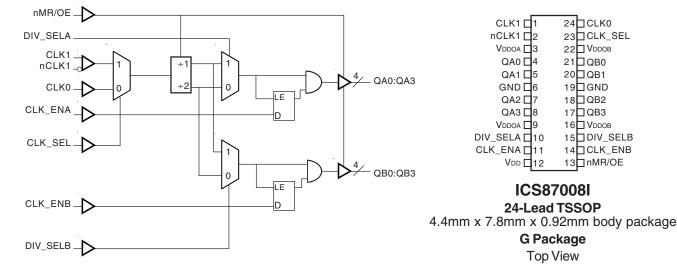


Low Skew, 1-to-8 DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

GENERAL DESCRIPTION

The ICS87008I is a low skew, 1:8 LVCMOS/LVTTL Clock Generator. The device has 2 banks of 4 outputs and each bank can be independently selected for $\div 1$ or $\div 2$ frequency operation. Each bank also has its own power supply pins so that the banks can operate at the following different voltage levels: 3.3V, 2.5V, and 1.8V. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines.

The divide select inputs, DIV_SELA and DIV_SELB, control the output frequency of each bank. The output banks can be independently selected for $\div 1$ or $\div 2$ operation. The bank enable inputs, CLK_ENA and CLK_ENB, support enabling and disabling each bank of outputs individually. The CLK_ENA and CLK_ENB circuitry has a synchronizer to prevent runt pulses when enabling or disabling the clock outputs. The master reset input, nMR/OE, resets the $\div 1/\div 2$ flip flops and also controls the active and high impedance states of all outputs. This pin has an internal pull-up resistor and is normally used only for test purposes or in systems which use low power modes.


The ICS87008I is characterized to operate with the core at 3.3V or 2.5V and the banks at 3.3V, 2.5V, or 1.8V. Guaranteed bank, output, and part-to-part skew characteristics make the 87008I ideal for those clock applications demanding well-defined performance and repeatability.

FEATURES

- Eight LVCMOS/LVTTL outputs (2 banks of 4 outputs)
- Selectable differential CLK1, nCLK1 or LVCMOS clock input
- CLK1, nCLK1 pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- CLK0 supports the following input types: LVCMOS, LVTTL
- Maximum output frequency: 250MHz
- Independent bank control for ÷1 or ÷2 operation
- Glitchless, asynchronous clock enable/disable
- Output skew: 105ps (maximum) @ 3.3V core/3.3V output
- Bank skew: 70ps (maximum) @ 3.3V core/3.3V output
- 3.3V or 2.5V core/3.3V, 2.5V, or 1.8V output operating supply
- -40°C to 85°C ambient operating temperature
- Available in both standard and lead-free RoHS compliant packages

BLOCK DIAGRAM

PIN ASSIGNMENT

87008AGI **www.idt.com** REV. B JULY 31, 2010

Low Skew, 1-to-8 DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1	CLK1	Input	Pulldown	Non-inverting differential clock input.
2	nCLK1	Input	Pullup/ Pulldown	Inverting differential clock input. $V_{\tiny DD}/2$ default when left floating.
3, 9	$V_{\scriptscriptstyle DDOA}$	Power		Output Bank A supply pins.
4, 5, 7, 8	QA0, QA1, QA2, QA3	Output		Bank A outputs. LVCMOS / LVTTL interface levels.
6, 19	GND	Power		Supply ground.
10	DIV_SELA	Input	Pullup	Controls frequency division for Bank A outputs. LVCMOS / LVTTL interface levels.
11	CLK_ENA	Input	Pullup	Output enable for Bank A outputs. Active HIGH. If pin is LOW, outputs drive low. LVCMOS / LVTTL interface levels.
12	$V_{_{\mathrm{DD}}}$	Power		Power supply pin.
13	nMR/OE	Input	Pullup	Master reset. When LOW, resets the ÷1/÷2 flip flops and sets the outputs to high impedance. LVCMOS / LVTTL interface levels.
14	CLK_ENB	Input	Pullup	Output enable for Bank B outputs. Active HIGH. If pin is LOW, outputs drive low. LVCMOS / LVTTL interface levels.
15	DIV_SELB	Input	Pullup	Controls frequency division for Bank B outputs. LVCMOS / LVTTL interface levels
16, 22	V_{DDOB}	Power		Output Bank B supply pins.
17, 18, 20, 21	QB3, QB2, QB1, QB0	Output		Bank B outputs. LVCMOS / LVTTL interface levels.
23	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW, selects CLK0 input. LVCMOS / LVTTL interface levels.
24	CLK0	Input	Pulldown	LVCMOS / LVTTL clock input.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
		V_{DD} , $V_{DDOx} = 3.465V$; NOTE 1			18	pF
		$V_{DD}, V_{DDOx} = 2.625V; NOTE 1$			20	pF
C _{PD}	Power Dissipation Capacitance (per output)	$V_{DD} = 3.465, V_{DDOx} = 2.625V; NOTE 1$			20	pF
	Supusitance (per output)	$V_{DD} = 3.465, V_{DDOx} = 1.89V; NOTE 1$			30	pF
		V _{DD} = 2.625, V _{DDOx} = 1.89V; NOTE 1			20	pF
R _{out}	Output Impedance			7		Ω

NOTE 1: V_{DDOx} denotes V_{DDOA} and V_{DDOB} .

TABLE 3. FUNCTION TABLE

	Inputs	Outputs		
nMR/OE	CLK_ENx	DIV_SELx	Bank X	Qx Frequency
0	Х	Х	Hi Z	N/A
1	1	0	Active	fIN/2
1	1	1	Active	fIN
1	0	Х	Low	N/A

Low Skew, 1-TO-8

DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_I -0.5V to V_{DD} + 0.5 V

Outputs, V_{O} -0.5V to V_{DDO} + 0.5V

Package Thermal Impedance, θ_{ια} 70°C/W (0 Ifpm)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = -40°C to 85° C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V	Dower Cupply Voltage		3.135	3.3	3.465	V
V _{DD}	Power Supply Voltage		2.375	2.5	2.625	V
.,			3.135	3.3	3.465	V
V _{DDOA} ,	Output Supply Voltage; NOTE 1		2.375	2.5	2.625	V
V DDOB			1.71	1.8	1.89	V
I _{DD}	Power Supply Current				54	mA
I _{DDOA} , I _{DDOB}	Output Supply Current; NOTE 2				6.5	mA

Low Skew, 1-TO-8

DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

 $\textbf{TABLE 4B. LVCMOS/LVTTL DC Characteristics, V}_{\text{DD}} = 3.3 \text{V} \pm 5\% \text{ or } 2.5 \text{V} \pm 5\%, \text{ Ta} = -40 ^{\circ}\text{C to } 85 ^{\circ}\text{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	DIV_SELA, DIV_SELB, CLK_ENA, CLK_ENB, nMR/OE, CLK_SEL		2		V _{DD} + 0.3	V
		CLK0		2		$V_{DD} + 0.3$	V
V _{IL}	Input Low Voltage	DIV_SELA, DIV_SELB, CLK_ENA, CLK_ENB, nMR/OE, CLK_SEL		-0.3		0.8	V
		CLK0		-0.3		1.3	V
I _{IH}	Input	DIV_SELA, DIV_SELB, CLK_ENA, CLK_ENB, nMR/OE	$V_{DD} = V_{IN} = 3.465V,$ $V_{DD} = V_{IN} = 2.625V$			5	μΑ
ТН	High Current	CLK0, CLK_SEL	$V_{DD} = V_{IN} = 3.465V,$ $V_{DD} = V_{IN} = 2.625V$			150	μΑ
I _{IL}	Input	DIV_SELA, DIV_SELB, CLK_ENA, CLK_ENB, nMR/OE	$V_{DD} = 3.465V, V_{IN} = 0V$ $V_{DD} = 2.625V, V_{IN} = 0V$	-150			μΑ
'IL	Low Current	CLK0, CLK_SEL	$V_{DD} = 3.465V, V_{IN} = 0V$ $V_{DD} = 2.625V, V_{IN} = 0V$	-5			μΑ
			$V_{DDOx} = 3.3V \pm 5\%; NOTE 2$	2.6			V
V_{OH}	Output High V	oltage; NOTE 1	$V_{DDOx} = 2.5V \pm 5\%; NOTE 2$	1.8			V
			$V_{DDOx} = 1.8V \pm 5\%; NOTE 2$	1.5			V
			$V_{DDOx} = 3.3V \pm 5\%$; NOTE 2			0.5	V
V_{OL}	Output Low Voltage; NOTE 1		$V_{DDOx} = 2.5V \pm 5\%; NOTE 2$			0.5	V
			$V_{DDOx} = 1.8V \pm 5\%; NOTE 2$			0.4	٧
I _{OZL}	Output Tristate	e Current Low		-5			μΑ
l _{OZH}	Output Tristate	e Current High				5	μΑ

NOTE 1: Outputs terminated with 50Ω to $V_{DDOX}/2$. See Parameter Measurement Information, Output Load Test Circuits. NOTE 2: V_{DDOX} denotes V_{DDOA} , and V_{DDOB} .

Table 4C. Differential DC Characteristics, $V_{DD} = V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = -40°C to 85° C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
			$V_{IN} = V_{DD} = 3.465V,$ $V_{IN} = V_{DD} = 2.625V$			5	μΑ
I I _{IH}	Input High Current	CLK1	$V_{IN} = V_{DD} = 3.465V,$ $V_{IN} = V_{DD} = 2.625V$			150	μΑ
	nCLK1	nCLK1	$V_{IN} = 0V, V_{DD} = 3.465V,$ $V_{IN} = 0V, V_{DD} = 2.625V$	-150			μΑ
' IL	Input Low Current	CLK1	$V_{IN} = 0V, V_{DD} = 3.465V,$ $V_{IN} = 0V, V_{DD} = 2.625V$	-5			μΑ
V _{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Inpo NOTE 1, 2	ut Voltage;		GND + 0.5		V _{DD} - 0.85	٧

NOTE 1: For single ended applications, the maximum input voltage for CLK1, nCLK1 is $V_{\tiny DD}$ + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{\rm H}$.

Low Skew, 1-TO-8

DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

Table 5A. AC Characteristics, $V_{DD} = V_{DDOx} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
	Propagation Delay,	CLK0; NOTE 1A		1.9	3.5	5.1	ns
tp _{LH}	Low to High	CLK1, nCLK1; NOTE 1B		3.0	3.7	4.5	ns
tsk(b)	Bank Skew; NOTE 2, 6					70	ps
tsk(o)	Output Skew; NOTE 3, 6					105	ps
tsk(pp)	Part-to-Part Skew; N	NOTE 4, 6				650	ps
t _R / t _F	Output Rise/Fall Time		20% to 80%	300		1100	ps
odc	Output Duty Cycle		f ≤ 133MHz	45		55	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	e; NOTE 5				10	ns

All parameters measured at 250MHz using CLK1, nCLK1 unless noted otherwise.

NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at $V_{DDOX}/2$.

NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at V_DDOX/2.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

Table 5B. AC Characteristics, $V_{DD} = V_{DDOx} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
	Propagation Delay,	CLK0; NOTE 1A		2.0	3.8	5.5	ns
tp _{LH}	Low to High	CLK1, nCLK1; NOTE 1B		3	4	5	ns
tsk(b)	Bank Skew; NOTE 2, 6					35	ps
tsk(o)	Output Skew; NOTE 3, 6					130	ps
tsk(pp)	Part-to-Part Skew; N	IOTE 4, 6				1	ns
t _R / t _F	Output Rise/Fall Tim	пе	20% to 80%	300		1000	ps
odc	Output Duty Cycle		f ≤ 125MHz	45		55	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	e; NOTE 5				10	ns

All parameters measured at 250MHz using CLK1, nCLK1 unless noted otherwise.

NOTE 1A: Measured from the $\rm V_{DD}\!/2$ of the input to $\rm V_{DDOX}\!/2$ of the output.

NOTE 1B: Measured from the differential input crossing point to $V_{\tiny DDOX}/2$ of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at V_{DDOX}/2.

NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with

equal load conditions. Using the same type of input on each device, the output is measured at $V_{ppox}/2$.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

Low Skew, 1-TO-8

DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

Table 5C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDOx} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
	Propagation Delay,	CLK0; NOTE 1A		2.25	3.6	5.0	ns
tp _{LH}	Low to High	CLK1, nCLK1; NOTE 1B		3.1	3.8	4.4	ns
tsk(b)	Bank Skew; NOTE 2, 6					60	ps
tsk(o)	Output Skew; NOTE	3, 6				130	ps
tsk(pp)	Part-to-Part Skew; N	NOTE 4, 6				900	ps
t _R / t _F	Output Rise/Fall Tim	ne	20% to 80%	290		950	ps
odc	Output Duty Cycle		f ≤ 133MHz	45		55	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	e; NOTE 5				10	ns

All parameters measured at 250MHz using CLK1, nCLK1 unless noted otherwise.

NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at V_{DDOX}/2.

NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at V_DOOX/2.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

Table 5D. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDOx} = 1.8V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
	Propagation Delay,	CLK0; NOTE 1A		3.0	4.5	4.9	ns
tp _{LH}	Low to High	CLK1, nCLK1; NOTE 1B		3.3	4.1	5.0	ns
tsk(b)	Bank Skew; NOTE 2, 6					55	ps
tsk(o)	Output Skew; NOTE 3, 6					150	ps
tsk(pp)	Part-to-Part Skew; N	IOTE 4, 6				1.1	ns
t _R / t _F	Output Rise/Fall Tim	пе	20% to 80%	280		850	ps
odc	Output Duty Cycle		f ≤ 133MHz	45		55	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	e; NOTE 5				10	ns

All parameters measured at 250MHz using CLK1, nCLK1 unless noted otherwise.

NOTE 1A: Measured from the $\rm V_{DD}\!/2$ of the input to $\rm V_{DDOX}\!/2$ of the output.

NOTE 1B: Measured from the differential input crossing point to $V_{\text{DDOX}}/2$ of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at $V_{DDOX}/2$.

NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with

equal load conditions. Using the same type of input on each device, the output is measured at V_{ppox}/2.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

Low Skew, 1-TO-8

DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

Table 5E. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $V_{DDOx} = 1.8V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
	Propagation Delay	CLK0; NOTE 1A		2.6	4.1	5.6	ns
tp _{LH}	tp _{LH} Propagation Delay, Low to High	CLK1, nCLK1; NOTE 1B		3.3	4.4	5.4	ns
tsk(b)	Bank Skew; NOTE 2, 6					45	ps
tsk(o)	Output Skew; NOTE 3, 6					150	ps
tsk(pp)	Part-to-Part Skew; N	NOTE 4, 6				1.2	ns
t _R / t _F	Output Rise/Fall Time		20% to 80%	325		900	ps
odc	Output Duty Cycle		f ≤ 100MHz	45		55	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	e; NOTE 5				10	ns

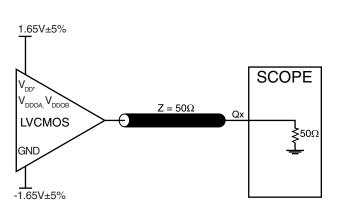
All parameters measured at 250MHz using CLK1, nCLK1 unless noted otherwise.

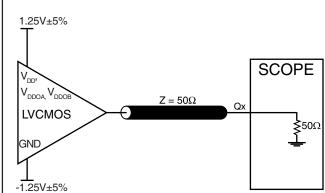
NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

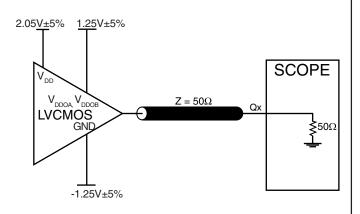
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

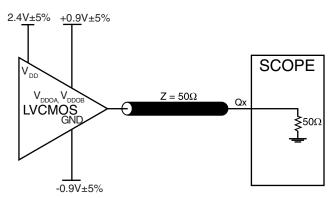
Measured at $V_{\text{DDOX}}/2$.


NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at V_DDOX /2.

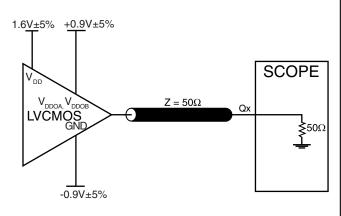

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

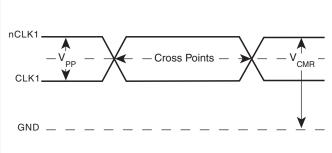
NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.


PARAMETER MEASUREMENT INFORMATION



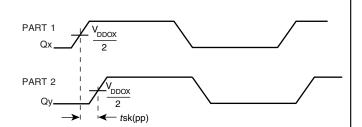
3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT

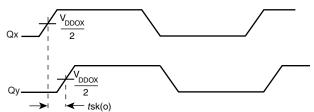

2.5V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT



3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT

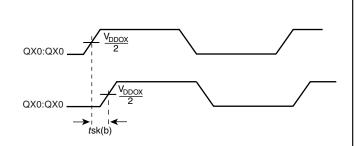
3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT

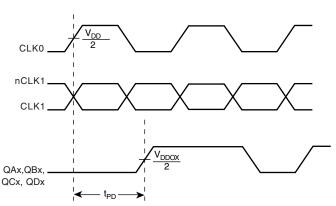




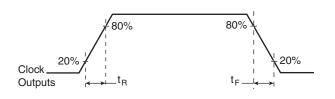
2.5V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT

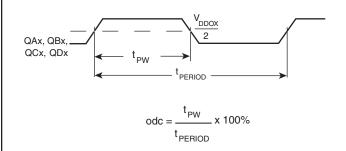
DIFFERENTIAL INPUT LEVEL





PART-TO-PART SKEW


OUTPUT SKEW



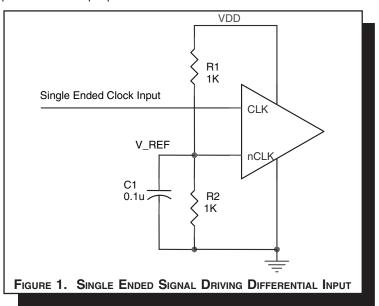
BANK SKEW (where X denotes outputs in the same bank)

PROPAGATION DELAY

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

Low Skew, 1-TO-8


DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and R2/R1 = 0.609.

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS INPUTS:

CLK INPUT:

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

CLK/nCLK INPUT:

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

PCLK/nPCLK INPUT:

For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from PCLK to ground.

LVCMOS CONTROL PINS:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVCMOS OUTPUT:

All unused LVCMOS output can be left floating. We recommend that there is no trace attached.

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are

examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 2A*, the input termination applies for LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

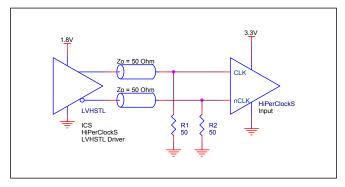


FIGURE 2A. CLK/NCLK INPUT DRIVEN BY LVHSTL DRIVER

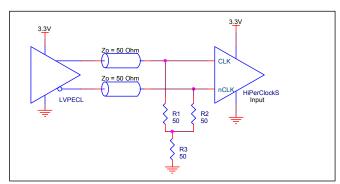


FIGURE 2B. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

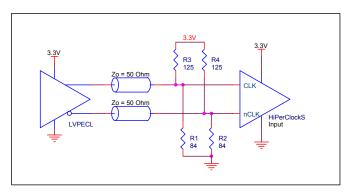


FIGURE 2C. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

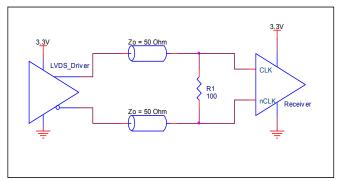


FIGURE 2D. CLK/NCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

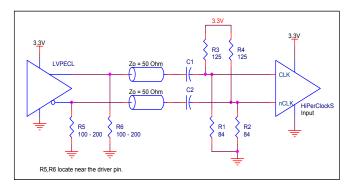


FIGURE 2E. CLK/NCLK INPUT DRIVEN BY
3.3V LVPECL DRIVER WITH AC COUPLE

Low Skew, 1-to-8 DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

RELIABILITY INFORMATION

Table 6. $\theta_{\text{JA}} \text{vs. Air Flow Table for 24 Lead TSSOP}$

 θ_{JA} by Velocity (Linear Feet per Minute)

0

200

500

Multi-Layer PCB, JEDEC Standard Test Boards

70°C/W 63°C/W 60°C/W

TRANSISTOR COUNT

The transistor count for ICS87008I is: 1262

PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP

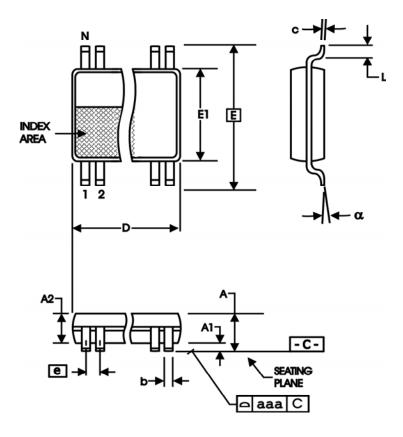


TABLE 7. PACKAGE DIMENSIONS

SYMBOL	Millin	neters	
STWBOL	Minimum	Maximum	
N	24		
А		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	7.70	7.90	
E	6.40 E	BASIC	
E1	4.30	4.50	
е	0.65 E	BASIC	
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MS-153

Low Skew, 1-to-8 DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
87008AGI	ICS87008AGI	24 Lead TSSOP	tray	-40°C to 85°C
87008AGIT	ICS87008AGI	24 Lead TSSOP	1000 tape & reel	-40°C to 85°C
87008AGILF	ICS87008AGILF	24 Lead "Lead-Free" TSSOP	tray	-40°C to 85°C
87008AGILFT	ICS87008AGILF	24 Lead "Lead-Free" TSSOP	1000 tape & reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Low Skew, 1-to-8 DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

REVISION HISTORY SHEET					
Rev	Table	Page	Description of Change		
Α	Т8	14	Ordering Information Table - added "T" (for tape and reel) Part/Order Number.	9/10/04	
А	Т8	10 14	Added Recommendations for Unused Input and Output Pins. Ordering Information Table - added lead-free part number, marking, and note.	2/21/06	
В	Т8	14 16	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	7/31/10	

ICS87008I Low Skew, 1-to-8 DIFFERENTIAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

We've Got Your Timing Solution.

6024 Silver Creek Valley Road San Jose, CA 95138

Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA)

Fax: 408-284-2775

Tech Support netcom@idt.com

© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.

Printed in USA