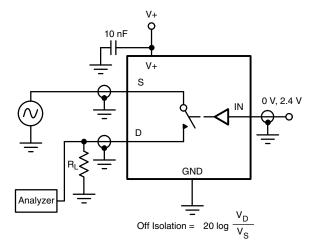
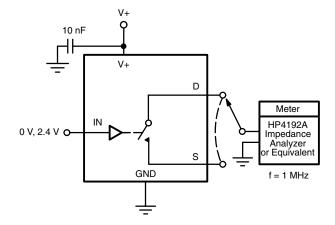
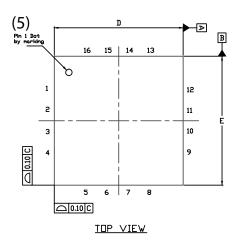
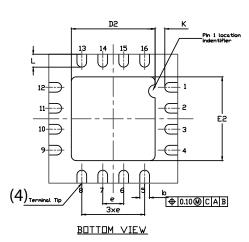
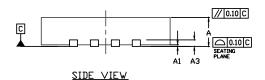


Fig. 3 - Off-Isolation


Fig. 4 - Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62749.

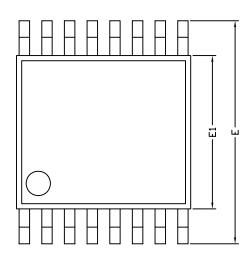
QFN 4x4-16L Case Outline

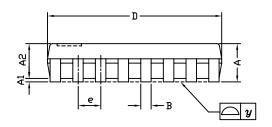
	VARIATION 1					VARIATION 2								
DIM	МІ	MILLIMETERS(1)		INCHES		МІ	LLIMETER	S ⁽¹⁾		INCHES				
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037		
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002		
A3		0.20 ref			0.008 ref.			0.20 ref.			0.008 ref.			
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014		
D		4.00 BSC			0.157 BSC		4.00 BSC			0.157 BSC				
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106		
е		0.65 BS	0	0.026 BSC			0.65 BSC			0.026 BSC				
Е		4.00 BS0	0		0.157 BSC		0.157 BSC			4.00 BSC			0.157 BSC	
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106		
K		0.20 min	ı.		0.008 min.			0.20 min.		0.008 min.				
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020		
N ⁽³⁾		16		16 16			16							
Nd ⁽³⁾		4		4 4		4		4						
Ne ⁽³⁾	4		4			4			4					

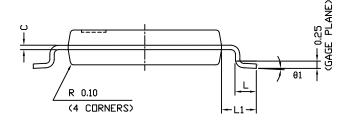
Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

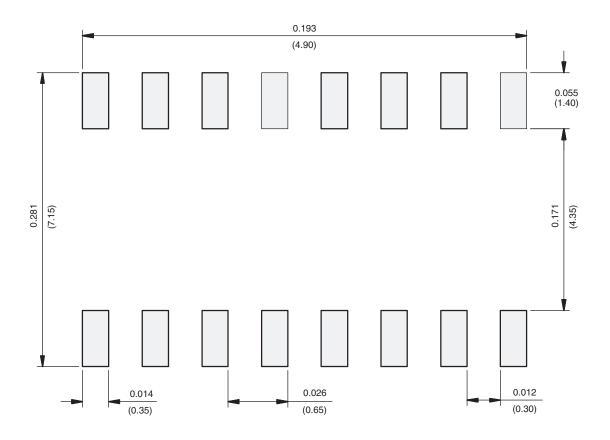
ECN: S13-0893-Rev. B, 22-Apr-13


DWG: 5890


Revision: 22-Apr-13


Document Number: 71921

TSSOP: 16-LEAD


	DIMENSIONS IN MILLIMETERS		
Symbols	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	=	1.00	1.05
В	0.22	0.28	0.38
С	=	0.127	=
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
е	=	0.65	=
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
у	=	-	0.10
θ1	0°	3°	6°
ECN: S-61920-Rev. D, 23-0	Oct-06		

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.