Low Voltage CMOS Hex Schmitt Inverter with 5 V-Tolerant Inputs # MC74LCX14 The MC74LCX14 is a high performance hex inverter with Schmitt–Trigger inputs operating from a 1.65 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers, while TTL compatible outputs offer improved switching noise performance. A $V_{\rm I}$ specification of 5.5 V allows MC74LCX14 inputs to be safely driven from 5.0 V devices. Pin configuration and function are the same as the MC74LCX04, but the inputs have hysteresis and, with its Schmitt trigger function, the LCX14 can be used as a line receiver which will receive slow input signals. ## **Features** - Designed for 1.65 V to 5.5 V V_{CC} Operation - 5.0 V Tolerant Inputs Interface Capability with 5.0 V TTL Logic - LVTTL Compatible - LVCMOS Compatible - 24 mA Balanced Output Sink and Source Capability - Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements - Latchup Performance Exceeds 100 mA - Current Drive Capability is 24 mA at Source/Sink - Pin and Function Compatible with Other Standard Logic Families - ESD Performance: Human Body Model >2000 V - Chip Complexity: 41 Equivalent Gates - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant # MARKING DIAGRAMS SOIC-14 D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G XXXXXX = Specific Device Code A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) ## ORDERING INFORMATION See detailed ordering and shipping information on page 8 of this data sheet. Figure 1. Pinout: 14-Lead (Top View) Figure 2. Logic Diagram # **PIN NAMES** | Pins | Function | |------|-------------| | An | Data Inputs | | Yn | Outputs | # **TRUTH TABLE** | Inputs | Outputs | |--------|---------| | Α | Υ | | L | Н | | Н | L | ## **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |--|--|--|---|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | VI | DC Input Voltage (Note 1) | | -0.5 to +6.5 | V | | Vo | DC Output Voltage (Note 1) | Active-Mode (High or Low State) Tri-State Mode Power-Down Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +6.5
-0.5 to +6.5 | V | | I _{IK} | DC Input Diode Current | V _I < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _O < GND | -50 | mA | | I _O | DC Output Source/Sink Current | | ±50 | mA | | I _{CC} or
I _{GND} | DC Supply Current per Supply Pin or Grou | und Pin | ±100 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 1 | 0 secs | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Note 1) | SOIC-14
QFN14
TSSOP-14 | 116
130
150 | °C/W | | P _D | Power Dissipation in Still Air at 125°C | SOIC-14
QFN14
TSSOP-14 | 1077
962
833 | mW | | MSL | Moisture Sensitivity | | Level 1 | 1 - | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | 1 - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | 2000
N/A | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. I_O absolute maximum rating must be observed. - Measured with minimum pad spacing on an FR4 board, using 76mm-by-114mm, 2-ounce copper trace no air flow per JESD51-7. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued. # RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Min | Тур | Max | Unit | |---------------------------------|------------------------------------|--|-------------|-------------|-------------------------------|------| | V _{CC} | Supply Voltage | Operating
Data Retention Only | 1.65
1.5 | 3.3 | 5.5 | V | | VI | Digital Input Voltage | | 0 | - | 5.5 | V | | Vo | Output Voltage | Active Mode (High or Low State)
Tri-State Mode
Power Down Mode (V _{CC} = 0 V) | 0
0
0 | -
-
- | V _{CC}
5.5
5.5 | V | | T _A | Operating Free-Air Temperature | | -40 | - | +125 | °C | | t _r , t _f | Input Transition Rise or Fall Rate | | 0 | _ | No Limit | nS/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. # DC ELECTRICAL CHARACTERISTICS | | | | | T _A = -40°C | C to +85°C | T _A = -40°C | to +125°C | | |------------------|---------------------------------------|---|---------------------|------------------------|------------|------------------------|-----------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Max | Min | Max | Unit | | V_{T+} | Positive-Input Threshold | | 1.65 | - | 1.4 | - | 1.4 | V | | | Voltage | | 2.5 | 0.9 | 1.7 | 0.9 | 1.7 | | | | | | 3.0 | 1.2 | 2.2 | 1.2 | 2.2 | | | | | | 4.5 | - | 3.1 | - | 3.1 | | | | | | 5.5 | - | 3.6 | _ | 3.6 | | | V_{T-} | Negative-Input Threshold | | 1.65 | 0.2 | - | 0.2 | - | V | | | Voltage | | 2.5 | 0.4 | 1.1 | 0.4 | 1.1 | | | | | | 3.0 | 0.6 | 1.5 | 0.6 | 1.5 | | | | | | 4.5 | 1 | - | 1 | - | | | | | | 5.5 | 1.2 | - | 1.2 | - | | | V _H | Hysteresis Voltage | | 1.65 | 0.1 | 0.9 | 0.1 | 0.9 | V | | | | | 2.5 | 0.3 | 1.0 | 0.3 | 1.0 | | | | | | 3.0 | 0.4 | 1.2 | 0.4 | 1.2 | | | | | | 4.5 | 0.6 | 1.5 | 0.6 | 1.5 | | | | | | 5.5 | 0.7 | 1.7 | 0.7 | 1.7 | | | V _{OH} | High-Level Output Voltage | V _I = V _{IH} or V _{IL} | | | | | | V | | | | I _{OH} = -100 μA | 1.65 to 5.5 | V _{CC} – 0.1 | - | V _{CC} – 0.1 | _ | | | | | $I_{OH} = -4 \text{ mA}$
$I_{OH} = -8 \text{ mA}$ | 1.65
2.3 | 1.29
1.8 | _ | 1.29
1.8 | _ | | | | | $I_{OH} = -12 \text{ mA}$ | 2.7 | 2.2 | _ | 2.2 | _ | | | | | I _{OH} = -16 mA | 3.0 | 2.4 | _ | 2.4 | _ | | | | | I _{OH} = -24 mA | 3.0 | 2.2 | _ | 2.2 | _ | | | | | I _{OH} = -32 mA | 4.5 | 3.7 | - | 3.7 | - | | | V _{OL} | Low-Level Output Voltage | $V_I = V_{IH}$ or V_{IL} | | | | | | V | | | | I _{OL} = 100 μA | 1.65 to 5.5 | _ | 0.1 | - | 0.1 | | | | | $I_{OL} = 4 \text{ mA}$ | 1.65 | _ | 0.24 | - | 0.24 | | | | | $I_{OL} = 8 \text{ mA}$ | 2.3 | _ | 0.3 | - | 0.3 | | | | | I _{OL} = 12 mA | 2.7 | _ | 0.4 | - | 0.4 | | | | | I _{OL} = 16 mA | 3.0 | _ | 0.4 | _ | 0.4 | | | | | I _{OL} = 24 mA | 3.0 | _ | 0.55 | - | 0.55 | | | | | I _{OL} = 32 mA | 4.5 | _ | 0.6 | - | 0.6 | | | I _I | Input Leakage Current | V _I = 0 to 5.5 V | 3.6 | - | ±5.0 | - | ±5.0 | μΑ | | I _{OFF} | Power Off Leakage Current | $V_{I} = 5.5 \text{ V or}$
$V_{O} = 5.5 \text{ V}$ | 0 | - | 10 | _ | 10 | μΑ | | I _{CC} | Quiescent Supply Current | V _I = 5.5 V or GND | 3.6 | _ | 10 | _ | 10 | μΑ | | ΔI_{CC} | Increase in I _{CC} per Input | V _{IH} = V _{CC} - 0.6 V | 2.3 to 3.6 | - | 500 | - | 500 | μΑ | | | · | | | | | | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ## **AC ELECTRICAL CHARACTERISTICS** | | | | | T _A = -40°C | c to +85°C | T _A = -40°C | to +125°C | | |--|---------------------------------------|---------------------|---------------------|------------------------|------------|------------------------|-----------|------| | Symbol | Parameter | Test Condition | V _{CC} (V) | Min | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Propagation Delay, Input to
Output | See Figures 3 and 4 | 1.65 to
1.95 | - | 15.7 | - | 15.7 | ns | | | | | 2.3 to 2.7 | 1.5 | 7.8 | 1.5 | 7.8 | | | | | | 2.7 | 1.5 | 7.5 | 1.5 | 7.5 | | | | | | 3.0 to 3.6 | 1.5 | 6.5 | 1.5 | 6.5 | | | | | | 4.5 to 5.5 | - | 5.6 | - | 5.6 | | | t _{OSHL} ,
t _{OSLH} | Output to Output Skew | | 1.65 to
1.95 | - | - | - | - | ns | | | | | 2.3 to 2.7 | - | - | - | - | | | | | | 2.7 | - | - | - | - | | | | | | 3.0 to 3.6 | - | 1.0 | - | 1.0 | | | | | | 4.5 to 5.5 | - | _ | - | - | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # **DYNAMIC SWITCHING CHARACTERISTICS** | | | | T _A = +25°C | | | | |------------------|--|--|------------------------|--------------|-----|------| | Symbol | Characteristic | Condition | Min | Тур | Max | Unit | | V _{OLP} | Dynamic LOW Peak Voltage
(Note 5) | $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$
$V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ | | 0.8
0.6 | | V | | V _{OLV} | Dynamic LOW Valley Voltage
(Note 5) | $\begin{aligned} &V_{CC} = 3.3 \text{ V, } C_L = 50 \text{ pF, } V_{IH} = 3.3 \text{ V, } V_{IL} = 0 \text{ V} \\ &V_{CC} = 2.5 \text{ V, } C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{ V, } V_{IL} = 0 \text{ V} \end{aligned}$ | | -0.8
-0.6 | | V | ^{5.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. ## **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Test Condition | Typical (T _A = 25°C) | Unit | |------------------|--|--|---------------------------------|------| | C _{IN} | Input Capacitance | $V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$ | 7 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$ | 8 | pF | | C _{PD} | Power Dissipation Capacitance (Note 6) | 10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 25 | pF | ^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. | Test | Switch Position | |-------------------------------------|-------------------| | t _{PLH} / t _{PHL} | Open | | t _{PLZ} / t _{PZL} | V _{LOAD} | | t _{PHZ} / t _{PZH} | GND | C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz Figure 3. Test Circuit | V _{CC} , V | R_L,Ω | C _L , pF | V _{LOAD} | V _m , V | V _Y , V | |---------------------|--------------|---------------------|---------------------|--------------------|--------------------| | 1.65 to 1.95 | 500 | 30 | 2 x V _{CC} | V _{CC} /2 | 0.15 | | 2.3 to 2.7 | 500 | 30 | 2 x V _{CC} | V _{CC} /2 | 0.15 | | 2.7 | 500 | 50 | 6 V | 1.5 | 0.3 | | 3.0 to 3.6 | 500 | 50 | 6 V | 1.5 | 0.3 | | 4.5 to 5.5 | 500 | 50 | 2 x V _{CC} | V _{CC} /2 | 0.3 | Figure 4. Switching Waveforms Figure 5. Typical Input Threshold, V_{T_+} , V_{T_-} versus Power Supply Voltage (a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times Figure 6. Typical Schmitt-Trigger Applications Figure 7. Input Equivalent Circuit # **ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |----------------|-----------|----------|-----------------------| | MC74LCX14DG | LCX14G | SOIC-14 | 55 Units / Rail | | MC74LCX14DR2G | LCX14G | SOIC-14 | 2500 / Tape & Reel | | MC74LCX14DTG | LCX
14 | TSSOP-14 | 96 Units / Rail | | MC74LCX14DTR2G | LCX
14 | TSSOP-14 | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. △ 0.10 SOIC-14 NB CASE 751A-03 ISSUE L **DATE 03 FEB 2016** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT - MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. - 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE | | MILLIMETERS | | INCHES | | |-----|-------------|------|--------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.35 | 1.75 | 0.054 | 0.068 | | A1 | 0.10 | 0.25 | 0.004 | 0.010 | | АЗ | 0.19 | 0.25 | 0.008 | 0.010 | | b | 0.35 | 0.49 | 0.014 | 0.019 | | D | 8.55 | 8.75 | 0.337 | 0.344 | | Е | 3.80 | 4.00 | 0.150 | 0.157 | | œ | 1.27 | BSC | 0.050 | BSC | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | h | 0.25 | 0.50 | 0.010 | 0.019 | | L | 0.40 | 1.25 | 0.016 | 0.049 | | М | 0 ° | 7° | 0 ° | 7° | # **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. # **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS C SEATING PLANE # **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-14 NB | | PAGE 1 OF 2 | | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # SOIC-14 CASE 751A-03 ISSUE L # DATE 03 FEB 2016 | STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:
CANCELLED | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE | |---|---|---|---| | STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE | | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | SOIC-14 NB | | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. **DATE 17 FEB 2016** - NOTES. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR DEEEDENIC OMITY. - REFERENCE ONLY. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W- | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 | BSC | 0.252 | BSC | | м | o ° | 8 ° | o ° | a ° | # **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot = Year = Work Week W = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. # **RECOMMENDED SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSSOP-14 WB | | PAGE 1 OF 1 | | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales