

TDA7492

50 W + 50 W dual BTL class-D amplifier

The TDA7492 is a dual BTL class-D audio amplifier with single power supply designed for

(EPU) package, only a simple heatsink is

Thanks to the high efficiency and exposed-pad-up

Description

required.

LCD TVs and monitors.

Features

- 50 W + 50 W continuous output power at THD = 10% with R_L = 6 Ω and V_{CC} = 25 V
- 40 W + 40 W continuous output power at THD = 10% with R_L = 8 Ω and V_{CC} = 25 V
- Wide-range single-supply operation (8 26 V)
- High efficiency ($\eta = 90\%$)
- Four selectable, fixed gain settings of nominally 21.6 dB, 27.6 dB, 31.1 dB and 33.6 dB
- Differential inputs minimize common-mode noise
- Standby and mute features
- Short-circuit protection
- Thermal overload protection
- Externally synchronizable
- ECOPACK[®], environmentally friendly package

Table 1. Device summary

Order code	Operating temp. range	Package	Packaging
TDA7492	-40 to +85 °C	PowerSSO-36 EPU	Tube
TDA749213TR	-40 to +85 °C	PowerSSO-36 EPU	Tape and reel

DocID014926 Rev 6

This is information on a product in full production.

Contents

1	Devi	ice block diagram
2	Pin	description
	2.1	Pinout
	2.2	Pin list
3	Elec	trical specifications9
	3.1	Absolute maximum ratings9
	3.2	Thermal data
	3.3	Electrical specifications
4	Cha	racterization curves
	4.1	Characterizations for 6- Ω loads
	4.2	Characterizations for 8- Ω loads
	4.3	Characterizations for 4- Ω loads
	4.4	Test board
5	Арр	lications circuit
6	App	lications information
	6.1	Mode selection
	6.2	Gain setting
	6.3	Input resistance and capacitance
	6.4	Internal and external clocks
		6.4.1 Master mode (internal clock)
		6.4.2 Slave mode (external clock)25
	6.5	Output low-pass filter
	6.6	Protection functions
	6.7	Diagnostic output
	6.8	Heatsink requirements
7	Pacl	kage mechanical data 29

2/32

8	Revision history		31
---	-------------------------	--	----

List of tables

Table 1.	Device summary	1
Table 2.	Pin description list.	8
Table 3.	Absolute maximum ratings	9
Table 4.	Thermal data	9
Table 5.	Electrical specifications.	9
Table 6.	Mode settings	3
Table 7.	Gain settings	4
Table 8.	How to set up SYNCLK	5
Table 9.	PowerSSO-36 EPU dimensions	0
Table 10.	Document revision history	1

List of figures

Figure 1.	Internal block diagram (showing one channel only)	3
Figure 2.	Pin connections (top view, PCB view)	7
Figure 3.	Output power vs. supply voltage	1
Figure 4.	THD vs. output power (1 kHz) 12	2
Figure 5.	THD vs. output power (100 Hz) 12	2
Figure 6.	THD vs. frequency	3
Figure 7.	Frequency response	3
Figure 8.	Crosstalk	
Figure 9.	FFT performance (0 dB) 14	
Figure 10.	FFT performance (-60 dB) 14	
Figure 11.	Output power vs. supply voltage	
Figure 12.	THD vs. output power (1 kHz)	
Figure 13.	THD vs. output (100 Hz)	3
Figure 14.	THD vs. frequency	3
Figure 15.	Frequency response	3
Figure 16.	Crosstalk	
Figure 17.	FFT performance (0 dB) 17	
Figure 18.	FFT performance (-60 dB) 17	
Figure 19.	Output power vs. supply voltage	
Figure 20.	THD vs. output power (1 kHz)	
Figure 21.	THD vs. output (100 Hz)	
Figure 22.	THD vs. frequency	
Figure 23.	Frequency response	
Figure 24.	Crosstalk	
Figure 25.	FFT performance (0 dB) 20	
Figure 26.	FFT performance (-60 dB) 20	
Figure 27.	Test board layout	
Figure 28.	Applications circuit for class-D amplifier	
Figure 29.	Standby and mute circuits	
Figure 30.	Turn on/off sequence for minimizing speaker "pop"	
Figure 31.	Device input circuit and frequency response	
Figure 32.	Master and slave connection	
Figure 33.	Typical LC filter for a 8- Ω speaker	
Figure 34.	Typical LC filter for a 4- Ω speaker	
Figure 35.	Behavior of pin DIAG for various protection conditions	
Figure 36.	PowerSSO-36 EPU outline drawing)

1 Device block diagram

Figure 1 shows the block diagram of one of the two identical channels of the TDA7492.

Figure 1. Internal block diagram (showing one channel only)

2 Pin description

2.1 Pinout

57

2.2 Pin list

	Table 2. Pin description list					
Number	Name	Туре	Description			
1	SUB_GND	PWR	Connect to the frame			
2,3	OUTPB	0	Positive PWM for right channel			
4,5	PGNDB	PWR	Power stage ground for right channel			
6,7	PVCCB	PWR	Power supply for right channel			
8,9	OUTNB	0	Negative PWM output for right channel			
10,11	OUTNA	0	Negative PWM output for left channel			
12,13	PVCCA	PWR	Power supply for left channel			
14,15	PGNDA	PWR	Power stage ground for left channel			
16,17	OUTPA	0	Positive PWM output for left channel			
18	PGND	PWR	Power stage ground			
19	VDDPW	0	3.3-V (nominal) regulator output referred to ground for power stage			
20	STBY	I	Standby mode control			
21	MUTE	I	Mute mode control			
22	INPA	I	Positive differential input of left channel			
23	INNA	I	Negative differential input of left channel			
24	ROSC	0	Master oscillator frequency-setting pin			
25	SYNCLK	I/O	Clock in/out for external oscillator			
26	VDDS	0	3.3-V (nominal) regulator output referred to ground for signal blocks			
27	SGND	PWR	Signal ground			
28	DIAG	0	Open-drain diagnostic output			
29	SVR	0	Supply voltage rejection			
30	GAIN0	I	Gain setting input 1			
31	GAIN1	I	Gain setting input 2			
32	INPB	I	Positive differential input of right channel			
33	INNB	I	Negative differential input of right channel			
34	VREF	0	Half VDDS (nominal) referred to ground			
35	SVCC	PWR	Signal power supply			
36	VSS	0	3.3-V (nominal) regulator output referred to power supply			
-	EP	-	Exposed pad for heatsink, to be connected to GND			

Table	2.	Pin	descri	ption	list

3 Electrical specifications

3.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage for pins PVCCA, PVCCB, SVCC	30	V
VI	Voltage limits for input pins STBY, MUTE, INNA, INPA, INNB, INPB, GAIN0, GAIN1	-0.3 - 3.6	V
T _{op}	Operating temperature	-40 to +85	°C
Тj	Junction temperature	-40 to 150	°C
T _{stg}	Storage temperature	-40 to 150	°C

Table 3. Absolute maximum ratings

3.2 Thermal data

Table 4. Thermal da

Symbol	Parameter	Min	Тур	Мах	Unit
R _{th j-case}	Thermal resistance, junction to case	-	2	3	°C/W

3.3 Electrical specifications

Unless otherwise stated, the results in *Table 5* below are given for the conditions: V_{CC} = 25 V, R_L (load) = 8 Ω , R_{OSC} = R3 = 39 k Ω , C8 = 100 nF, f = 1 kHz, G_V = 21.6 dB and Tamb = 25 °C.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC}	Supply voltage for pins PVCCA, PVCCB, SVCC	-	8	-	26	V
lq	Total quiescent current	Without LC	-	26	35	mA
I _{qSTBY}	Quiescent current in standby	-	-	2.5	5.0	μA
	Output offset voltage	Play mode	-	-	±100	mV
V _{OS}		Mute mode	-	-	±60	
I _{OCP}	Overcurrent protection threshold	R _L = 0 Ω	4.8	6.0	-	A
Тj	Junction temperature at thermal shutdown	-	-	150	-	°C
R _i	Input resistance	Differential input	48	60	-	kΩ
V _{OVP}	Overvoltage protection threshold	-	28	29	-	V

Table 5. Electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{UVP}	Undervoltage protection threshold	-	-	-	7	v
D	Power transistor on resistance	High side	-	0.2	-	Ω
R _{dsON}		Low side	-	0.2	-	
D		THD = 10%	-	40	-	w
Po	Output power	THD = 1%	-	32	-	
D		R _L = 6 Ω, THD = 10%, V _{CC} = 25V	-	50	-	-w
Po	Output power	R _L = 6 Ω, THD = 1% V _{CC} = 25V	-	40	-	
P _D	Dissipated power	P _o =40W +40 W, THD = 10%	-	8.0	-	w
η	Efficiency	$P_0 = 40 W + 40W$	80	90	-	%
THD	Total harmonic distortion	P _o = 1 W	-	0.1	0.4	%
0	Closed-loop gain	GAIN0 = L, GAIN1 = L	20.6	21.6	22.6	- dB
		GAIN0 = L, GAIN1 = H	26.6	27.6	28.6	
G _V		GAIN0 = H, GAIN1 = L	30.1	31.1	32.1	
		GAIN0 = H, GAIN1 = H	32.6	33.6	34.6	
ΔG_V	Gain matching	-	-	-	±1	dB
СТ	Cross talk	f = 1 kHz	-	50	-	dB
eN	Total input noise	A Curve, G _V = 20 dB	-	20	-	μV
EIN		f = 22 Hz to 22 kHz	-	25	35	μν
SVRR	Supply voltage rejection ratio	fr = 100 Hz, Vr = 0.5 V, C_{SVR} = 10 μ F	40	50	-	dB
T _r , T _f	Rise and fall times	-	-	50	-	ns
f _{SW}	Switching frequency	Internal oscillator	290	310	330	kHz
four	Output switching frequency	With internal oscillator ⁽¹⁾	250 -	-	400	kHz
f _{SWR}	Range	With external oscillator ⁽²⁾	250	-	400	
V _{inH}	Digital input high (H)		2.3	-	-	v
V _{inL}	Digital input low (L)		-	-	0.8	v
A _{MUTE}	Mute attenuation	V _{MUTE} = 1 V	60	80	-	dB

Table 5. Electrical specifications (continued)

1. $f_{SW} = 10^6 / ((16 * R_{OSC} + 182) * 4) \text{ kHz}, f_{SYNCLK} = 2 * f_{SW}$ with R3 = 39 kΩ (see *Figure 28*.).

2. $f_{SW} = f_{SYNCLK} / 2$ with the frequency of the external oscillator.

4 Characterization curves

The general test conditions used for producing the characterization curves can be summarized as follows:

Test board: SZ LAB TDA7492 slug-up demo board

Test frequency: 1 kHz (also 100 Hz for THD vs. output power only)

Output power: 1 W

- For 6-Ω loads
 - test voltage: 25 V
 - LC filter: L = 22 µH and C = 220 nF
- For 8-Ω loads
 - test voltage: 25 V
 - LC filter: L = 33 µH and C = 220 nF
- For 4-Ω loads
 - test voltage: 20 V
 - LC filter: L = 15 μ H and C = 470 nF.

Figure 28 on page 22 shows the circuit with which the characterization curves, shown in the next sections, were measured. *Figure 27 on page 21* shows the PCB layout.

4.1 Characterizations for $6-\Omega$ loads

Characterization curves

Figure 4. THD vs. output power (1 kHz)

Figure 6. THD vs. frequency

Figure 8. Crosstalk

Characterization curves

TDA7492

Figure 10. FFT performance (-60 dB)

4.2 Characterizations for 8-Ω loads

Figure 11. Output power vs. supply voltage

Characterization curves

Figure 13. THD vs. output (100 Hz)

Figure 15. Frequency response

Figure 16. Crosstalk

Figure 18. FFT performance (-60 dB)

4.3 Characterizations for 4- Ω loads

Figure 19. Output power vs. supply voltage

Figure 20. THD vs. output power (1 kHz)

Figure 21. THD vs. output (100 Hz)

Figure 22. THD vs. frequency

Figure 23. Frequency response

Characterization curves

Figure 24. Crosstalk

Figure 25. FFT performance (0 dB)

Figure 26. FFT performance (-60 dB)

20/32

4.4 Test board

Figure 27. Test board layout

5 Applications circuit

rigui	e 26. Applications cir			
C2 470nF	1 SUB_GND = 22 INPA ↓ C3 ↓ TIF 23 ↓ INPA ↓ C4 ↓	OUTPA 0UTPA 16 0UTPA 17 PGNDA 14 PGNDA 15 C25 100nF PVCCA 12 PCCA 12 PCCA 12 PCCA 12 PCCA 13 PCCA 12 PCCA 13 PCCA 12 PCCCA 12 PCCCA PCCCCA	L4 * 33uH R6 22R C26 * 220nF C27 C27 C26 * C26 * C26 * C28	F J3 2.0UT-L+ 0UT-L-
For Single-Ended J9 J1 J1 SYNCLK D SYNCLK D SYNCH	DIAG D-19 C6 100nF 18 25 SYNCLK IC1 TDA7492 4 15 30 GAIN0 16 35 SVCC	P OUTRA 10 OUTRA 11 OUTRA 11 OUTRA 12 OUTRA 2 PVCCB 7 PVCCB 7 PVCCB 6 C19	330pF 100n 100n 1000	
Imput Imput <t< th=""><td>100nF 36 VSS 100nF 32 INPB</td><td>PGNDB 5 PGNDB 4 OUTNB 8 VREF 34 VREF 34 C17 10F 10F 10F 10F 10F 10F 10F 10F</td><td>C21 C22 C22</td></t<> <td>ponents</td>	100nF 36 VSS 100nF 32 INPB	PGNDB 5 PGNDB 4 OUTNB 8 VREF 34 VREF 34 C17 10F 10F 10F 10F 10F 10F 10F 10F	C21 C22	ponents
▼ 3V3 PÖWER SUPPLY Input settings for stan STBY : MUTE 0 V : 0 V 0 V : 3.3 V 3.3 V : 0 V	dby, mute and play: Mode Standby Standby Mute	Input settings for g GAIN0 : GAIN1 0 V : 0 V 0 V : 3.3 V 3.3 V : 0 V 3.3 V : 3.3 V	·	

Figure 28. Applications circuit for class-D amplifier

6 Applications information

6.1 Mode selection

The three operating modes of the TDA7492 are set by the two inputs, STBY (pin 20) and MUTE (pin 21).

- Standby mode: all circuits are turned off, very low current consumption.
- Mute mode: inputs are connected to ground and the positive and negative PWM outputs are at 50% duty cycle.
- Play mode: the amplifiers are active.

The protection functions of the TDA7492 are enabled by pulling down the voltages of the STBY and MUTE inputs shown in *Figure 29*. The input current of the corresponding pins must be limited to 200 μ A.

Mode	STBY	MUTE	
Standby	L ⁽¹⁾	X (don't care)	
Mute	H ⁽¹⁾	L	
Play	Н	Н	

Table 6 Mode settings

1. Drive levels defined in Table 5: Electrical specifications on page 9

Figure 29. Standby and mute circuits

6.2 Gain setting

The gain of the TDA7492 is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31). Internally, the gain is set by changing the feedback resistors of the amplifier.

GAIN0	GAIN0 GAIN1	
0	0	21.6
0	1	27.6
1	0	31.1
1	1	33.6

6.3 Input resistance and capacitance

The input impedance is set by an internal resistor $Ri = 60 k\Omega$ (typical). An input capacitor (Ci) is required to couple the AC input signal.

The equivalent circuit and frequency response of the input components are shown in *Figure 31*. For Ci = 470 nF the high-pass filter cutoff frequency is below 20 Hz:

fc = 1 / (2 * π * Ri * Ci)

Figure 31. Device input circuit and frequency response

6.4 Internal and external clocks

The clock of the class-D amplifier can be generated internally or can be driven by an external source.

If two or more class-D amplifiers are used in the same system, it is recommended that all devices operate at the same clock frequency. This can be implemented by using one TDA7492 as master clock, while the other devices are in slave mode, that is, externally clocked. The clock interconnect is via pin SYNCLK of each device. As explained below, SYNCLK is an output in master mode and an input in slave mode.

6.4.1 Master mode (internal clock)

Using the internal oscillator, the output switching frequency, f_{SW} , is controlled by the resistor, R_{OSC} , connected to pin ROSC:

 $f_{SW} = 10^6 / ((R_{OSC} * 16 + 182) * 4) \text{ kHz}$

where R_{OSC} is in k Ω .

In master mode, pin SYNCLK is used as a clock output pin whose frequency is:

 $f_{SYNCLK} = 2 * f_{SW}$

For master mode to operate correctly, then resistor R_{OSC} must be less than 60 k Ω as given below in *Table 8*.

6.4.2 Slave mode (external clock)

In order to accept an external clock input the pin ROSC must be left open, that is, floating. This forces pin SYNCLK to be internally configured as an input as given in *Table 8*.

The output switching frequency of the slave devices is:

 $f_{SW} = f_{SYNCLK} / 2$

Table 8. How to set up SYNCLK

Mode	ROSC	SYNCLK	
Master	R _{OSC} < 60 kΩ	Output	
Slave	Floating (not connected)	Input	

6.5 Output low-pass filter

To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The cutoff frequency should be larger than 22 kHz and much lower than the output switching frequency. It is necessary to choose the L-C component values depending on the loud speaker impedance. Some typical values, which give a cutoff frequency of 27 kHz, are shown in *Figure 33* and *Figure 34* below.

Figure 34. Typical LC filter for a 4- Ω speaker

26/32

6.6 **Protection functions**

The TDA7492 is fully protected against overvoltages, undervoltages, overcurrents and thermal overloads as explained here.

Overvoltage protection (OVP)

If the supply voltage exceeds the value for V_{OVP} given in *Table 5: Electrical specifications* on page 9 the overvoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage drops to below the threshold value the device restarts.

Undervoltage protection (UVP)

If the supply voltage drops below the value for V_{UVP} given in *Table 5: Electrical specifications on page 9* the undervoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage recovers the device restarts.

Overcurrent protection (OCP)

If the output current exceeds the value for I_{OCP} given in *Table 5: Electrical specifications on* page 9 the overcurrent protection is activated which forces the outputs to the high-impedance state. Periodically, the device attempts to restart. If the overcurrent condition is still present then the OCP remains active. The restart time, T_{OC} , is determined by the R-C components connected to pin STBY.

Thermal protection (OTP)

If the junction temperature, T_j , reaches 145 °C (nominally), the device goes to mute mode and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction temperature reaches the value for T_j given in *Table 5: Electrical specifications on page 9* the device shuts down and the output is forced to the high-impedance state. When the device cools sufficiently the device restarts.

6.7 Diagnostic output

The output pin DIAG is an open drain transistor. When the protection is activated it is in the high-impedance state. The pin can be connected to a power supply (<26 V) by a pull-up resistor whose value is limited by the maximum sinking current (200 μ A) of the pin.

Figure 35. Behavior of pin DIAG for various protection conditions

6.8 Heatsink requirements

As with most amplifiers, the power dissipated within the device depends primarily on the supply voltage, the load impedance and the output modulation level.

The maximum estimated power dissipation for the TDA7492 is around 7 W. At 25 °C ambient a heatsink having Rth =15 °C/W is sufficient for sine-wave testing at maximum power. A musical program, however, dissipates about 40% less power than this and a heatsink with Rth = 25 °C/W is thus recommended. Even at the maximum recommended ambient temperature for consumer applications of 50 °C there is still a clear safety margin before the maximum junction temperature (150 °C) is reached.

28/32

7 Package mechanical data

The TDA7492 comes in a 36-pin PowerSSO package with exposed pad up (EPU). *Figure 36* shows the package outline and *Table 9* gives the dimensions.

• • •	Dimensions in mm			Dimensions in inches		
Symbol	Min	Тур	Max	Min	Тур	Max
A	2.15	-	2.45	0.085	-	0.096
A2	2.15	-	2.35	0.085	-	0.093
a1	0	-	0.10	0	-	0.004
b	0.18	-	0.36	0.007	-	0.014
с	0.23	-	0.32	0.009	-	0.013
D	10.10	-	10.50	0.398	-	0.413
E	7.40	-	7.60	0.291	-	0.299
е	-	0.5	-	-	0.020	-
e3	-	8.5	-	-	0.335	-
F	-	2.3	-	-	0.091	-
G	-	-	0.10	-	-	0.004
Н	10.10	-	10.50	0.398	-	0.413
h	-	-	0.40	-	-	0.016
k	0	-	8 degrees	-	-	8 degrees
L	0.60	-	1.00	0.024	-	0.039
М	-	4.30	-	-	0.169	-
N	-	-	10 degrees	-	-	10 degrees
0	-	1.20	-	-	0.047	-
Q	-	0.80	-	-	0.031	-
S	-	2.90	-	-	0.114	-
Т	-	3.65	-	-	0.144	-
U	-	1.00	-	-	0.039	-
Х	4.10	-	4.70	0.161	-	0.185
Y	6.50	-	7.10	0.256	-	0.280

Table 9. PowerSSO-36 EPU dimensions

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8 Revision history

Date	Revision	Changes	
30-Jul-2008	1	Initial release.	
4-Nov-2008	2	Updated V _{OS} details in <i>Table 5</i> Updated <i>Chapter 4: Characterization curves on page 11</i> .	
15-Apr-2009	3	Updated supply operating range to 8 V - 26 V on page 1 Changed C1 to C8 at beginning of Section 3.3 on page 9 Updated Table 5: Electrical specifications on page 9 for V_{CC} min, Iq condition, V_{OS} min/max, I_{OC} , and added new parameter V_{UV} Updated Figure 3: Test circuit for characterizations on page 10 Updated Figure 28: Applications circuit for class-D amplifier on page 2 Inserted brackets in equation in Table 5, footnote and in Section 6.4.1 on page 25 Updated values in UVP and OCP in Section 6.6 on page 27 Updated package presentation in Chapter 7 on page 29 and max vaules for A and A2 in Table 9: PowerSSO-36 EPU dimensions on page 30.	
03-Sep-20094Added text for exposed pad in Figure 2 on page 7 Added text for exposed pad in Table 2 on page 8 Removed Figure 3: Test circuit for characterizations since it is i to apps circuit in Figure 28 on page 22 Moved section Test board on page 21 to end of chapter Updated package Y (Min) dimension in Table 9 on page 30		Added text for exposed pad in <i>Table 2 on page 8</i> Removed <i>Figure 3: Test circuit for characterizations</i> since it is identical to apps circuit in <i>Figure 28 on page 22</i> Moved section <i>Test board on page 21</i> to end of chapter	
12-Sep-2011	5	Updated OUTNA in Table 2: Pin description list	
22-Jan-2015	6	Updated operative temperature range to -40 to +85 °C in <i>Table 1:</i> Device summary and <i>Table 3: Absolute maximum ratings</i> Updated Y dimension in <i>Table 9: PowerSSO-36 EPU dimensions</i>	

Table 10. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

