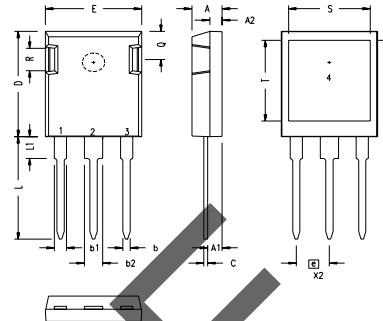


High Voltage IGBT with Diode

IXGX 32N170H1


V_{CES}	= 1700	V
I_{C25}	= 75	A
$V_{CE(sat)}$	= 3.3	V
$t_{fi(ty)}$	= 290	ns

Symbol	Test Conditions	Maximum Ratings		
V_{CES}	$T_J = 25^\circ\text{C}$ to 150°C	1700	V	
V_{CGR}	$T_J = 25^\circ\text{C}$ to 150°C ; $R_{GE} = 1 \text{ M}\Omega$	1700	V	
V_{GES}	Continuous	± 20	V	
V_{GEM}	Transient	± 30	V	
I_{C25}	$T_c = 25^\circ\text{C}$	75	A	
I_{C90}	$T_c = 90^\circ\text{C}$	32	A	
I_{CM}	$T_c = 25^\circ\text{C}$, 1 ms	200	A	
SSOA (RBSOA)	$V_{GE} = 15 \text{ V}$, $T_{vj} = 125^\circ\text{C}$, $R_g = 5\Omega$ Clamped inductive load	$I_{CM} = 90$ @ $0.8 V_{CES}$	A	
t_{sc}	$T_J = 125^\circ\text{C}$, $V_{CE} = 1200 \text{ V}$; $V_{GE} = 15 \text{ V}$, $R_g = 10\Omega$	10	μs	
P_c	$T_c = 25^\circ\text{C}$	350	W	
T_J		-55 ... +150	$^\circ\text{C}$	
T_{JM}		150	$^\circ\text{C}$	
T_{stg}		-55 ... +150	$^\circ\text{C}$	
F_c	Mounting force with chip	22...130/5...30	N/lb	
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s		300	$^\circ\text{C}$	
Weight		6	g	

Symbol	Test Conditions	Characteristic Values ($T_J = 25^\circ\text{C}$, unless otherwise specified)			
		min.	typ.	max.	
BV_{CES}	$I_c = 1\text{mA}$, $V_{GE} = 0 \text{ V}$	1700		V	
$V_{GE(th)}$	$I_c = 250 \mu\text{A}$, $V_{CE} = V_{GE}$	3.0	5.0	V	
I_{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 \text{ V}$	$T_J = 25^\circ\text{C}$ Note 1 $T_J = 125^\circ\text{C}$	500	μA	
			8	mA	
I_{GES}	$V_{CE} = 0 \text{ V}$, $V_{GE} = \pm 20 \text{ V}$		± 100	nA	
$V_{CE(sat)}$	$I_c = I_{C90}$, $V_{GE} = 15 \text{ V}$	$T_J = 25^\circ\text{C}$ $T_J = 125^\circ\text{C}$	2.5	3.3	V
			3.0		V

Symbol	Test Conditions	Characteristic Values			
		($T_J = 25^\circ\text{C}$, unless otherwise specified)	min.	typ.	max.
g_{fs}	$I_C = I_{C25}$, $V_{CE} = 10\text{ V}$ Note 2	25	33	S	
C_{ies}		3500		pF	
C_{oes}	$V_{CE} = 25\text{ V}$, $V_{GE} = 0\text{ V}$, $f = 1\text{ MHz}$	250		pF	
C_{res}		40		pF	
Q_g		155		nC	
Q_{ge}	$I_C = I_{C90}$, $V_{GE} = 15\text{ V}$, $V_{CE} = 0.5 V_{CES}$	30		nC	
Q_{gc}		51		nC	
$t_{d(on)}$	Inductive load, $T_J = 25^\circ\text{C}$		45	ns	
t_{ri}	$I_C = I_{C90}$, $V_{GE} = 15\text{ V}$	38	ns		
$t_{d(off)}$	$R_G = 2.7\text{ }\Omega$, $V_{CE} = 0.8 V_{CES}$ Note 3	270	500	ns	
t_{fi}		250	500	ns	
E_{off}		15	25	mJ	
$t_{d(on)}$	Inductive load, $T_J = 125^\circ\text{C}$		48	ns	
t_{ri}	$I_C = I_{C90}$, $V_{GE} = 15\text{ V}$	42	ns		
E_{on}	$R_G = 2.7\text{ }\Omega$, $V_{CE} = 0.8 V_{CES}$ Note 3	6.0		mJ	
$t_{d(off)}$		360	ns		
t_{fi}		560	ns		
E_{off}		22		mJ	
R_{thJC}			0.35	K/W	
R_{thCK}		0.15		K/W	

PLUS247 Outline (IXGX)

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.190	.205	.483	.521
A1	.090	.100	.229	.254
A2	.075	.085	.191	.216
b	.045	.055	.114	.140
b1	.075	.084	.191	.213
b2	.115	.123	.292	.312
C	.024	.031	.061	.080
D	.819	.840	.2080	.2134
E	.620	.635	.1575	.1613
e	.215 BSC	.215 BSC	.545 BSC	
L	.780	.800	.1981	.2032
L1	.150	.170	.381	.432
Q	.220	.244	.559	.620
R	.170	.190	.432	.483
S	.520	.540	.1321	.1372
T	.620	.640	.1575	.1626
U	.065	.080	.165	.203

1 – GATE
2 – DRAIN (COLLECTOR)
3 – SOURCE (EMITTER)
4 – NO CONNECTION

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD except screw hole.

Reverse Diode (FRED) (Note 4)

Symbol	Test Conditions	Characteristic Values			
		($T_J = 25^\circ\text{C}$, unless otherwise specified)	min.	typ.	max.
V_F	$I_F = 70\text{ A}$, $V_{GE} = 0\text{ V}$, Pulse test, $t \leq 300\text{ }\mu\text{s}$, duty cycle $\leq 2\%$		2.7	V	
I_{RM}	$I_F = 50\text{ A}$, $V_{GE} = 0\text{ V}$, $-di_F/dt = 800\text{ A}/\mu\text{s}$	50		A	
t_{rr}	$V_R = 600\text{ V}$	150		ns	
R_{thJC}			0.4	K/W	

Notes: 1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.

1. Pulse test, $t \leq 300\text{ }\mu\text{s}$, duty cycle $\leq 2\%$
2. Switching times may increase for V_{CE} (Clamp) $> 0.8 \cdot V_{CES}$, higher T_J or increased R_G .
3. See DH60-18A and IXGH32N170A datasheets for additional characteristics

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by one or more of the following U.S. patents: 4,835,592 4,881,106 5,017,508 5,049,961 5,187,117 5,486,715 6,306,728B1 6,259,123B1 6,306,728B1 4,850,072 4,931,844 5,034,796 5,063,307 5,237,481 5,381,025 6,404,065B1 6,162,665 6,534,343

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.