

CMPA1D1J001S

12.7 - 18 GHz, 1 W GaN HPA

Description

The CMPA1D1J001S is a 1W package MMIC HPA utilizing the high performance, 0.15um GaN on SiC production process. The CMPA1D1J001S operates from 12.7-18 GHz and supports both radar and communication applications within both military and commercial markets. The CMPA1D1J001S achieves 1 W of saturated output power with 23 dB of large signal gain and typically 30% power-added efficiency under CW operation.

Packaged in a 4x3 mm plastic overmold QFN, the CMPA1D1J001S provides superior broadband performance and environmental robustness in a small form factor allowing customers to improve SWaP-C benchmarks in their next-generation systems.

RFin

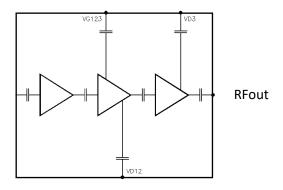


Figure 1. CMPA1D1J001S

Figure 2. Functional Block Diagram

Features

Psat: 1 W
PAE: 30 %
LSG: 23 dB
S21: 27 dB
S11: -10 dB

S22: -8 dBCW operation

Small 4 x 3 mm footprint

Note: Features are typical performance across frequency under 25C operation. Please reference performance charts for additional information.

Applications

- Military and Commercial Radar and Communications
- General Purpose Broadband Amplifier

Absolute Maximum Ratings

Parameter	Symbol	Units	Value	Conditions
Drain to Source Voltage	$V_{ t DSS}$	V	84	
Drain Voltage	V_{D}	V	28	
Gate Voltage	V_{G}	V	-8, +2	
Drain Current	I_{D}	Α	0.8	
Gate Current	I_G	mA	1.0	
Input Power	P _{in}	dBm	10	
Dissipated Power	P _{diss}	W	4.4	85°C
Storage Temperature	T_{stg}	°C	-55, +150	
Mounting Temperature	TJ	°C	260	30 seconds
Junction Temperature	TJ	°C	225	
Output Mismatch Stress	VSWR	Ψ	5:1	

Recommended Operating Conditions

Parameter	Symbol	Units	Typical Value	Conditions
Drain Voltage	Vd	V	22	
Gate Voltage	Vg	V	-2.0	
Drain Current	Idq	mA	30	
Input Power	Pin	dBm	8	
Case Temperature	Tcase	°C	-40 to 85	

RF Specifications

Test conditions unless otherwise noted: Vd=22 V, Idq=30 mA, CW, Pin=8 dBm, $T_{base}=25 °C$

Parameter	Units	Frequency	Min	Typical	Max	Conditions
Frequency	GHz		13		18	
		12.7		30.5		
Output Power	dBm	15.5		31.5		
		18		30.5		
Power-added		12.7		28		
Efficiency	%	15.5		35		
Linciency		18		34		
		12.7		22.5		
LSG	dB	15.5		23.5		
		18		22.5		
		12.7		27		
Small-Signal Gain	dB	15.5		30		Pin = -20 dBm
	18		24			
Input Return Loss	dB			-10	·	Pin = -20 dBm
Output Return Loss	dB			-8		Pin = -20 dBm

Figure 3: Pout v. Frequency v. Temperature

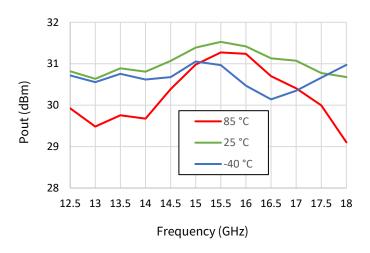


Figure 4: PAE v. Frequency v. Temperature

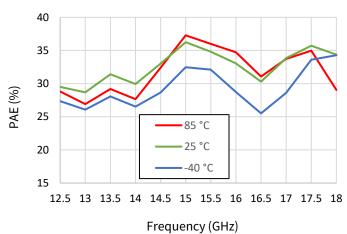


Figure 5: Id v. Frequency v. Temperature

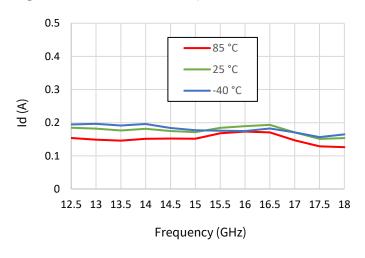


Figure 6: Ig v. Frequency v. Temperature

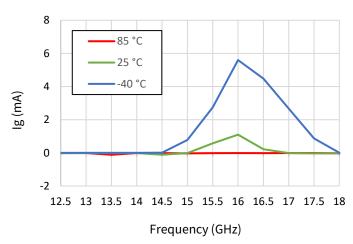
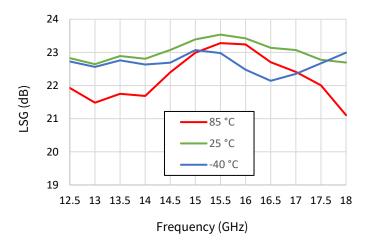



Figure 7: LSG v. Frequency v. Temperature

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Figure 8: Pout v. Frequency v. Vd

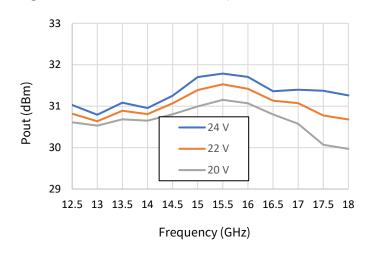


Figure 9: PAE v. Frequency v. Vd

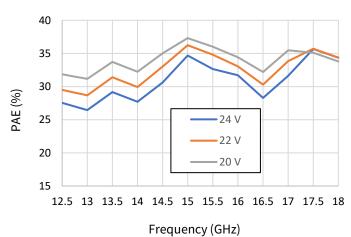


Figure 10: Id v. Frequency v. Vd

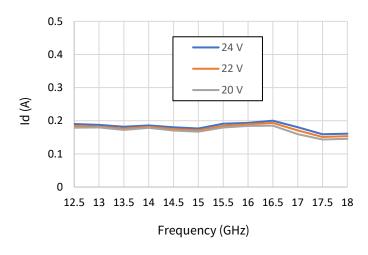


Figure 11: Ig v. Frequency v. Vd

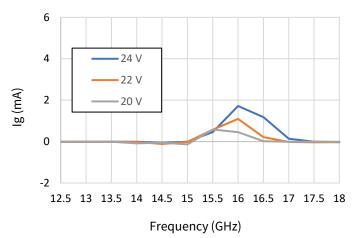


Figure 12: LSG v. Frequency v. Vd

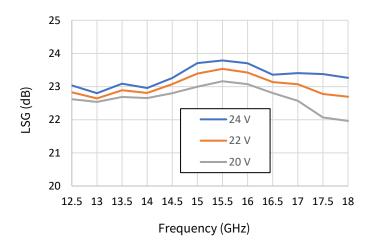


Figure 13: Pout v. Frequency v. Idq

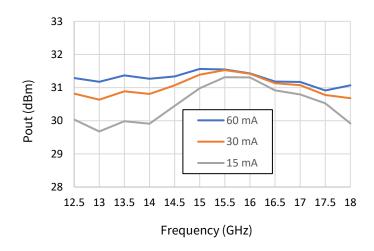


Figure 14: PAE v. Frequency v. Idq

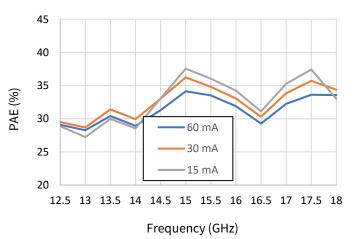


Figure 15: Id v. Frequency v. Idq

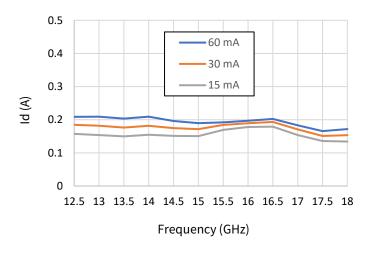


Figure 16: Ig v. Frequency v. Idq

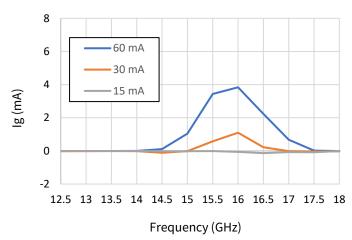


Figure 17: LSG v. Frequency v. Idq

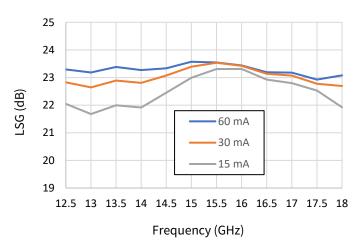


Figure 18: Pout v. Pin v. Frequency

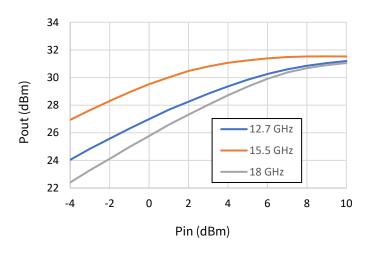


Figure 19: PAE v. Pin v. Frequency

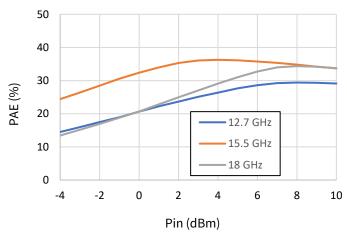


Figure 20: Id v. Pin v. Frequency

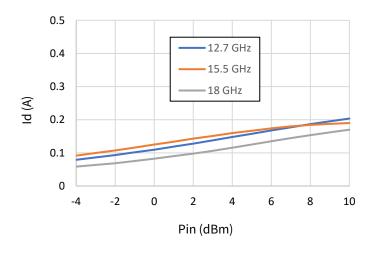


Figure 21: Ig v. Pin v. Frequency

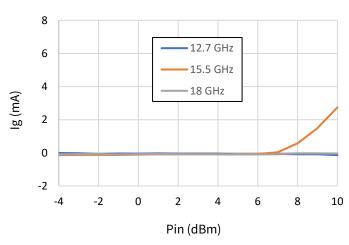


Figure 22: Gain v. Pin v. Frequency

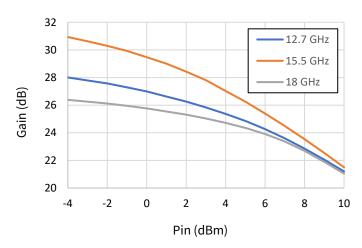


Figure 23: Pout v. Pin v. Temperature

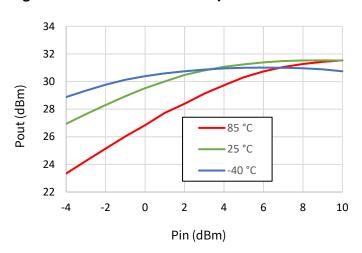


Figure 24: PAE v. Pin v. Temperature

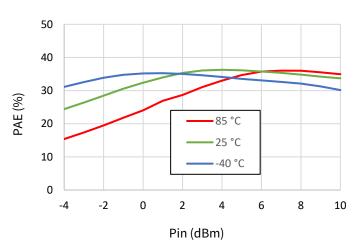


Figure 25: Id v. Pin v. Temperature

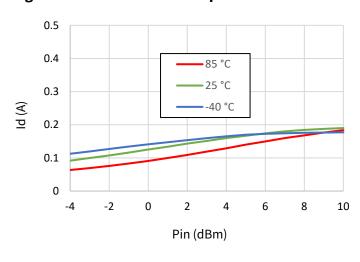


Figure 26: Ig v. Pin v. Temperature

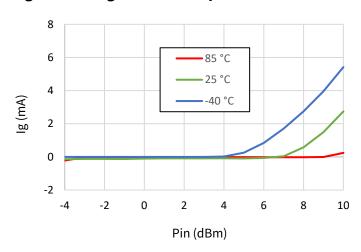


Figure 27: Gain v. Pin v. Temperature

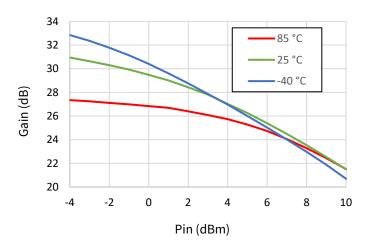


Figure 28: Pout v. Pin v. Vd

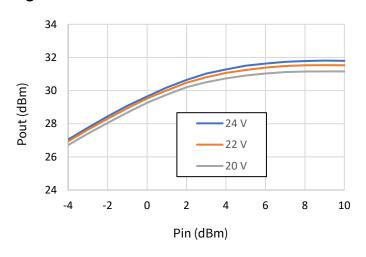


Figure 29: PAE v. Pin v. Vd

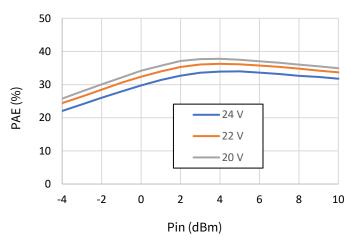


Figure 30: Id v. Pin v. Vd

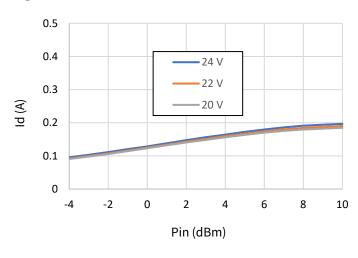


Figure 31: Ig v. Pin v. Vd

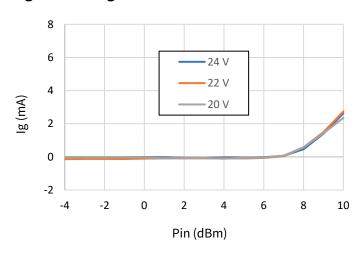


Figure 32: Gain v. Pin v. Vd

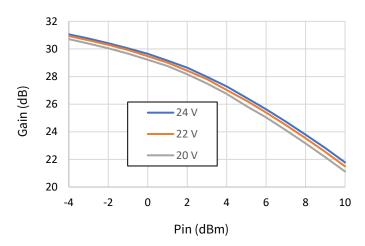


Figure 33: Pout v. Pin v. Idq

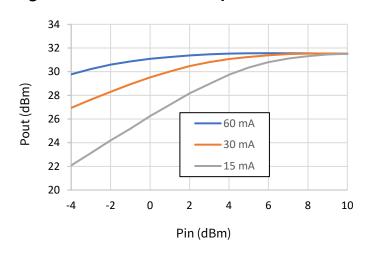


Figure 34: PAE v. Pin v. Idq

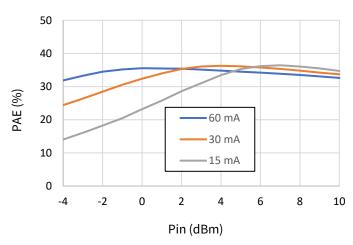


Figure 35: Id v. Pin v. Idq

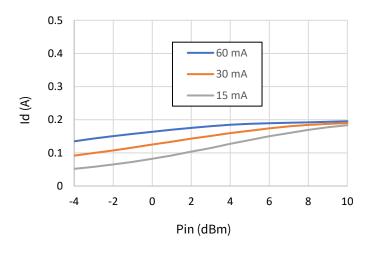


Figure 36: Ig v. Pin v. Idq

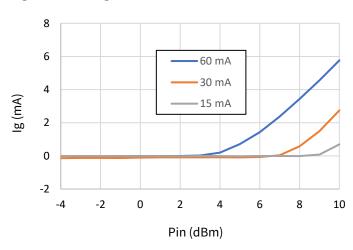


Figure 37: Gain v. Pin v. Idq

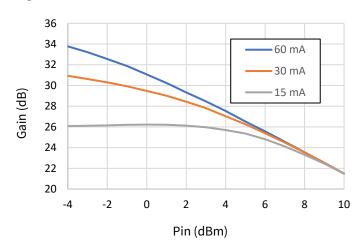


Figure 38: S21 v. Frequency v. Temperature

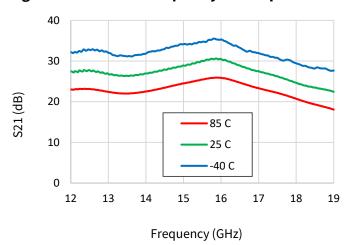


Figure 39: S21 v. Frequency v. Vd

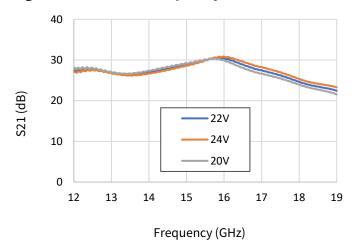


Figure 40: S11 v. Frequency v. Temperature

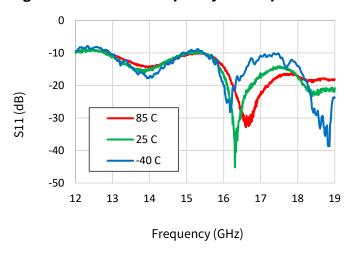


Figure 41: S11 v. Frequency v. Vd

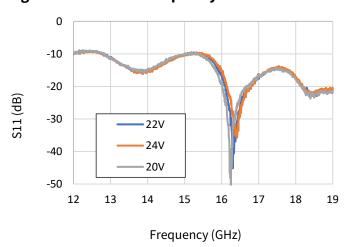


Figure 42: S22 v. Frequency v. Temperature

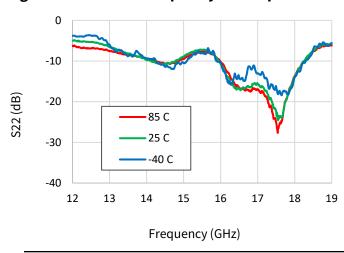
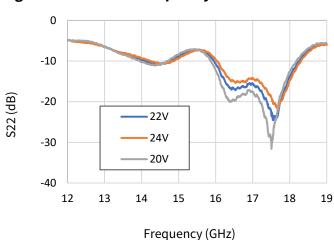



Figure 43: S22 v. Frequency v. Vd

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Figure 44: S21 v. Frequency v. Idq

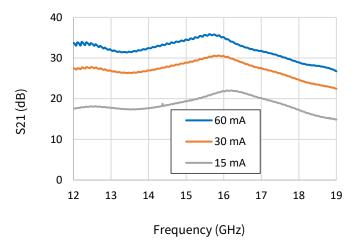


Figure 45: \$11 v. Frequency v. Idq

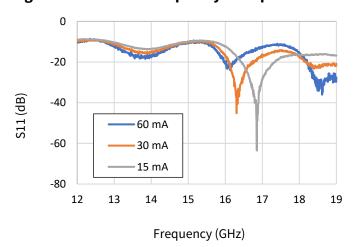
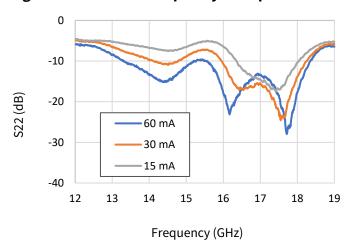



Figure 46: \$22 v. Frequency v. Idq

Test conditions unless otherwise noted: Vd=22 V, Idq=30 mA, CW, Pin=8 dBm, $T_{base}=25 \, ^{\circ}C$, Frequency: 15.5GHz, Tone Spacing = 10 MHz, $T_{base}=25 \, ^{\circ}C$

Figure 47: IM3 v. Pout/tone v. Frequency

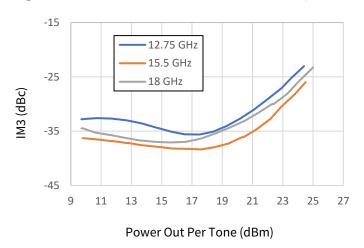


Figure 48: IM5 v. Pout/tone v. Frequency

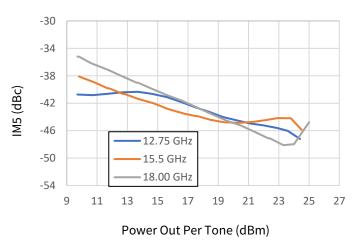


Figure 49: IM3 v. Pout/tone v. Temperature

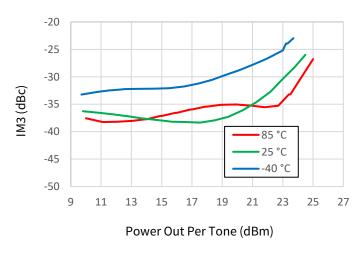


Figure 50: IM5 v. Pout/tone v. Temperature

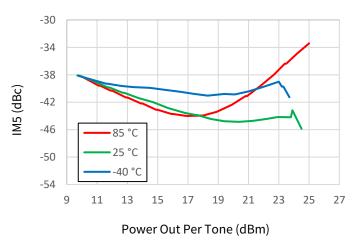


Figure 51: IM3 v. Pout/tone v. Idq

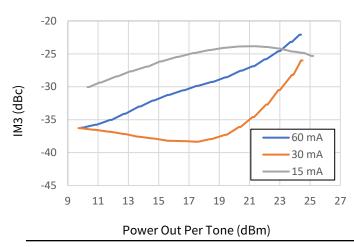
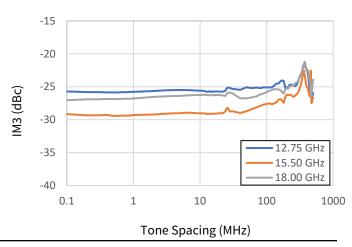
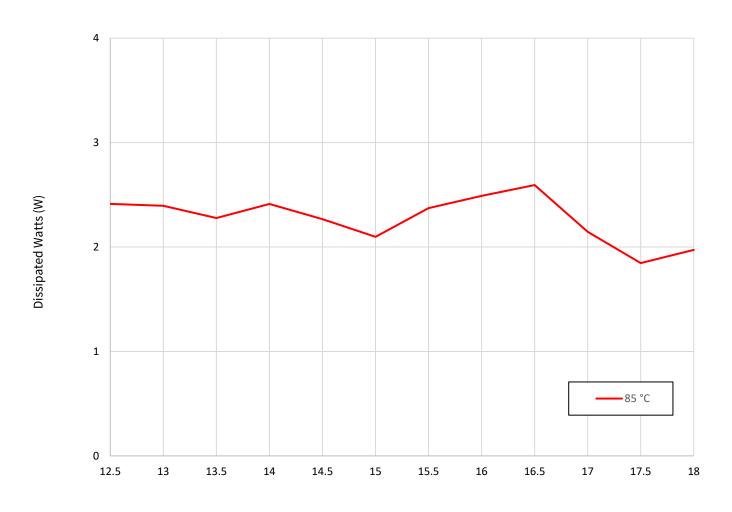
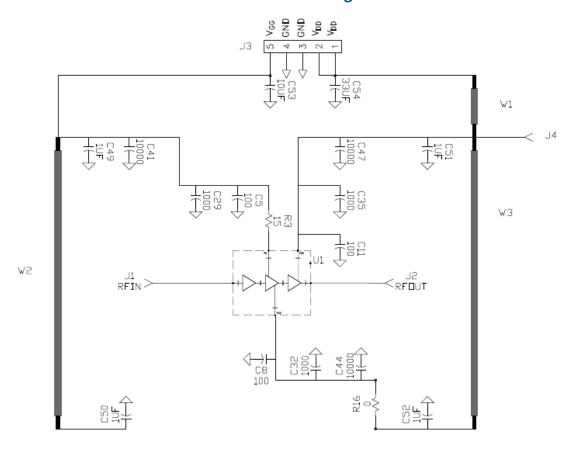



Figure 52: IM3 v. Tone Spacing v. Frequency


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

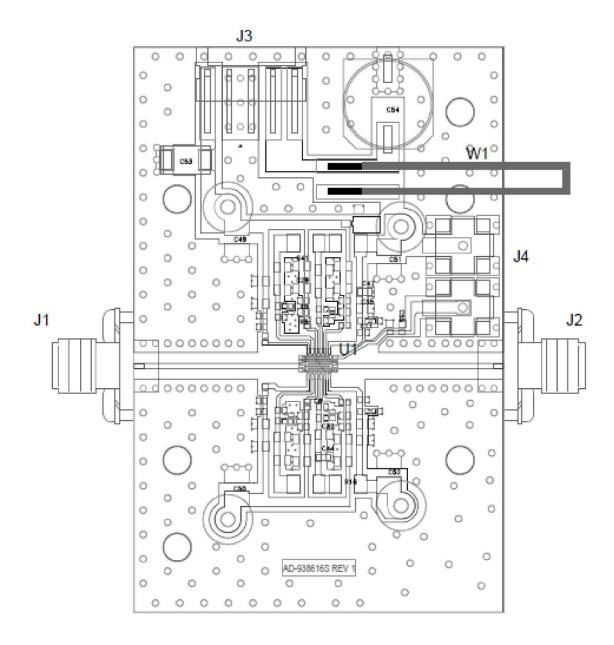
Visit www.macom.com for additional data sheets and product information.

Thermal Characteristics


Parameter	Symbol	Value	Operating Conditions
Operating Junction Temperature	T_J	161.3	Freq = 15.5 GHz, V_d = 22 V, I_{dq} = 30 mA, I_{drive} = 190 mA,
Thermal Resistance, Junction to Case	$R_{\theta \text{JC}}$	31.8	 Pin = 8 dBm, P_{out} = 31 dBm, P_{diss} = 2.4 W, T_{case} = 85°C, CW

Power Dissipation v. Frequency (Tcase = 85°C)

Frequency (GHz)

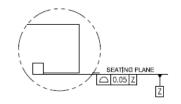

CMPA1D1J001S-AMP1 Evaluation Board Schematic Drawing

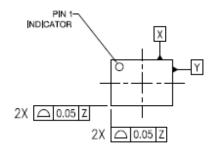
CMPA1D1J001S-AMP1 Evaluation Board Bill of Materials

Reference Designator	Description	Qty
C47, C41, C44	C0G, 10nF, +/-5%, 100V, 0603	3
C54	CAP, 33 UF, 20%, G CASE	1
C53	CAP, 10UF, 16V, TANTALUM	1
C11, C55, C5, C8	CAP, 100pF, +/-5%, 50V, 0402	4
R3	RES 15 OHM, +/-1%, 1/16W, 0402	1
C35, C29, C32	CAP, 1000PF, +/-5%, 100V, 0603	3
C49, C50, C51, C52	CAP, 1UF, 100V	4
R16	RES 0.0 OHM 1/16W 1206 SMD	1
-	PCB, RF-35, .010 THK, 3X4, 3-STAGE, QFN, CMPA1D1J001S	1
-	BASEPLATE 2.6"x1.7"x0.25" AL 3x4 QFN	1
-	2-56 SOC HD SCREW 3/16 SS	4
-	#2 SPLIT LOCKWASHER SS	4
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 5POS	1
W2, W3	WIRE, BLACK, 20 AWG	1
W1	WIRE, BLACK, 22 AWG	3
U1	CMPA1D1J001S	1

CMPA1D1J001S-AMP1 Evaluation Board Assembly Drawing

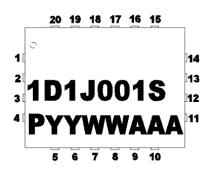
Note: W2 and W3 are connected on backside

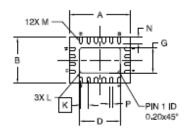

Bias On Sequence

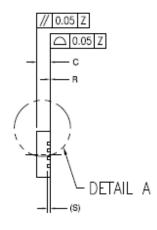

- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (Vg)
- 3. Apply nominal drain voltage (Vd)
- 4. Adjust Vg to obtain desired quiescent drain current (Idq)
- 5. Apply RF

Bias Off Sequence

- 1. Turn RF off
- 2. Apply pinch-off to the gate (Vg=-5V)
- 3. Turn off drain voltage (Vd)
- 4. Turn off gate voltage (Vg)


Product Dimensions




NOTES: UNLESS OTHERWISE SPECIFIED

- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- NUMBER OF LAND PADS: 20
- THE CONTENTS OF THIS DRAWING ARE INTENDED TO REPRESENT THE PRODUCT IN MARKETING GRAPHICS ONLY AND NOT INTENDED TO BE USED FOR ANY PRODUCTION OR INTERNAL QUALIFICATION PURPOSE.

	INCHES		MILLIMETERS			
DIM	MIN	TYP	MAX	MIN	TYP	MAX
Α	.156	.157	.159	3.95	4,00	4.05
В	116	₁ 118	,120	2,95	3,00	3,05
С	,033	.035	.037	0,85	0,90	0,95
D	.098	.104	.108	2.50	2.65	2.75
G	.059	.065	.069	1,50	1.65	1.75
K	_	.020	_	_	0.50	_
L	.004	.006	.008	0.10	0.15	0.20
М	.002	.003	.004	0.050	0.085	0.110
N	.012	.016	.020	0.30	0.40	0.50
Р	.005	.008	.010	0.13	0.20	0.25
R	.000	.001	.002	0.00	0.02	0.05
S	_	.008	_	_	0.20	_

BOTTOM VIEW

SIDE VIEW

PIN	DESC	PIN	DESC
1	NC	11	RFGND
2	RFGND	12	RFOUT
3	RFIN	13	RFGND
4	RFGND	14	NC
5	NC	15	VD3
6	NC	16	NC
7	NC	17	NC
8	VD1,VD2	18	VG
9	NC	19	NC
10	NC	20	NC

Electrostatic Discharge (ESD) Classification

Parameter	Symbol	Class	Classification Level	Test Methodology
Human body Model	HBM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Product Ordering Information

Part Number	Description	MOQ Increment	Image
CMPA1D1J001S	12.7 – 18 GHz, 1W GaN MMIC		CMPAIDIJOOIS

CMPA1D1J001S-AMP1

Evaluation Board w/ PA

1 Each

CMPA1D1J001S Page 19

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.