

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

CY62177G30/CY62177GE30 MoBL

32-Mbit (2M words × 16-bit/ 4M words × 8-bit) Static RAM with Error-Correcting Code (ECC)

Features

■ Ultra-low standby current

□ Typical standby current: 3 µA

■ Maximum standby current: 19 µA

■ High speed: 55 ns

■ Embedded error-correcting code (ECC) for single-bit error correction^[1]

■ Operating voltage range: 2.2 V to 3.6 V

■ 1.5-V data retention

■ Transistor-transistor logic (TTL) compatible inputs and outputs

■ Error indication (ERR) pin to indicate 1-bit error detection and correction

■ 48-pin TSOP I package configurable as 2M × 16 or 4M × 8 SRAM

Available in Pb-free 48-ball VFBGA and 48-pin TSOP I packages

Functional Description

CY62177G30 and CY62177GE30 are high-performance CMOS, low-power (MoBL $^{\!(\!0\!)}$) SRAM devices with embedded ECC $^{\![\!2\!]}$. Both devices are offered in single and dual chip enable options and in multiple pin configurations. The CY62177GE30 device includes an ERR pin that signals a single-bit error-detection and correction event during a read cycle.

To access devices with a single chip enable input, assert the chip enable ($\overline{\text{CE}}$) input LOW. To access dual chip enable devices, assert both chip enable inputs – $\overline{\text{CE}}_1$ as LOW and $\overline{\text{CE}}_2$ as HIGH.

To perform data writes, assert the Write Enable (WE) input LOW, and provide the data and address on the device data pins (I/O $_0$

through I/O₁₅) and address pins (A₀ through A₂₀) respectively. The Byte High Enable (\overline{BHE}) and Byte Low Enable (\overline{BLE}) inputs control byte writes and write data on the corresponding I/O lines to the memory location specified. \overline{BHE} controls I/O₈ through I/O₁₅ and \overline{BLE} controls I/O₀ through I/O₇.

To perform data reads, assert the Output Enable (\overline{OE}) input and provide the required address on the address lines. You can access read data on the I/O lines (I/O $_0$ through I/O $_{15}$). To perform byte accesses, assert the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through I/O₁₅) are <u>placed</u> in a high-impedance state when the device is deselected (\overline{CE} HIGH for a single chip enable device and \overline{CE}_1 HIGH / \overline{CE}_2 LOW for a <u>dual chip enable</u> device), or the control signals are de-asserted (\overline{OE} , \overline{BLE} , \overline{BHE}).

These devices have a unique Byte Power-down feature where, if both the Byte Enables (BHE and BLE) are disabled, the devices seamlessly switch to the standby mode irrespective of the state of the chip enables, thereby saving power.

On the CY62177GE30 devices, the detection and correction of a single-bit error in the accessed location is indicated by the assertion of the ERR output (ERR = High). See the Truth Table – CY62177G30/CY62177GE30 on page 15 for a complete description of read and write modes.

The CY62177G30 and CY62177GE30 devices are available in a Pb-free 48-pin TSOP I package and 48-ball VFBGA packages. The logic block diagrams are on page 2.

The device in the 48-pin TSOP I package can also be configured to function as a 4M words × 8 bit device. Refer to the Pin Configurations section for details.

For a complete list of related documentation, click here.

Product Portfolio

Product					Current Consumption				
	Features and Options (see Pin Configurations	Range	V _{CC} Range (V)		Operating I _{CC} , (mA)		Standby, I _{SB2} (µA)		
	section)	Nange	VCC Ivalige (V)		$f = f_{max}$ $Tvp^{[3]}$	Max	Typ ^[3]	Max	
	Single or dual Chip Enables Optional ERR pin	Industrial	2.2 V-3.6 V	55	35	45	3	19	

Notes

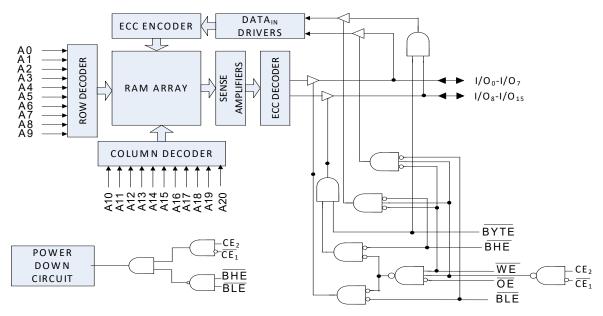
1. SER FIT rate <0.1 FIT/Mb. Refer to AN88889 for details.

2. This device does not support automatic write-back on error detection.

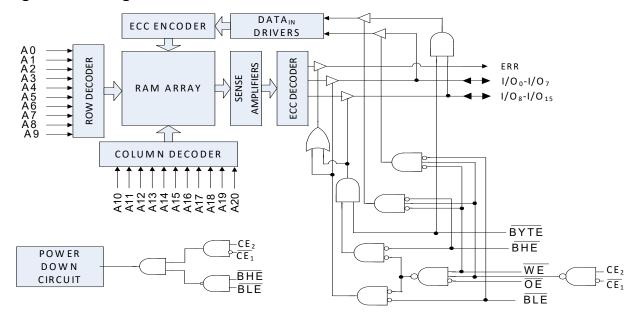
3. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.

Cypress Semiconductor Corporation
Document Number: 002-24704 Rev. *C

198 Champion Court


San Jose, CA 95134-1709

408-943-2600


Revised February 9, 2021

Logic Block Diagram - CY62177G30

Logic Block Diagram - CY62177GE30

CY62177G30/CY62177GE30 MoBL

Contents

Pin Configuration - CY62177G30	4
Pin Configuration - CY62177GE30	
Maximum Ratings	
Operating Range	
DC Electrical Characteristics	
Capacitance	8
Thermal Resistance	
AC Test Loads and Waveforms	8
Data Retention Characteristics	g
Data Retention Waveform	9
Switching Characteristics	10
Switching Waveforms	
Truth Table - CY62177G30/CY62177GE30	
FRR Output - CY62177GF30	15

Ordering information	10
Ordering Code Definitions	16
Package Diagrams	17
Acronyms	20
Document Conventions	20
Units of Measure	20
Document History Page	21
Sales, Solutions, and Legal Information	22
Worldwide Sales and Design Support	22
Products	22
PSoC® Solutions	22
Cypress Developer Community	22
Technical Support	22

Pin Configuration - CY62177G30

Figure 1. 48-ball VFBGA/BGA Pinout (Dual Chip Enable without ERR) - CY62177G30^[4]

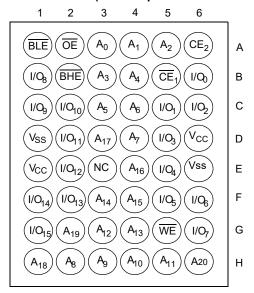
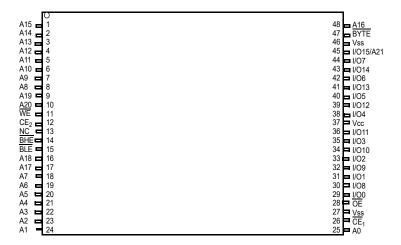



Figure 2. 48-pin TSOP I Pinout (Dual Chip Enable without ERR) – CY62177G30^[4, 5]

Notes

- 4. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.
- 5. Tie the BYTE pin in the 48-pin TSOP I package to V_{CC} to use the device as a 2M × 16 SRAM. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 4M × 8 configuration, pin 45 is the extra address line A21, while BHE, BLE, and I/O₈ to I/O₁₄ pins are not used and can be left floating.

Pin Configuration - CY62177GE30

Figure 3. 48-ball VFBGA/BGA Pinout (Single Chip Enable with ERR) – CY62177GE30 [6, 7]

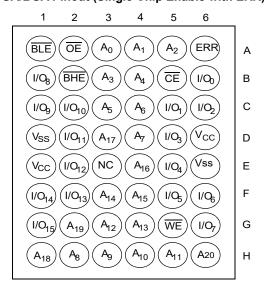
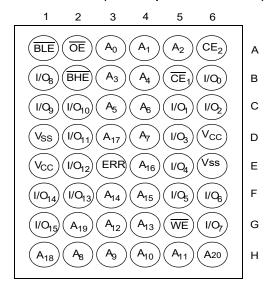
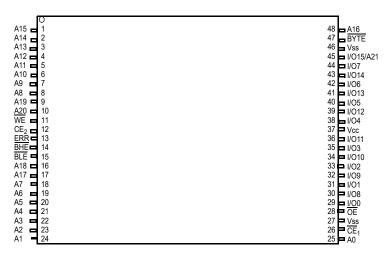



Figure 4. 48-ball VFBGA/BGA Pinout (Dual Chip Enable with ERR) - CY62177GE30 [6, 7]

Notes


^{6.} NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.

^{7.} ERR is an Output pin. If not used, this pin should be left floating.

Pin Configuration - CY62177GE30 (continued)

Figure 5. 48-pin TSOP I Pinout (Dual Chip Enable with ERR) – CY62177GE30 [8, 9]

Notes

Document Number: 002-24704 Rev. *C Page 6 of 22

^{8.} NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.

^{9.} Tie the BYTE pin in the 48-pin TSOP I package to V_{CC} to use the device as a 2M × 16 SRAM. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 4M × 8 configuration, pin 45 is the extra address line A21, while the BHE, BLE, and I/O₈ to I/O₁₄ pins are not used and can be left floating.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature-65 °C to + 150 °C Ambient temperature Supply voltage to ground potential-0.5 V to V_{CC} + 0.5 V

DC input voltage ^[10]	–0.5 V to V _{CC} + 0.5 V
Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>140 mA

Operating Range

Grade	Ambient Temperature	V _{CC} ^[11]		
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V		

DC Electrical Characteristics

Over the operating range of -40 °C to 85 °C

Downwoodow	Door		Took Condi	4:	55 ns			
Parameter	Desc	cription	Test Condi	Min	Typ ^[12]	Max	Unit	
V _{OH}	Output HIGH	2.2 V to 2.7 V	$V_{CC} = Min, I_{OH} = -0.1$	mA	2.0	_	_	V
	voltage	2.7 V to 3.6 V	$V_{CC} = Min, I_{OH} = -1.0$	mA	2.4	_	_	
V_{OL}	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 0.1 n	nA	_	_	0.4	
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 2.1 n	nA	_	_	0.4	
V _{IH}	Input HIGH	2.2 V to 2.7 V	_		1.8	_	V _{CC} + 0.3	
	voltage ^[10]	2.7 V to 3.6 V	_		2.0	_	V _{CC} + 0.3	
V_{IL}	Input LOW	2.2 V to 2.7 V	_		-0.3	_	0.6	
	voltage ^[10]	2.7 V to 3.6 V	V -			_	0.8	
I _{IX}	Input leakage o	current	$GND \le V_{IN} \le V_{CC}$		-1.0	_	+1.0	μA
I _{OZ}	Output leakage	current	GND \leq V _{OUT} \leq V _{CC} , Output disabled		-1.0	_	+1.0	
I _{CC}	V _{CC} operating	supply current	V _{CC} = Max,	f=22.22 MHz	_	35.0	45.0	mA
			$I_{OUT} = 0 \text{ mA},$	(45 ns)				
			CMOS levels	f = 1 MHz	-	10.0	18.0	
I _{SB1} ^[13]	Automatic Pow	er-down	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}$	CF ₂ < 0.2 V	_	3.0	19.0	μA
	Current – CMC	•	or (BHE and BLE) \geq V _{CC} – 0.2 V,					
	V_{CC} = 2.2 V to	3.6 V	$V_{IN} \ge V_{CC} - 0.2 \text{ V, } V_{IN}$					
			f = f _{max} (address and					
			$f = 0$ (\overline{OE} , and \overline{WE}), $V_{CC} = V_{CC(max)}$					
I _{SB2} ^[13]	Automatic Pow	er-down	$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2\text{V or CE}_2 \le 0.2\text{ V or}$		_	3.0	19.0	μA
	Current – CMC	S Inputs	$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC}$	_				
	V_{CC} = 2.2 V to	3.6 V	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{CC}$					
			$f = 0$, $V_{CC} = V_{CC(max)}$	IN _ 0.2 v,				

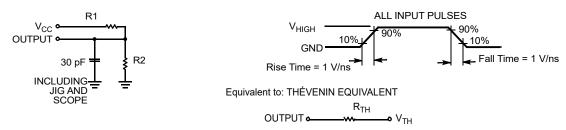
- 10. V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.

 11. Full device AC operation assumes a 100-µs ramp time from 0 to V_{CC} (min) and 400-µs wait time after V_{CC} stabilizes to its operational value.

 12. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.

 13. The I_{SB2} maximum limits at 25 °C are guaranteed by design and not 100% tested.

Capacitance


Parameter [14]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	15.0	pF
C _{OUT}	Output capacitance		15.0	

Thermal Resistance

Parameter [14]	Description	Test Conditions	48-ball VFBGA	48-ball FBGA	48-pin TSOP I	Unit
Θ_{JA}	(junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer	54.8	51.5	50.98	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)	printed circuit board	11.9	7.8	9.4	

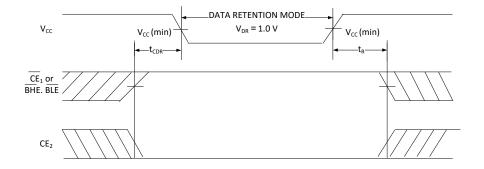
AC Test Loads and Waveforms

Figure 6. AC Test Loads and Waveforms

Parameters	2.5 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	
R _{TH}	8000	645	
V _{TH}	1.20	1.75	V
V_{HIGH}	2.5	3.0	

Note

^{14.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Description Conditions Min				Unit
V_{DR}	V _{CC} for data retention	-	1.5	_	-	V
I _{CCDR} ^[16, 17]	Data retention current	$\begin{split} & \underline{2.2 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}} \\ & \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.2 \text{ V or CE}_2 \leq 0.2 \text{ V} \\ & \text{or } (\overline{\text{BHE}} \text{ and } \overline{\text{BLE}}) \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \leq 0.2 \text{ V} \end{split}$	-	3.0	19.0	μА
		$\begin{split} &\frac{1.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 2.2 \text{ V,}}{\text{CE}_{1} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or CE}_{2} \leq 0.2 \text{ V}} \\ &\text{or } (\overline{\text{BHE}} \text{ and } \overline{\text{BLE}}) \geq \text{V}_{\text{CC}} - 0.2 \text{ V,} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \leq 0.2 \text{ V} \end{split}$	П	-	20.0	
t _{CDR} ^[18]	Chip deselect to data retention time	-	0.0	_	_	_
t _R ^[18, 19]	Operation recovery time	-	55	_	-	ns

Data Retention Waveform

Figure 7. Data Retention Waveform [20]

Notes

- 15. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.

 16. Chip enables (CE₁ and CE₂) and BYTE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

 17. I_{CCDR} is guaranteed only after the device is first powered up to V_{CC(min)} and then brought down to V_{DR}.

 18. These parameters are guaranteed by design and are not tested.

- 19. <u>Full-device</u> operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 400 μs or stable at V_{CC(min)} ≥ 400 μs.
 20. <u>BHE.BLE</u> is the AND of both <u>BHE</u> and <u>BLE</u>. Deselect the chip by either disabling the chip enable signals or by disabling both <u>BHE</u> and <u>BLE</u>.

Switching Characteristics

Parameter ^[21]	Description	55	ns	Unit
Parameter	Description	Min	Max	Unit
Read Cycle				•
t _{RC}	Read cycle time	55.0	_	ns
t _{AA}	Address to data valid / Address to ERR valid	_	55.0	
t _{OHA}	Data hold from address change / ERR hold from address change	10.0	_	
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid / CE LOW to ERR valid	_	55.0	
t _{DOE}	OE LOW to data valid / OE LOW to ERR valid	_	25.0	
t _{LZOE}	OE LOW to Low Z [22, 23]	5.0	_	
t _{HZOE}	OE HIGH to High Z [22, 23, 24]	_	18.0	
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[22, 23]	10.0	_	
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[22, 23, 24]	_	18.0	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up ^[25]	0.0	_	
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down ^[25]	_	55.0	
t _{DBE}	BLE / BHE LOW to data valid	_	55.0	
t _{LZBE}	BLE / BHE LOW to Low Z [22]	5.0	_	
t _{HZBE}	BLE / BHE HIGH to High Z [22, 24]	_	18.0	
Write Cycle [26	, 27]	1		- I
t _{WC}	Write cycle time	55.0	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	40.0	_	
t _{AW}	Address setup to write end	40.0	-	
t _{HA}	Address hold from write end	0	-	
t _{SA}	Address setup to write start	0	-	
t _{PWE}	WE pulse width	40.0	-	
t _{BW}	BLE / BHE LOW to write end	40.0	-	
t _{SD}	Data setup to write end	25.0	-	
t _{HD}	Data hold from write end	0.0	-	1
t _{HZWE}	WE LOW to High Z [22, 23, 24]	_	18.0	1
t _{LZWE}	WE HIGH to Low Z [22, 23]	10.0	_	1

Notes

- 21. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use the output loading shown in Figure 6 on page 8, unless specified otherwise.
- 22. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any device.

 23. Tested initially and after any design or process changes that may affect these parameters.

 24. t_{HZCE}, t_{HZDE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
- 25. These parameters are guaranteed by design and are not tested.
- 26. The internal write time of the memory is defined by the overlap of WE = V_{II}, CE₁ = V_{II}, BHE or BLE or both = V_{II}, and CE₂ = V_{II}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates
- 27. The minimum write cycle pulse width for Write Cycle No. 1 (WE Controlled, OE LOW) should be equal to the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 8. Read Cycle No. 1 of CY62177G30 (Address Transition Controlled) [28, 29]

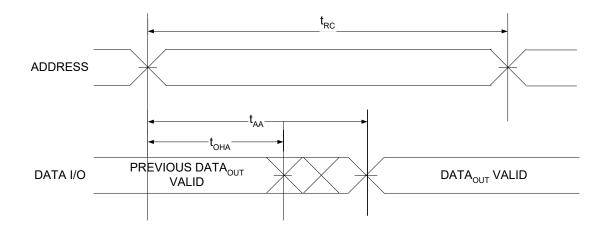
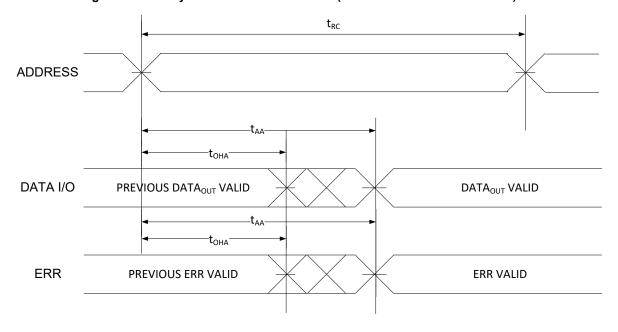



Figure 9. Read Cycle No. 1 of CY62177GE30 (Address Transition Controlled) [28, 29]

Notes28. The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} , or both = V_{IL} . 29. \overline{WE} is HIGH for read cycle.



Switching Waveforms (continued)

ADDRESS CE ŌΕ tHZOF tizor BHE/ -t_{DBE} HIGH HIGH IMPEDANCE DATA I/O DATA_{OUT} VALID MPEDANCE V_{cc} SUPPLY CURRENT

Figure 10. Read Cycle No. 2 (OE Controlled) [30, 31, 32, 34]

Figure 11. Write Cycle No. 1 (WE Controlled, OE LOW) [31, 33, 34, 35]

- Notes
 30. WE is HIGH for read cycle.
- 31. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.
- 32. Address valid prior to or coincident with \overline{CE} LOW transition.
- 33. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE, or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 34. Data I/O is in the high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 35. During this period, the I/Os are in the output state. Do not apply input signals.
- 36. The minimum write cycle pulse width should be equal to the sum of t_{HZWE} and t_{SD} .

Switching Waveforms (continued)

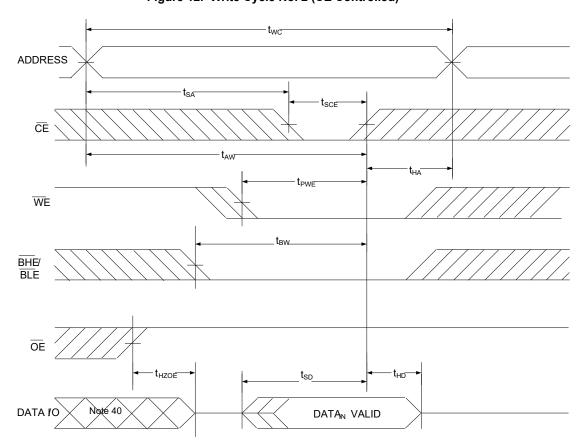


Figure 12. Write Cycle No. 2 (CE Controlled) [37, 38, 39]

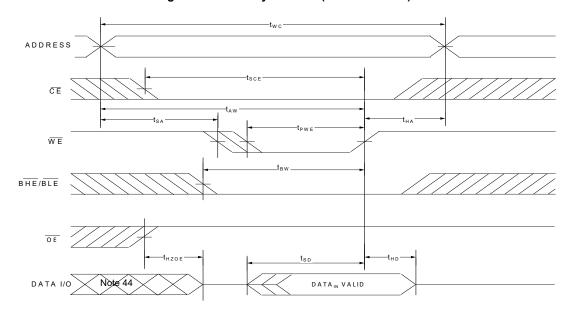
Notes

^{37.} For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

^{38.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

^{39.} Data I/O is in the high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

^{40.} During this period, the I/Os are in output state. Do not apply input signals.



Switching Waveforms (continued)

ADDRESS BHE DATAIN VALID

Figure 13. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [41, 42, 43]

Figure 14. Write Cycle No. 5 (WE Controlled) [41, 42, 43]

Notes

- 41. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE}_1 is HIGH.

 42. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{|L|}$, $\overline{CE}_1 = V_{|L|}$, \overline{BHE} or \overline{BLE} or both $= V_{|L|}$, and $\overline{CE}_2 = V_{|H|}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write
- 43. Data I/O is in the high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 44. During this period, the I/Os are in output state. Do not apply input signals.

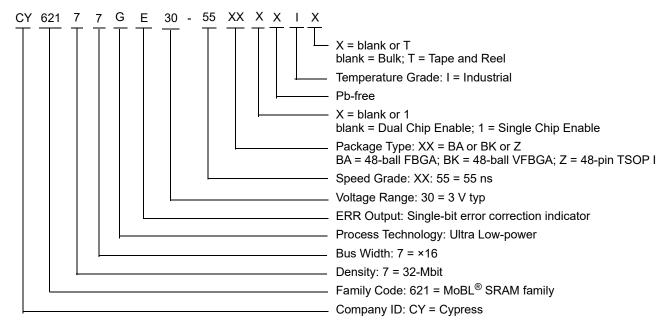
Truth Table - CY62177G30/CY62177GE30

BYTE [45]	CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power	Configuration
X ^[46]	Н	X ^[46]	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})	4M × 8/2M × 16
Х	X ^[46]	L	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})	4M × 8/2M × 16
Х	X ^[46]	X ^[46]	Х	Х	Н	Н	High-Z	Deselect/Power-down	Standby (I _{SB})	2M × 16
Н	L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})	2M × 16
Н	L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})	2M × 16
Н	L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})	2M × 16
Н	L	Н	Н	Н	L	Н	High-Z	Output disabled	Active (I _{CC})	2M × 16
Н	L	Н	Н	Н	Н	L	High-Z	Output disabled	Active (I _{CC})	2M × 16
Н	L	Н	Н	Н	L	L	High-Z	Output disabled	Active (I _{CC})	2M × 16
Н	L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})	2M × 16
Н	L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})	2M × 16
Н	L	Н	L	Х	L	Н	High-Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})	2M × 16
L	L	Н	Н	L	Х	Х	Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})	2M × 16
L	L	Н	Н	Н	Х	Х	High-Z	Output disabled	Active (I _{CC})	2M × 16
L	L	Н	L	Х	Х	Х	Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})	4M × 8

ERR Output - CY62177GE30

Output ^[47]	Mode		
0	Read operation, no single-bit error in the stored data.		
1	Read operation, single-bit error detected and corrected.		
High-Z	Device deselected / outputs disabled / Write operation		

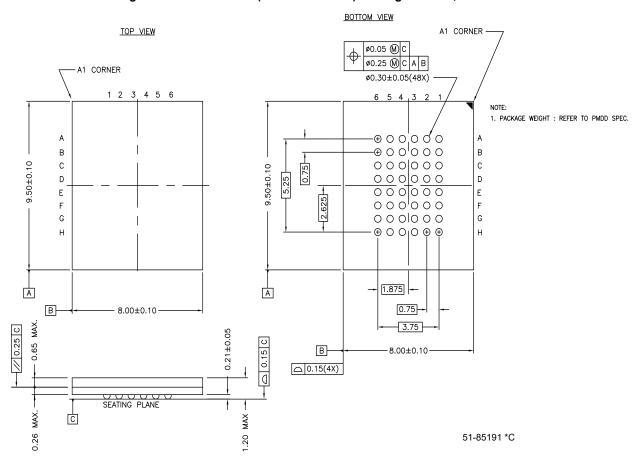
^{45.} This pin is available only in the 48-pin TSOP I package. Tie the BYTE to V_{CC} to configure the device in the 2M × 16 option. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by tying the BYTE signal to V_{SS}.


^{46.} The 'X' (Don't care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted. 47. ERR is an Output pin. If not used, this pin should be left floating.

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Key Features / Differentiators	ERR Pin / Ball	Operating Range
		CY62177G30-55BAXI	- 51-85191	48-ball FBGA	Dual Chip Enable	No	Industrial
		CY62177G30-55BAXIT					
		CY62177G30-55BKXI	51-85193	48-ball VFBGA			
55		CY62177G30-55BKXIT					
		CY62177G30-55ZXI	51-85183	48-pin TSOP I			
		CY62177G30-55ZXIT					
		CY62177GE30-55ZXI				Yes	

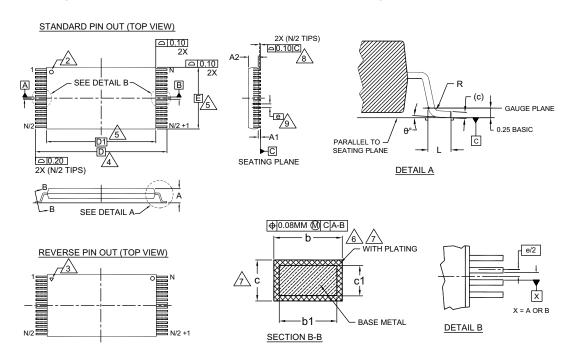
Ordering Code Definitions



Document Number: 002-24704 Rev. *C Page 16 of 22

Package Diagrams

Figure 15. 48-ball FBGA (8 × 9.5 × 1.2 mm) Package Outline, 51-85191



Document Number: 002-24704 Rev. *C Page 17 of 22

Package Diagrams (continued)

Figure 16. 48-pin TSOP I (12 × 18.4 × 1.0 mm) Z48A Package Outline, 51-85183

SYMBOL	DIMENSIONS			
STIVIBOL	MIN.	NOM.	MAX.	
Α	_	_	1.20	
A1	0.05	0.05 —		
A2	0.95	1.00	1.05	
b1	0.17	0.20	0.23	
b	0.17	0.22	0.27	
c1	0.10	_	0.16	
С	0.10	-	0.21	
D	20.00 BASIC			
D1	18.40 BASIC			
E	12.00 BASIC			
е	0.50 BASIC			
L	0.50	0.60	0.70	
θ	0°	_	8	
R	0.08	_	0.20	
N	48			

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS (mm).

PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).

PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.

TO BE DETERMINED AT THE SEATING PLANE G. THE SEATING PLANE IS
DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE

LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.

5 DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE

MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.

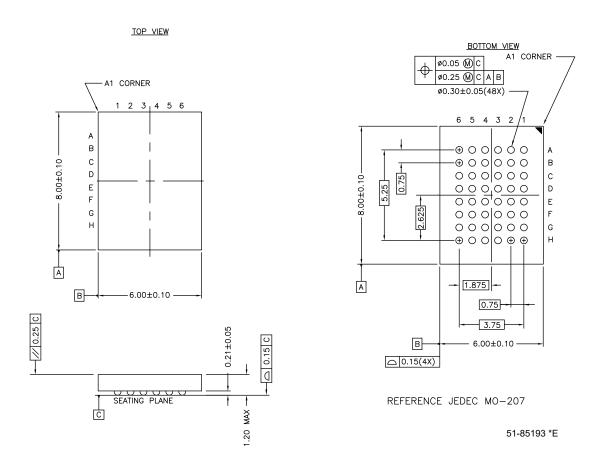
OIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR

DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF 6 DIMENSION AT MAX. MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.

DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.


10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Package Diagrams (continued)

Figure 17. 48-pin FBGA (6 × 8 × 1.2 mm) Package Outline, 51-85193

Document Number: 002-24704 Rev. *C Page 19 of 22

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description		
BHE	Byte High Enable		
BLE	Byte Low Enable		
CE	Chip Enable		
CMOS	Complementary metal oxide semiconductor		
I/O	Input/output		
ŌĒ	Output Enable		
SRAM	Static random access memory		
TSOP	Thin small outline package		
VFBGA	Very fine-pitch ball grid array		
WE	Write Enable		

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μΑ	microampere
μs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document Number: 002-24704 Rev. *C Page 20 of 22

Document History Page

Document Title: CY62177G30/CY62177GE30 MoBL, 32-Mbit (2M words × 16-bit/4M words × 8-bit) Static RAM with Error-Correcting Code (ECC) Document Number: 002-24704				
Rev.	ECN No.	Submission Date	Description of Change	
*C	7085237	02/09/2021	Release to web.	

Document Number: 002-24704 Rev. *C Page 21 of 22

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Cypress.com/memory

cypress.com/memory

cypress.com/memory

cypress.com/memory

cypress.com/memory

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2018-2021. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Device are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-24704 Rev. *C Revised February 9, 2021 Page 22 of 22