

: 0506-52
: A3
: 6
: Loki, Lo
: 18 October, 2018

SENER Brand Power Product

www.jlsener.com	
Document Type	: Specification
Product Type	: Lithium/Manganese Dioxide (LiMnO2) Coin Cell
Ordering Code	: SCR2016
Cell Part Number	: CR2016
Cell UL Number	: MH20926

A1 - New issue created by Leo, Sin on 30 Jun., 2005				
A2 - Updated section 4 and 6 by Loki, Lo on 24 Apr., 2013				
A3 - Updated section 3 and 4 by Loki, Lo on 18 Oct., 2018				
This material is the property of BeStar Technologies Inc.				

Unauthorized copying or use of this material is prohibited.

1. Purpose and Scope

This document contains both general requirements, qualification requirements, and those specific electrical, mechanical requirements for this part.

2. Description

Ø20mm Lithium/Manganese Dioxide (LiMnO₂) coin cell, RoHS compliant.

3. Application

4.2.

Computers and Peripherals, Portable Equipment, DECT phone, etc.

4. Component Requirement

4.1. General Requirement

4.1.1.	Operating Temperature Range	: -20°C to +70°C		
4.1.2.	Storage Temperature Range	: 0°C to +30°C		
4.1.3.	Storage Humidity	: 40 ~ 75%		
4.1.4.	Weight	: Approx. 2g		
4.1.5.	Materials of Positive Terminal	: SUS stainless		
4.1.6.	Materials of Negative Terminal	: SUS stainless		
Electrical Requirement				
4.2.1.	Nominal Voltage	: 3V		
4.2.2.	Nominal Capacity (under Load 30k Ω Load and 2.0V End-voltage)	: 75mAh		
4.2.3.	Load Resistance	: 30ΚΩ		
4.2.4.	Standard Discharge Current	: 0.1mA		

4.3. Standard Characteristics

4.3.1. Discharge Characteristics (End Voltage: 2V, Temperature: 23°C)

Figure 1. Discharge Characteristics

4.3.2. Load-Operating voltage

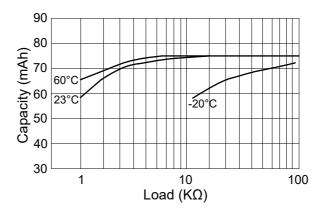


Figure 2. Load-Capacity

4.3.3. Pulse Discharge Characteristics

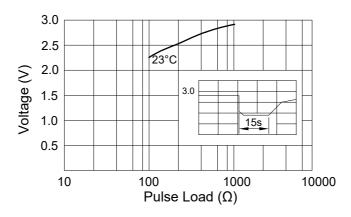
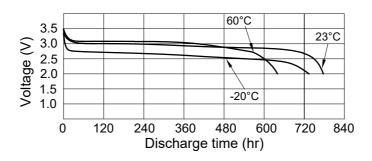



Figure 3. Pulse Discharge Characteristics

4.3.4. Temperature Characteristics (End Voltage: 2V, Load: 30KΩ)

Figure 4. Temperature Characteristics

4.3.5. Load-Operating voltage (Discharge depth: 40%)

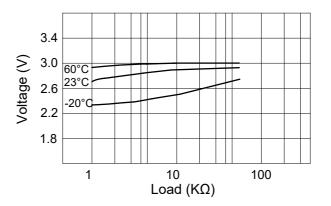
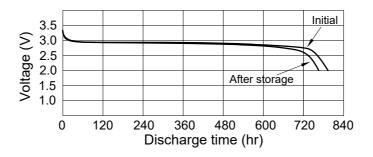



Figure 5. Load-Operating voltage

4.3.6. Storage Characteristics (End Voltage: 2V, Temperature: 23° C, Load: $30K\Omega$) (Storage at 60°C after 30 days equivalent to storage at room temperature for 18 months)

Figure 6. Storage Characteristics

5. Reliability Test

- **5.1. Open-circuit Voltage** : Subject samples to $+20 \pm 2$ °C and 0 ± 2 °C for 8 hours or longer. Then measure the voltage between both terminals at the same ambient temperature with voltmeter.
- **5.2. Short-circuit Voltage** : Subject samples to $+20 \pm 2$ °C and 0 ± 2 °C for 8 hours or longer. Then measure the voltage between both terminals with voltmeter while the 62K Ω is connected between both terminals at the same ambient temperature. Measured value shall be based on meter reading taken 8 seconds after the circuit is closed.
- **5.3.** Service Life : Subject samples to $20 \pm 2 \circ C$ and $0 \pm 2 \circ C$ for 8 hours or longer. Then continuously discharge at the same ambient temperature and through $62k\Omega$. Discharge until terminal voltage of the test specimens falls below the discharge end-point voltage of 2.0V, and the time during which the terminal voltage is equal to and above the discharge end-point voltage shall be taken as the service life.
- **5.4.** Service Life after high temperature storage : Store samples at $+60 \pm 2$ °C for 20 days. Then subject samples to $+20 \pm 2$ °C and ordinary humidity $65\% \pm 20\%$ for 12 hours or longer and continuously discharge through $62K\Omega$. Discharge until the voltage falls below the dicharge end-point voltage of 2.0V, and the time during which the voltage is equal to and above the discharge end-point voltage shall be taken as the service life.
- **5.5.** Electrolyte Leakage Test : Samples shall be examined for electrolyte leakage while they are kept at $+20 \pm 2$ °C and ordinary humidity 75% \pm 5% after being stored at 45 \pm 2 °C and 75% relative humidity for 30 days.
- **5.6.** Self-discharge : Store samples for 12 months at $+20 \pm 2$ °C and $65\% \pm 5\%$ relative humidity and tested for service life in accordance with the method specified in 5.3. Self-discharge shall be determined as follows:

Self-discharge rate (%) = $(Y1-Y2)/Y1 \times 100\%$

- Y1 : Average initial discharge life of batteries of the same lot
- Y2 : Average discharge life after storage

6. Mechanical Layout

Unit : mm Tolerance : Linear XX.X = ± 0.3 XX.XX = ± 0.05 Angular = $\pm 0.25^{\circ}$ (unless otherwise specified)

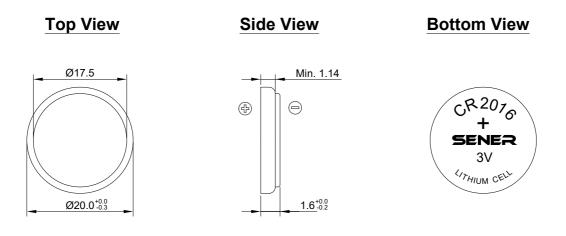


Figure 7. SCR2016 Mechanical Layout