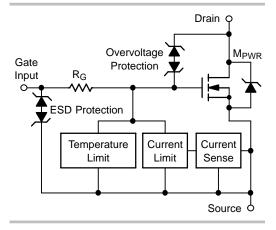
Preferred Device

Self-Protected FET with Temperature and **Current Limit**

65 V, 6.5 A, Single N-Channel, DPAK

HDPlusTM devices are an advanced series of power MOSFETs which utilize ON Semiconductor's latest MOSFET technology process to achieve the lowest possible on-resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain-to-Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate-to-Source Clamp.

Features


- Short Circuit Protection/Current Limit
- Thermal Shutdown with Automatic Restart
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Slew Rate Control for Low Noise Switching
- Overvoltage Clamped Protection
- Pb-Free Package is Available

ON Semiconductor®

http://onsemi.com

V _{DSS} (Clamped)	R _{DS(on)} TYP	I _D TYP (Limited)
65 V	210 mΩ	6.5 A

MARKING DIAGRAM

STYLE 2

YYW D6 002NG

WW = Work Week = Pb-Free Device G

D6002N = Device Code

= Gate = Drain

= Source

ORDERING INFORMATION

Device	Package	Shipping [†]
NID6002NT4	DPAK	2500/Tape & Reel
NID6002NT4G	DPAK (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

MOSFET MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating		Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped		V_{DSS}	70	Vdc
Gate-to-Source Voltage		V_{GS}	±14	Vdc
Drain Current C	ontinuous	I _D	Internally	/ Limited
Total Power Dissipation @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2)		P _D	1.3 2.5	W
Thermal Resistance Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)		R _{θJC} R _{θJA} R _{θJA}	3.0 95 50	°C/W
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 50 Vdc, V_{GS} = 5.0 Vdc, I_{L} = 1.3 Apk, L = 160 mH, R_{G} = 25 Ω) (Note 3)		E _{AS}	143	mJ
Operating and Storage Temperature Range (Note 4)		T _J , T _{stg}	–55 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface mounted onto minimum pad size (100 sq/mm) FR4 PCB, 1 oz cu.
- 2. Mounted onto 1" square pad size (700 sq/mm) FR4 PCB, 1 oz cu.
- 3. Not subject to production test.
- 4. Normal pre-fault operating range. See thermal limit range conditions.

MOSFET ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
RACTERISTICS				1		
Drain-to-Source Clamped Breakdown Voltage (V _{GS} = 0 V, I _D = 2 mA)			60	65	70	V
Voltage Drain Curren V, V _{GS} = 0 V)	t	I _{DSS}	_	27	100	μΑ
Current V, V _{DS} = 0 V)		I _{GSS}	_	45	200	μΑ
ACTERISTICS			•			•
shold Voltage _S , I _D = 150 μA) Temperature Coefficio	ent	V _{GS(th)}	1.0	1.85 5.0	2.4	V -mV/°C
n-to-Source On-Res V, I _D = 2.0 A, T _J @ 2		R _{DS(on)}	-	185	210	mΩ
Static Drain-to-Source On-Resistance (Note 5) (V _{GS} = 5.0 V, I _D = 2.0 A, T _J @ 25°C) (V _{GS} = 5.0 V, I _D = 2.0 A, T _J @ 150°C)				210 445	240 520	mΩ
Source–Drain Forward On Voltage (I _S = 7.0 A, V _{GS} = 0 V)				0.9	1.1	V
G CHARACTERISTI	CS (Note 8)	•	•		•	•
Delay Time	$R_L = 6.6 \ \Omega, \ V_{in} = 0 \text{ to } 10 \ V, \\ V_{DD} = 13.8 \ V, \ I_D = 2.0 \ A, \ 10\% \ V_{in} \ \text{to } 10\% \ I_D$	td _(on)	_	96	_	ns
Rise Time	$R_L = 6.6 \ \Omega, \ V_{in} = 0 \text{ to } 10 \ V, \ V_{DD} = 13.8 \ V, \ I_D = 2.0 \ A, \ 10\% \ I_D \text{ to } 90\% \ I_D$	t _{rise}	_	250	_	ns
Delay Time	$R_L = 6.6 \ \Omega, \ V_{in} = 0 \text{ to } 10 \ V, \\ V_{DD} = 13.8 \ V, \ I_D = 2.0 \ A, \ 90\% \ V_{in} \ \text{to } 90\% \ I_D$	td _(off)	-	840	-	ns
all Time	$R_L = 6.6 \ \Omega, \ V_{in} = 0 \text{ to } 10 \ V, \ V_{DD} = 13.8 \ V, \ I_D = 2.0 \ A, \ 90\% \ I_D \ \text{to } 10\% \ I_D$	t _{fall}	-	660	_	ns
ON	$R_L = 6.6 \ \Omega, \ V_{in} = 0 \text{ to } 10 \ V, \ V_{DD} = 13.8 \ V, \ I_D = 2.0 \ A, \ 70\% \ \text{to } 50\% \ V_{DD}$	dV _{DS} /dT _{on}	-	73	_	V/μs
OFF	$R_L = 6.6 \ \Omega, \ V_{in} = 0 \text{ to } 10 \ V, \ V_{DD} = 13.8 \ V, \ I_D = 2.0 \ A, \ 50\% \ to \ 70\% \ V_{DD}$	dV _{DS} /dT _{off}	-	35	_	V/μs
TECTION CHARACT	ERISTICS (Note 6)					
nit	V _{DS} = 10 V, V _{GS} = 5.0 V, T _J = 25°C (Note 7) V _{DS} = 10 V, V _{GS} = 5.0 V, T _J = 130°C (Notes 7, 8) V _{DS} = 10 V, V _{GS} = 10 V, T _J = 25°C (Notes 7, 8)	I _{LIM}	4.0 4.0 –	6.4 5.5 7.9	11 11 -	А
re Limit (Turn-off)	V _{GS} = 5.0 V (Note 8)	T _{LIM(off)}	150	180	200	°C
ysteresis	V _{GS} = 5.0 V	$\Delta T_{LIM(on)}$	-	10	-	°C
re Limit (Turn-off)	V _{GS} = 10 V (Note 8)	T _{LIM(off)}	150	180	200	°C
ysteresis	V _{GS} = 10 V	$\Delta T_{LIM(on)}$	_	20	-	°C
ent during ault	$V_{DS} = 0 \text{ V}, V_{GS} = 5.0 \text{ V}, T_J = T_J > T_{\text{(fault)}} \text{ (Note 8)}$ $V_{DS} = 0 \text{ V}, V_{GS} = 10 \text{ V}, T_J = T_J > T_{\text{(fault)}} \text{ (Note 8)}$	I _{g(fault)}	5.5 12	5.2 11	_	mA
TRICAL CHARACTE	RISTICS					
atic Discharge Capab Human Body Model (I Machine Model (MM)		ESD	8000 400		_ _	V
ysteresis ent during ault FRICAL CHARACTE atic Discharge Capab Human Body Model (I	$V_{GS} = 10 \text{ V} \\ V_{DS} = 0 \text{ V}, V_{GS} = 5.0 \text{ V}, T_J = T_J > T_{(fault)} \text{ (Note 8)} \\ V_{DS} = 0 \text{ V}, V_{GS} = 10 \text{ V}, T_J = T_J > T_{(fault)} \text{ (Note 8)} \\ \text{RISTICS} \\ \text{Sility}$	$\Delta T_{LIM(on)}$ $I_{g(fault)}$	- 5.5 12	20 5.2 11	-	

- Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Fault conditions are viewed as beyond the normal operating range of the part.
 Current limit measured at 380 μs after gate pulse.
- 8. Not subject to production test.

TYPICAL PERFORMANCE CURVES

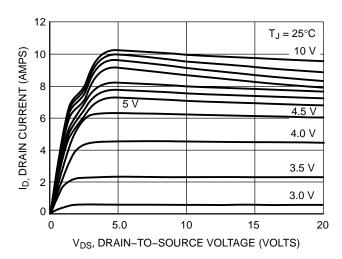


Figure 1. On-Region Characteristics

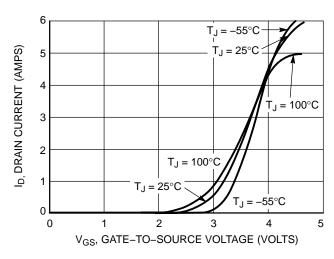


Figure 2. Transfer Characteristics

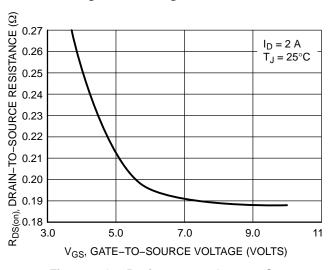


Figure 3. On-Resistance vs. Gate-to-Source Voltage

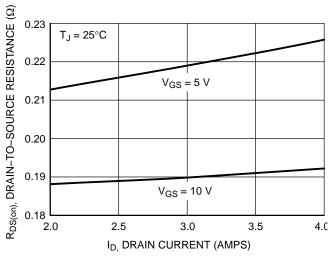


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

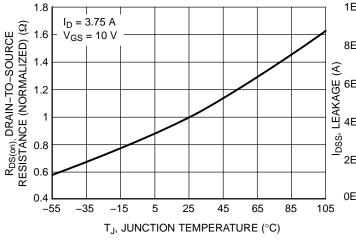


Figure 5. On–Resistance Variation with Temperature

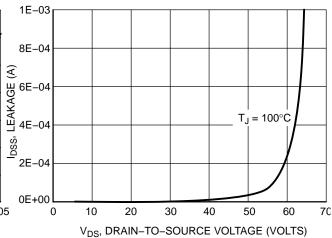
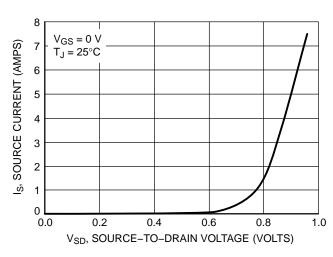



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

12000 $V_{DS} = 0 V$ $T_J = 160^{\circ}C$ 10000 8000 I_{GSS} (μA) 6000 4000 2000 6 6.5 7.5 8 8.5 9 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Diode Forward Voltage vs. Current

Figure 8. Input Current vs. Gate Voltage

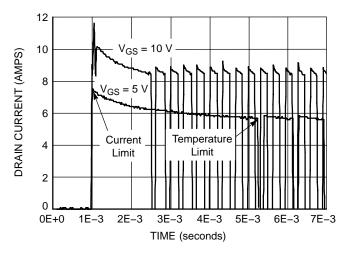
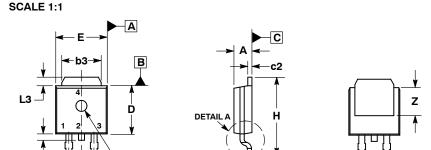



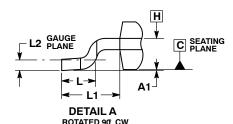
Figure 9. Short Circuit Response*

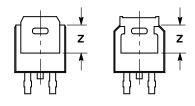
^{*(}Actual thermal cycling response in short circuit dependent on device power level, thermal mounting, and ambient temperature conditions)

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F**

DATE 21 JUL 2015

C-


SIDE VIEW

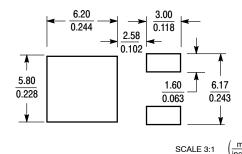

| \oplus | 0.005 (0.13) lacktriangledown C **TOP VIEW**

NOTE 7

b2 e

S

BOTTOM VIEW


PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE

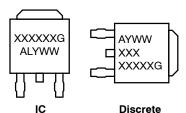
BOTTOM VIEW ALTERNATE CONSTRUCTIONS

PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE	STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE	STYLE 5: PIN 1. G. 2. Al 3. C.
4. COLLECTOR	4. DRAIN	4. CATHODE	4. ANODE	4. Al

STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE	PIN 1. N/C	PIN 1. ANODE	PIN 1. CATHODE
2. MT2	2. COLLECTOR	2. CATHODE	2. CATHODE	2. ANODE
3. GATE	3. EMITTER	3. ANODE	3. RESISTOR ADJUST	3. CATHODE
4. MT2	4. COLLECTOR	4. CATHODE	4. CATHODE	4. ANODE

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


NOTES:

- IOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year

WW = Work Week G = Pb-Free Package

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

^{*}This information is generic. Please refer to device data sheet for actual part marking.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Poine: 011 421 33 790 2910
For additional information, please contact your local Sales Representative

 \Diamond