

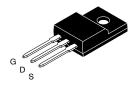
MOSFET - N-Channel, POWERTRENCH®

250 V, 25 A, 42.5 mΩ

FDPF2710T

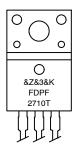
Description

This N-Channel MOSFET is produced using **onsemi**'s advance POWERTRENCH process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

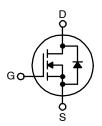

Features

- $R_{DS(on)} = 36.3 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- This is a Pb-Free Device

Applications


- Consumer Appliances
- Synchronous Rectification

V _{DS}	R _{DS(on)} MAX	I _D MAX	
250 V	42.5 mΩ @ 10 V	25 A	


TO-220 Fullpack, 3-Lead / TO-220F-3SG CASE 221AT

MARKING DIAGRAM

&Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digits Lot Run Code FDPF2710T = Specific Device Code

N-CHANNEL MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter				Unit
V _{DS}	Drain-Source Voltage			250	V
V_{GS}	Gate-Source Voltage			±30	V
I _D	Drain Current	Continuous ($T_C = 25^{\circ}C$) Continuous ($T_C = 100^{\circ}C$)		25	Α
				18.8	
I _{DM}	Drain Current	Pulsed	(Note 1)	100	Α
E _{AS}	Single Pulsed Avalanche Energy	Single Pulsed Avalanche Energy (Note 2)		145	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		(Note 3)	4.5	V/ns
P_{D}	Power Dissipation	(T _C = 25°C)		62.5	W
		Derate above 2	25°C	0.5	W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range			−55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive Rating: Pulse width limited by maximum junction temperature.

2. L = 1 mH, I_{AS} = 17 A, V_{DD} = 50 V, R_{G} = 25 Ω , Starting T_{J} = 25°C.

3. $I_{SD} \le 50$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, Starting T_{J} = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDP20N50	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	2.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS				•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A, } T_J = 25^{\circ}\text{C}$	250	_	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	0.25	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 250 V, V _{GS} = 0 V V _{DS} = 250 V, V _{GS} = 0 V, T _C = 125°C	- -	-	10 500	μ Α μ Α
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{V}$	-	-	-100	nA
ON CHARA	ACTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3.0	3.9	5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 25 A	-	36.3	42.5	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 25 A	-	63	_	S
DYNAMIC	CHARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz	-	5470	7280	pF
C _{oss}	Output Capacitance]	-	426	567	pF
C _{rss}	Reverse Transfer Capacitance]	-	97	146	pF
SWITCHIN	G CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 125 \text{ V}, I_D = 50 \text{ A},$	-	80	170	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 25 \Omega$ (Note 4)	-	252	514	ns
t _{d(off)}	Turn-Off Delay Time]	-	112	234	ns
t _f	Turn-Off Fall Time]	-	154	318	ns
Qg	Total Gate Charge	V _{DS} = 125 V, I _D = 50 A,	-	78	101	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V (Note 4)	-	34	_	nC
Q _{gd}	Gate-Drain Charge]	-	18	_	nC
DRAIN-SO	URCE DIODE CHARACTERISTICS AND MAX	KIMUM RATINGS				
Is	Maximum Continuous Drain-Source Diode Forward Current		-	-	25	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		-	-	150	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 25 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 50 A,	-	163	_	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 130 A/μs	_	1.3	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially Independent of Operating Temperature Typical Characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

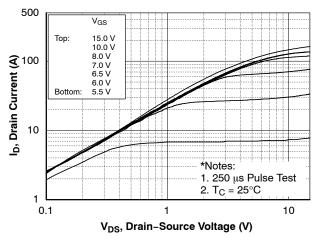


Figure 1. On-Region Characteristics

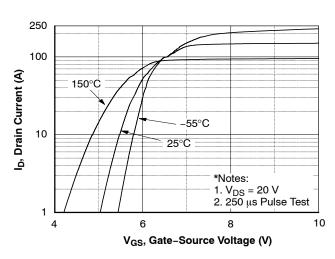


Figure 2. Transfer Characteristics

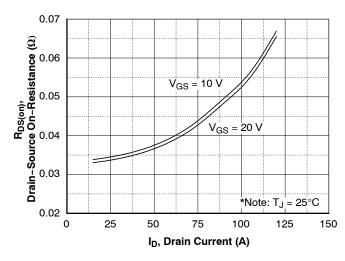


Figure 3. On-Resistance Variation vs. Drain Current and Gate voltage

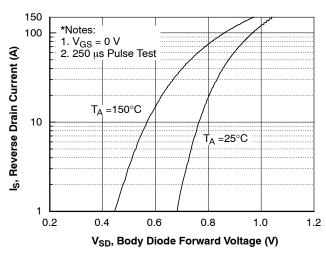


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

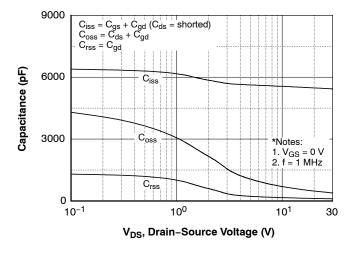


Figure 5. Capacitance Characteristics

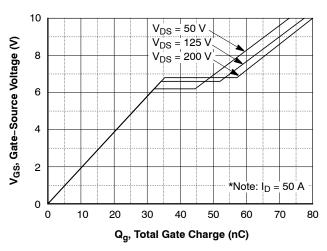


Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

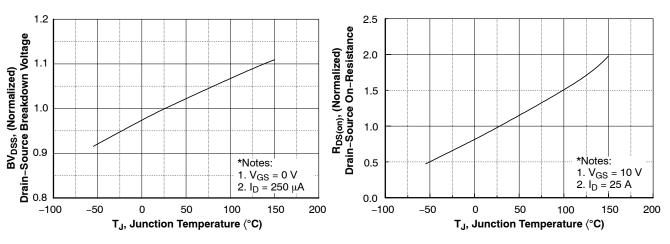


Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On–Resistance Variation vs. Temperature

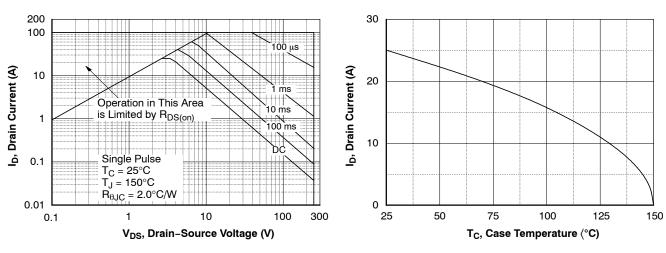


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

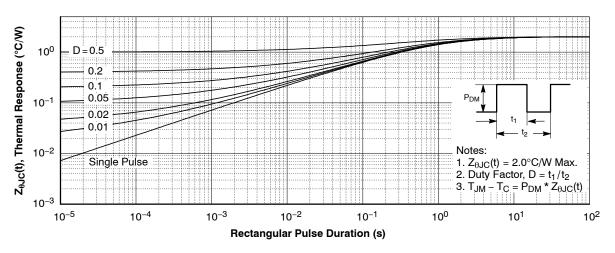


Figure 11. Transient Thermal Response Curve

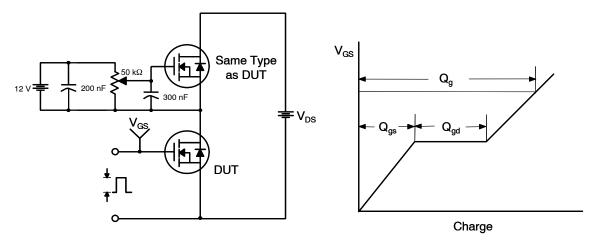


Figure 12. Gate Charge Test Circuit & Waveform

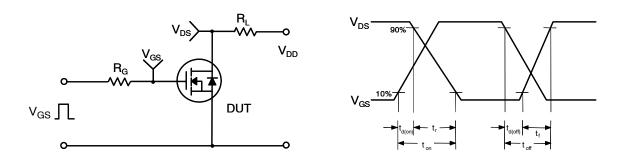


Figure 13. Resistive Switching Test Circuit & Waveforms

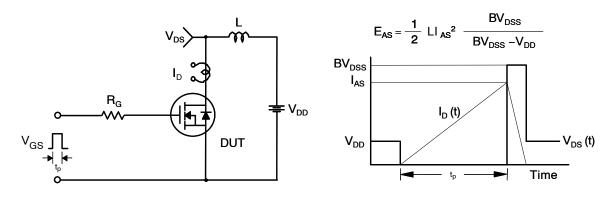
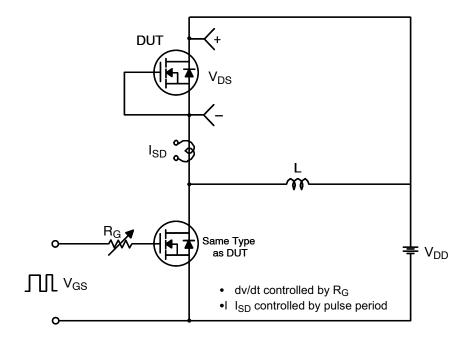
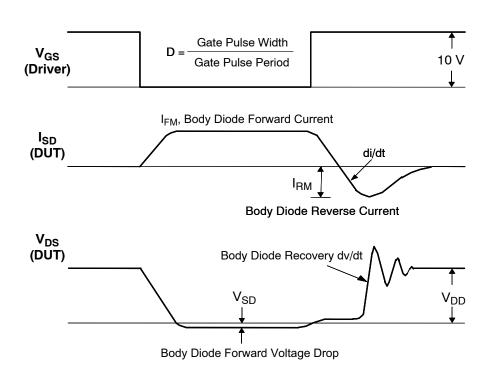
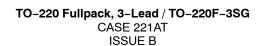
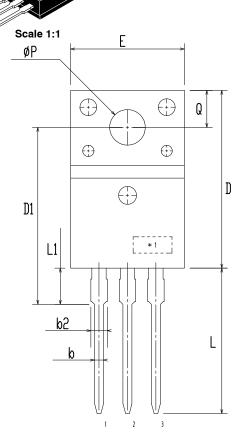



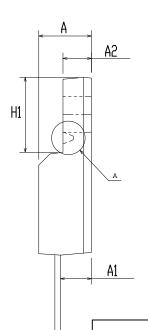
Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

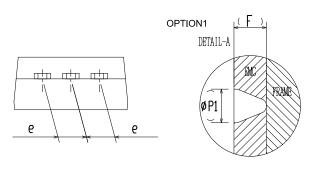



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

PACKAGE MARKING AND ORDERING INFORMATION


Device	Device Marking	Package	Quantity
FDPF2710T	FDPF2710T	TO-220 Fullpack, 3-Lead / TO-220F-3SG	50 Units / Tube


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



DATE 19 JAN 2021

DIM	MILLIMITERS		
ויונע	MIN	NDM	MAX
Α	4.50	4.70	4.90
A1	2.56	2.76	2.96
A2	2.34	2.54	2.74
b	0.70	0.80	0.90
b2	*	2	1.47
С	0.45	0.50	0.60
D	15.67	15.87	16.07
D1	15.60	15.80	16.00
E	9.96	10.16	10.36
е	2.34	2.54	2.74
F	2	0.84	2
H1	6.48	6.68	6.88
L	12.78	12.98	13.18
L1	3.03	3.23	3.43
ØΡ	2.98	3.18	3.38
ø P1	~	1.00	~
Q	3.20	3.30	3.40

NOTES:

- A. DIMENSION AND TOLERANCE AS ASME Y14.5-2009
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUCSIONS.

C

C. OPTION 1 - WITH SUPPORT PIN HOLE OPTION 2 - NO SUPPORT PIN HOLE

DOCUMENT NUMBER:		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220 FULLPACK, 3-LEAD / TO-220F-3SG		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

