

35 W, 2.0 - 6.0 GHz, GaN MMIC, Power Amplifier

### **Description**

Wolfspeed's CMPA2060035F1 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage 50-ohm matched amplifier, enabling very wide bandwidths to be achieved, in a small 0.5" square, screw-down package.



PN: CMPA2060035F1 Package Type: 440219

### Typical Performance Over 2.0 - 6.0 GHz ( $T_c = 25$ °C)

| Parameter                             | 2.0 GHz | 3.0 GHz | 4.0 GHz | 5.0 GHz | 6.0 GHz | Units |
|---------------------------------------|---------|---------|---------|---------|---------|-------|
| Small Signal Gain <sup>1,2</sup>      | 30.0    | 29.4    | 30.4    | 32.0    | 27.5    | dB    |
| Output Power <sup>1,3</sup>           | 45.6    | 46.2    | 45.7    | 46.2    | 44.4    | dBm   |
| Power Gain <sup>1,3</sup>             | 23.6    | 24.2    | 23.7    | 24.2    | 22.4    | dB    |
| Power Added Efficiency <sup>1,3</sup> | 52      | 48      | 38      | 35      | 30      | %     |

#### Notes:

#### **Features**

- >30% Typical Power Added Efficiency
- 30 dB Small Signal Gain
- 36W Typical P<sub>SAT</sub>
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation

Note: Features represent typical performance across multiple frequencies under 25°C operation. Please reference the performance charts for additional details.

#### **Applications**

- Civil and Military Pulsed Radar **Amplifiers**
- **Test Instrumentation**
- **Electronic Warfare Jamming**

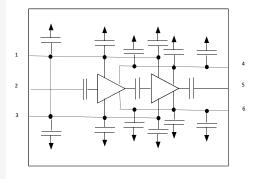



Figure 1.



 $<sup>^{1}</sup>V_{_{DD}}$  = 28 V,  $I_{_{DQ}}$  = 1000 mA

<sup>&</sup>lt;sup>2</sup> Measured at Pin = -20 dBm

<sup>&</sup>lt;sup>3</sup>Measured at Pin = 22 dBm and CW

### Absolute Maximum Ratings (not simultaneous) at 25 °C

| Parameter                    | Symbol                       | Rating    | Units | Conditions |
|------------------------------|------------------------------|-----------|-------|------------|
| Drain-source Voltage         | $V_{\scriptscriptstyle DSS}$ | 84        | VDC   | 25°C       |
| Gate-source Voltage          | $V_{\sf GS}$                 | -10, +2   | VDC   | 25°C       |
| Storage Temperature          | $T_{STG}$                    | -55, +150 | °C    |            |
| Maximum Forward Gate Current | I <sub>G</sub>               | 16.32     | mA    | 25°C       |
| Maximum Drain Current        | I <sub>DMAX</sub>            | 4.0       | Α     |            |
| Soldering Temperature        | T <sub>s</sub>               | 260       | °C    |            |

# Electrical Characteristics (Frequency = 2.0 GHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

| Characteristics                      | Symbol            | Min.  | Тур.  | Max. | Units       | Conditions                                                                                                |
|--------------------------------------|-------------------|-------|-------|------|-------------|-----------------------------------------------------------------------------------------------------------|
| DC Characteristics                   |                   |       |       |      |             |                                                                                                           |
| Gate Threshold Voltage               | $V_{\rm GS(TH)}$  | -2.6  | -2.0  | -1.6 | V           | $V_{DS} = 10 \text{ V, I}_{D} = 16.32 \text{ mA}$                                                         |
| Gate Quiescent Voltage               | $V_{GS(Q)}$       | -     | -1.8  | -    | $V_{_{DC}}$ | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}$                                                         |
| Saturated Drain Current <sup>1</sup> | I <sub>DS</sub>   | 16.32 | 19.58 | -    | Α           | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                                          |
| Drain-Source Breakdown Voltage       | $V_{_{BD}}$       | 84    | -     | -    | V           | $V_{GS} = -8 \text{ V}, I_{D} = 16.32 \text{ mA}$                                                         |
| RF Characteristics                   |                   |       |       |      |             |                                                                                                           |
| Small Signal Gain                    | S21 <sub>1</sub>  | -     | 30.0  | -    | dB          | Pin = -20 dBm, Freq = 2.0 - 6.0 GHz                                                                       |
| Output Power <sup>2</sup>            | P <sub>out1</sub> | -     | 45.6  | -    | dBm         | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{Freq} = 2.0 \text{ GHz}$ |
| Output Power <sup>2</sup>            | P <sub>OUT2</sub> | -     | 46.2  | -    | dBm         | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 3.0 \text{ GHz}$        |
| Output Power <sup>2</sup>            | Роитз             | -     | 45.7  | -    | dBm         | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 4.0 \text{ GHz}$        |
| Output Power <sup>2</sup>            | P <sub>OUT4</sub> | -     | 46.2  | -    | dBm         | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 5.0 \text{ GHz}$        |
| Output Power <sup>2</sup>            | P <sub>outs</sub> | -     | 44.4  | -    | dBm         | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 6.0 \text{ GHz}$        |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>1</sub>  | -     | 52    | -    | %           | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 2.0 \text{ GHz}$        |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>2</sub>  | -     | 48    | -    | %           | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 3.0 \text{ GHz}$        |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>3</sub>  | -     | 38    | -    | %           | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 4.0 \text{ GHz}$        |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>4</sub>  | -     | 35    | -    | %           | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 5.0 \text{ GHz}$        |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>5</sub>  | -     | 30    | -    | %           | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 6.0 \text{ GHz}$        |
| Power Gain                           | G <sub>P1</sub>   | -     | 23.6  | -    | dB          | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 2.0 \text{ GHz}$        |
| Power Gain                           | G <sub>P2</sub>   | -     | 24.2  | -    | dB          | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 3.0 \text{ GHz}$        |
| Power Gain                           | G <sub>P3</sub>   | -     | 23.7  | -    | dB          | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 4.0 \text{ GHz}$        |
| Power Gain                           | G <sub>P4</sub>   | _     | 24.2  | -    | dB          | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 5.0 \text{ GHz}$        |
| Power Gain                           | G <sub>P5</sub>   | -     | 22.4  | -    | dB          | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, Freq = 6.0 \text{ GHz}$        |
| Input Return Loss                    | S11               | -     | -14   | -    | dB          | Pin = -20 dBm, 2.0 - 6.0 GHz                                                                              |
| Output Return Loss                   | S22               | -     | -14   | -    | dB          | Pin = -20 dBm, 2.0 - 6.0 GHz                                                                              |
| Output Mismatch Stress               | VSWR              | -     | -     | 5:1  | Ψ           | No damage at all phase angles                                                                             |

#### Notes

<sup>&</sup>lt;sup>1</sup> Scaled from PCM data

<sup>&</sup>lt;sup>2</sup> Performance is based on production testing at a fixed input power. To see performance where the input power is optimized for either maximum output power or power added efficiency, see Figures 46 and 47.

### **Thermal Characteristics**

| Parameter                                                    | Symbol           | Rating | Units | Conditions |
|--------------------------------------------------------------|------------------|--------|-------|------------|
| Operating Junction Temperature                               | T,               | 225    | °C    |            |
| Thermal Resistance, Junction to Case (packaged) <sup>1</sup> | $R_{_{	hetaJC}}$ | 1.5    | °C/W  | CW         |

Notes:

 $<sup>^{1}\</sup>text{For the CMPA2060035F1}$  at  $\text{P}_{\text{DISS}}\text{=}\,89~\text{W}$ 

#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , CW, Pin = 22 dBm,  $T_{BASE} = +25 ^{\circ}\text{C}$ 

Figure 1. Output Power vs Frequency as a Function of Temperature

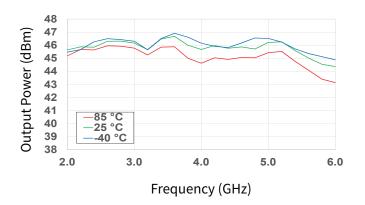



Figure 2. Output Power vs Frequency as a Function of Input Power

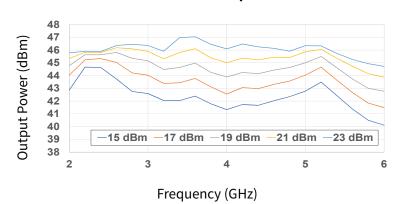



Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

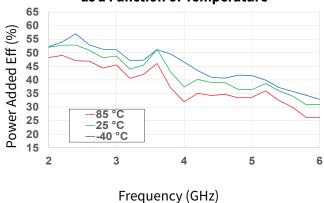
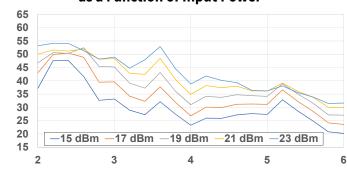




Figure 4. Power Added Eff. vs Frequency as a Function of Input Power



Power Added Eff (%)

. , ,

Figure 5. Drain Current vs Frequency as a Function of Temperature

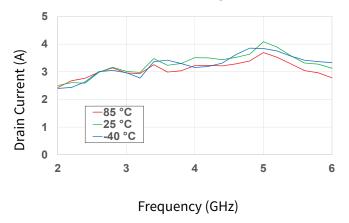
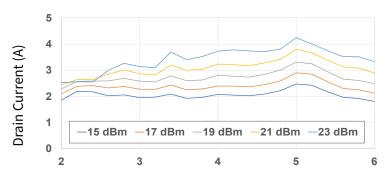




Figure 6. Drain Current vs Frequency as a Function of Input Power

Frequency (GHz)



Frequency (GHz)

#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , CW, Pin = 22 dBm,  $T_{BASF} = +25 \text{ }^{\circ}\text{C}$ 

**Figure 7. Output Power vs Frequency** as a Function of VD 48 47 46 Output Power (dBm) Output Power (dBm) 45 44 43 42 41 40 26 V 24 V 39 38 3 5 2 Frequency (GHz)

**Figure 8. Output Power vs Frequency** as a Function of IDQ 48 47 46 45 44 43 1000 mA 42 41 500 mA 40 250 mA 39 38 3 2 4 5 Frequency (GHz)

Figure 9. Power Added Eff. vs Frequency as a Function of VD

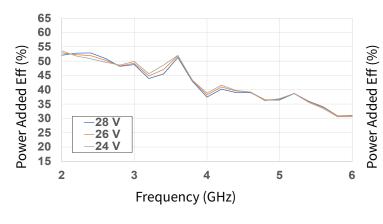



Figure 10. Power Added Eff. vs Frequency as a Function of IDQ

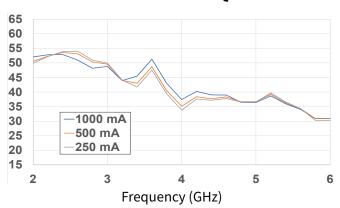



Figure 11. Drain Current vs Frequency as a Function of VD

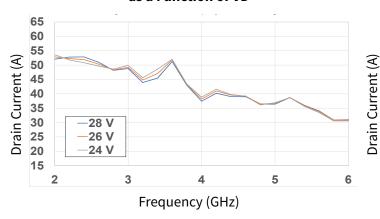
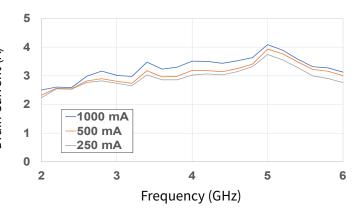




Figure 12. Drain Current vs Frequency as a Function of IDQ



#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , CW, Pin = 22 dBm,  $T_{BASE} = +25 \text{ °C}$ 

Figure 13. Output Power vs Input Power as a Function of Frequency

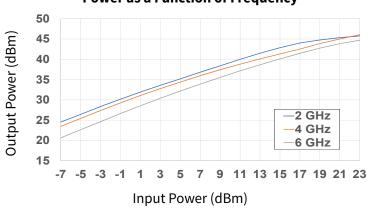



Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

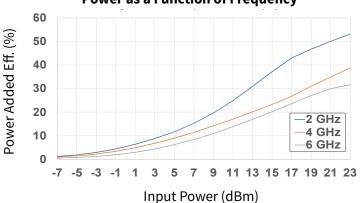
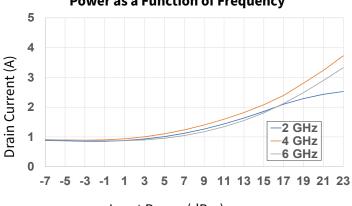




Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

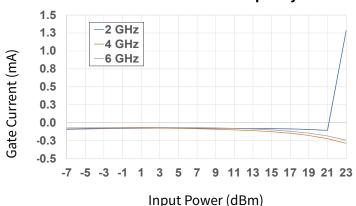



Figure 16. Drain Current vs Input Power as a Function of Frequency



Input Power (dBm)

Figure 17. Gate Current vs Input Power as a Function of Frequency



#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , CW, Pin = 22 dBm,  $T_{BASE} = +25 ^{\circ}\text{C}$ 

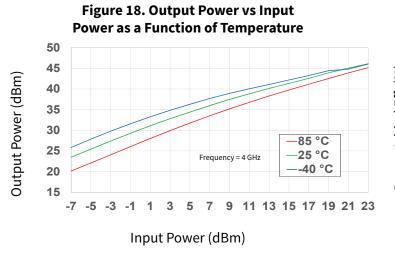



Figure 19. Power Added Eff. vs Input **Power as a Function of Temperature** 60 Power Added Eff. (%) 50 40 30 20 85 °C 25 °C 10 Frequency = 4 GHz -40 °C -5 -3 11 13 15 17 19 21 23 Input Power (dBm)

Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

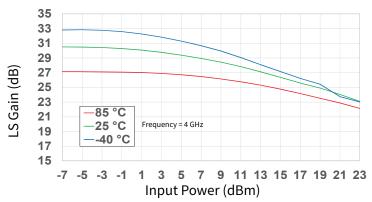



Figure 21. Drain Current vs Input Power as a Function of Temperature

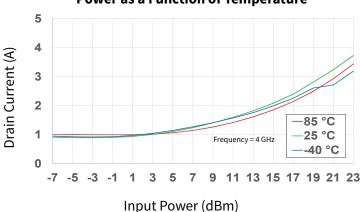
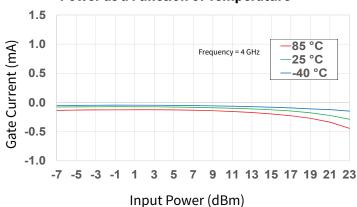




Figure 22. Gate Current vs Input Power as a Function of Temperature



#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , CW, Pin = 22 dBm,  $T_{BASF} = +25 ^{\circ}\text{C}$ 

Figure 23. Output Power vs Input Power as a Function of IDQ

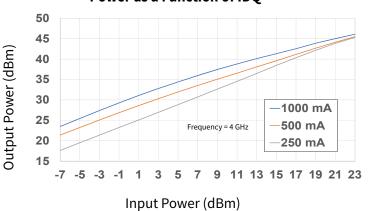



Figure 24. Power Added Eff. vs Input Power as a Function of IDQ

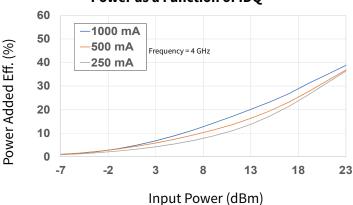



Figure 25. Large Signal Gain vs Input Power as a Function of IDQ

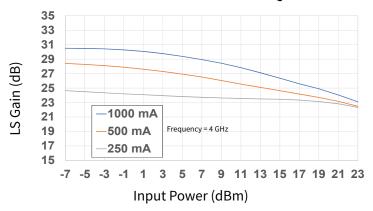



Figure 26. Drain Current vs Input Power as a Function of IDQ

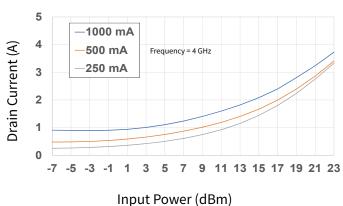
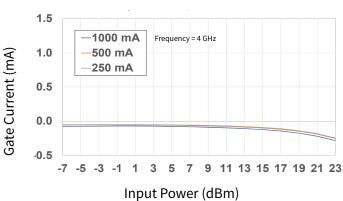




Figure 27. Gate Current vs Input Power as a Function of IDQ



#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , CW, Pin = 22 dBm,  $T_{BASE} = +25 ^{\circ}\text{C}$ 

3rd Harmonic Level (dBc)

Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

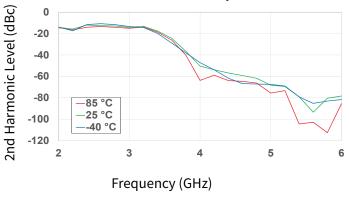



Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

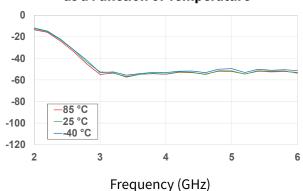



Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

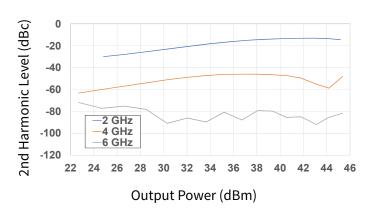



Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

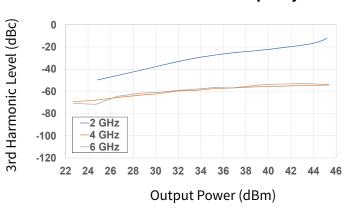



Figure 32. 2nd Harmonic vs Output
Power as a Function of IDQ

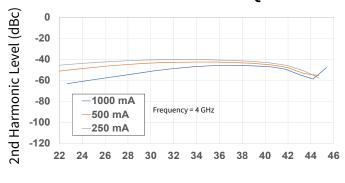
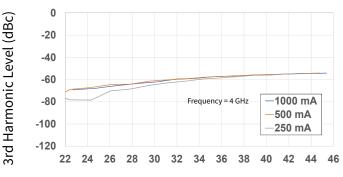




Figure 33. 3rd Harmonic vs Output Power as a Function of IDQ



Output Power (dBm)

Output Power (dBm)

#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , Pin = -20 dBm,  $T_{BASF} = +25 \text{ °C}$ 

Figure 34. Gain vs Frequency as a **Function of Temperature** 60 40 20 0 -20 -40 -60 -80 85C 25C 100 -40C 120 0 8 Frequency (GHz)

Figure 36. Input RL vs Frequency as a Function of Temperature

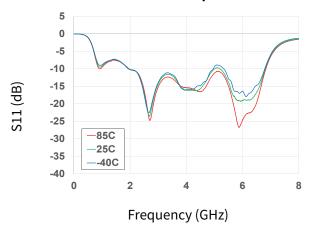



Figure 38. Output RL vs Frequency as a Function of Temperature

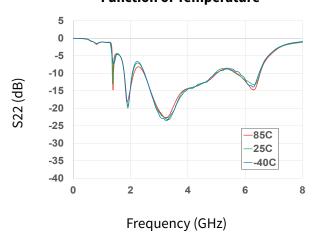



Figure 35. Gain vs Frequency as a Function of Temperature

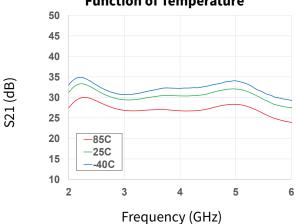



Figure 37. Input RL vs Frequency as a Function of Temperature

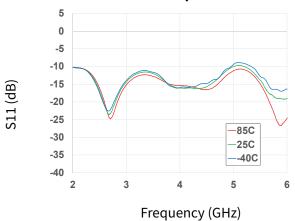
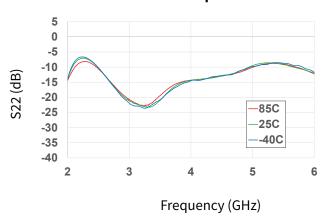




Figure 39. Output RL vs Frequency as a Function of Temperature



S21 (dB)

#### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , Pin = -20 dBm,  $T_{BASE} = +25 ^{\circ}\text{C}$ 

Figure 40. Gain vs Frequency as a Function of Voltage

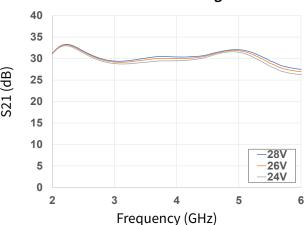



Figure 41. Gain vs Frequency as a Function of IDQ

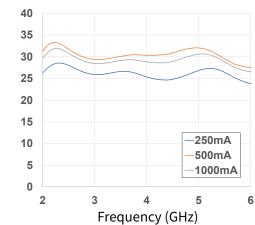



Figure 42. Input RL vs Frequency as a Function of Voltage

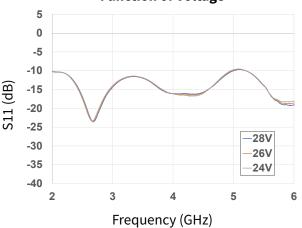



Figure 43. Input RL vs Frequency as a Function of IDQ

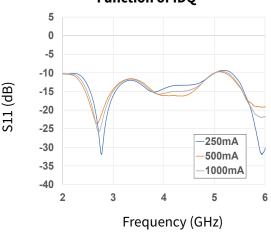



Figure 44. Output RL vs Frequency as a Function of Voltage

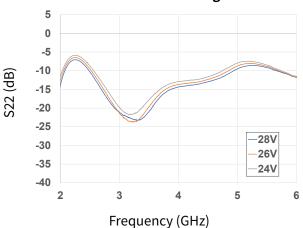
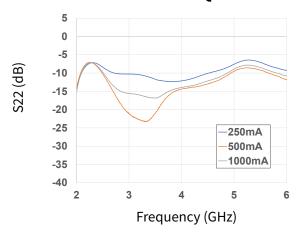



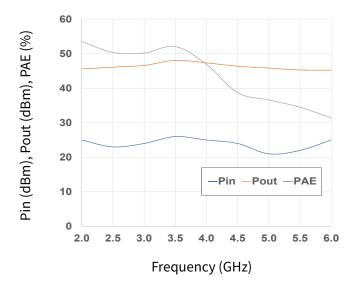
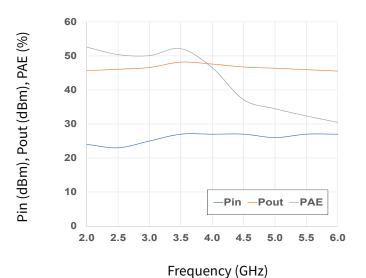
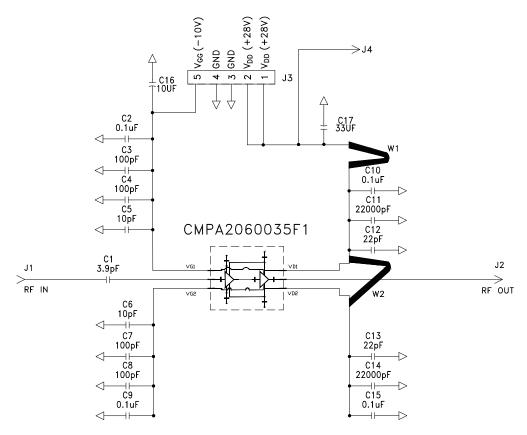

Figure 45. Output RL vs Frequency as a Function of IDQ

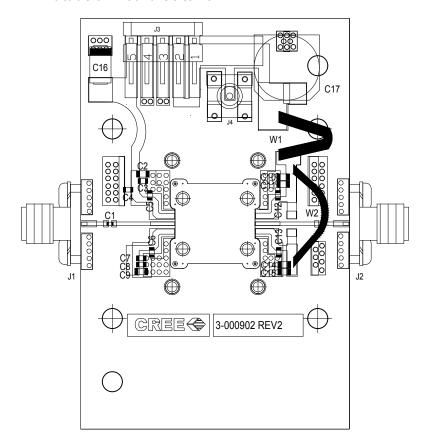


### Typical Performance of the CMPA2060035F1

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DO} = 1000 \text{ mA}$ , Pin = -20 dBm,  $T_{BASE} = +25 \,^{\circ}\text{C}$ 

Figure 46. Output Power and Power Added Eff. vs Frequency when Optimized for Maximum PAE



Figure 47. Output Power and Power Added Eff. vs Frequency when Optimized for Mamimum Output Power



#### **CMPA2060035F1-AMP Evaluation Board Schematic**

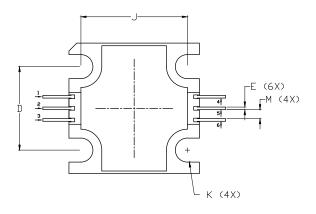


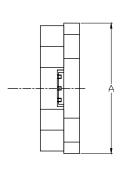
#### CMPA2060035F1-AMP Evaluation Board Outline

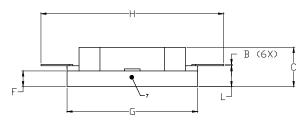


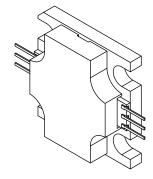
#### CMPA2060035F1-AMP Evaluation Board Bill of Materials

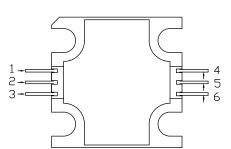
| Designator      | Description                                                    | Qty |
|-----------------|----------------------------------------------------------------|-----|
| C1              | CAP, 3.9pF, +/-0.1pF, 0402, ATC                                | 1   |
| C11, C14        | CAP CER 22,000PF 100V 10% X7R 0805                             | 2   |
| C12. C13        | CAP, 22pF,+/-5%, 0603, ATC                                     | 2   |
| C16             | CAP 10UF 16V TANTALUM, 2312                                    | 1   |
| C17             | CAP, 33 UF, 20%, G CASE                                        | 1   |
| C2, C9, C10,C15 | CAP CER 0.1UF 100V 10% X7R 0805                                | 4   |
| C3, C4, C7, C8  | CAP, 100.0pF, +/-5%, 0603, ATC                                 | 4   |
| C5, C6          | CAP, 10.0pF, +/-5%, 0603, ATC                                  | 2   |
| J1, J2          | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL | 2   |
| J3              | HEADER RT>PLZ .1CEN LK 5POS                                    | 1   |
| J4              | CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED    | 1   |
| W1, W2          | WIRE, BLACK, 22 AWG                                            | 2   |
|                 | TEST FIXTURE, 2-6GHz, CMPA2060035F1                            | 1   |
|                 | PCB board 2.6" X1.7",TACONIC RF35, 0.01", 440219 package       | 1   |
|                 | BASEPLATE, AL, 2.60 X 1.70 X 2.50                              | 1   |
| Q1              | CMPA2060035F1: GaN, MMIC PA, 35 W, 2-6 GHz, Flange             | 1   |


## **Electrostatic Discharge (ESD) Classifications**


| Parameter           | Symbol | Class        | Test Methodology    |
|---------------------|--------|--------------|---------------------|
| Human Body Model    | НВМ    | 1B (≥ 500 V) | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | II (≥ 200 V) | JEDEC JESD22 C101-C |


# Moisture Sensitivity Level (MSL) Classification


| Parameter                  | Symbol | Level         | Test Methodology   |
|----------------------------|--------|---------------|--------------------|
| Moisture Sensitivity Level | MSL    | 3 (168 hours) | IPC/JEDEC J-STD-20 |


## Product Dimensions CMPA2060035F1 (Package 440219)











NOT TO SCALE

| Α | 0.495 | 0.505 | 12.57 | 12.82 |
|---|-------|-------|-------|-------|
| В | 0.003 | 0.005 | 0.076 | 0.127 |
| С | 0.140 | 0.160 | 3.56  | 4.06  |
| D | 0.315 | 0.325 | 8.00  | 8.25  |
| Ε | 0.008 | 0.012 | 0.204 | 0.304 |
| F | 0.055 | 0.065 | 1.40  | 1.65  |
| G | 0.495 | 0.505 | 12.57 | 12.82 |
| Н | 0.695 | 0.705 | 17.65 | 17.91 |
| J | 0.403 | 0.413 | 10.24 | 10.49 |
| K | Ø .(  | 092   | 2.3   | 34    |
| L | 0.075 | 0.085 | 1.905 | 2.159 |
| М | 0.032 | 0.040 | 0.82  | 1.02  |
|   |       |       |       |       |

**INCHES** 

MAX

MIN

DIM

MILLIMETERS

 $\mathsf{MAX}$ 

MIN

| PIN | DESC.   |  |  |  |
|-----|---------|--|--|--|
| 1   | Gate 1  |  |  |  |
| 2   | RFIN    |  |  |  |
| 3   | Gate 2  |  |  |  |
| 4   | Drain 1 |  |  |  |
| 5   | RFOUT   |  |  |  |
| 6   | Drain 2 |  |  |  |

### **Part Number System**

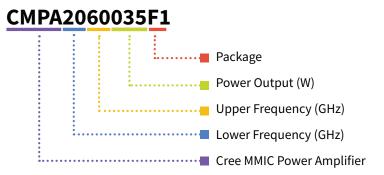



Table 1.

| Parameter       | Value  | Units |
|-----------------|--------|-------|
| Lower Frequency | 2.0    | GHz   |
| Upper Frequency | 6.0    | GHz   |
| Power Output    | 35     | W     |
| Package         | Flange | -     |

**Note¹:** Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| A              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| Е              | 4                              |
| F              | 5                              |
| G              | 6                              |
| Н              | 7                              |
| J              | 8                              |
| К              | 9                              |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |

16

#### **Product Ordering Information**

| Order Number      | Description                        | Unit of Measure | Image |
|-------------------|------------------------------------|-----------------|-------|
| CMPA2060035F1     | GaN HEMT                           | Each            |       |
| CMPA2060035F1-AMP | Test board with GaN MMIC installed | Each            |       |

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/rf

Sales Contact rfsales@cree.com

#### Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

 $@\ 2020-2021\ Cree,\ Inc.\ All\ rights\ reserved.\ Wolfspeed \ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree,\ Inc.\ Property \ (a.g.)$