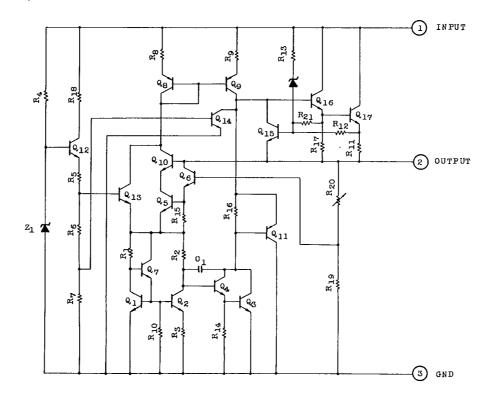

T-58-11-13

THREE TERMINAL POSITIVE VOLTAGE REGULATORS 50,*60,*80, 90, 100, 120, 150,*180,*200, 240

- * Under development
- Suitable for C-MOS, TTL, the other Digital IC's Power Supply
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Current in excess of 1A

MOUNTING KIT No. AC75.

MAXIMUM RATINGS (Ta=25°C)


CHARACT	ERISTIC	SYMBOL	RATING	UNIT
Input Voltage	TA78005AP	37	35	٧
	TA78018AP	VIN	40	V
Power Dissipation (Note)		PD	20.8	W
Operating Temperature		Topr	-30 ∿ 75	°C
Storage Temper	ature	Tstg	-55 ∿ 150	°C

Note: Tc=25°C

Downloaded from Arrow.com.

TA78005AP \sim TA78024AP

EQUIVALENT CIRCUIT

$\mathsf{TA78005AP}\!\sim\!\mathsf{TA78024AP}$

T-58-11-13

ELECTRICAL CHARACTERISTICS (V_{IN}=10V, I_{OUT}=500mA, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{OUT}	1	Tj=25°(C, I _{OUT} =100mA	4.8	5.0	5.2	v
T B1-hd	Reg.line	1	Tj=25°C	$7.0V \leq V_{IN} \leq 2.5V$	-	3	100	m∇
Input Regulation	keg.iine		15-25 C	$8.0V \le V_{IN} \le 12V$	-	1	50	
			m. 0580	5mA ≤ I _{OUT} ≤1.4A	-	15	100	mV
Load Regulation	Reg.load	1	Tj=25°C	$250\text{mA} \le I_{OUT} \le 750\text{mA}$	-	5	50	IIIV
Output Voltage	V _{OUT}	1		$V_{\text{IN}} \leq 20V$ $\leq I_{\text{OUT}} \leq 1.0A, P_{\text{O}} \leq 15W$	4.75	-	5.25	v
Quiescent Current	IB	1	Tj=25°(C, I _{OUT} =5mA	_	4.2	8.0	mA
Quiescent Current Change	⊿IB	1	7.0V≦\	V _{IN} ≤25V	-	<u>-</u>	1.3	mA
Output Noise Voltage	VNO	1	Ta=25°(IOUT=5	C, 10Hz ≤ f ≤ 100kHz OmA	-	50	-	μV
Ripple Rejection	RR	1		z, 8.0V≦V _{IN} ≦18V OmA, T _j =25°C	62	78	_	dB
Dropout Voltage	VD	1	I _{OUT} =1.0A, T _j =25°C		_	2.0	-	v
Short Circuit Current Limit	I _{SC}	1	T _j =25°C		-	1.6	-	A
Average Temperature Coefficient of Output Voltage	TCVO	1	I _{OUT} =5:	mA, 0°C≦Tj≦125°C	-	-0.6	-	™ ^V /deg

ELECTRICAL CHARACTERISTICS (v_{IN} =11v, i_{OUT} =500mA, $o^{\text{o}}c \le r_{j} \le 125^{\text{o}}c$)

SYMBOL	TEST CIR- CUIT	TE	ST CONDITION	MIN.	TYP.	MAX.	UNIT
V _{OUT}	1	т _ј =25 ⁰ С,	I _{OUT} =100mA	5.75	6.0	6.25	V
Dog line	1	T4-250C	8.0V ≤V _{IN} ≤25V	-	4	120	mV
Keg.11lle		113-23 6	9V ≤V _{IN} ≤13V	_	2	60	
Pog. 102d	1	T. = 25°C	$5mA \le I_{OUT} \le 1.4A$	-	15	120	mV
Keg Toad	_	15 25 0	250mA≦IOUT ≦750mA	-	5	60	
v _{OUT}	1			5.7	-	6.3	v
IB	1	т _ј =25°С,	I _{OUT} =5mA	_	4.3	8.0	mA
ΔIB	1	8.0V ≤V _I	N ≤25V	-	-	1.3	mA
v _{NO}	1			-	55	-	μV
RR	1	1		61	77	_	dВ
v_{D}	1	I _{OUT} =1.0	A, T _j =25 ^o C	_	2.0	-	. v
Isc	1	т _ј =25 ⁰ С		-	1.5	_	A
T _C VO	1	I _{OUT} =5mA	$0^{\circ}C \leq T_{j} \leq 125^{\circ}C$	-	-0.7	_	mV/ deg
	VOUT Reg·line Reg·load VOUT IB IB VNO RR VD ISC	CUIT	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TA78005AP \sim TA78024AP

T-58-11-13

ELECTRICAL CHARACTERISTICS (v_{IN} =14v, I_{OUT} =500mA, $o^{o}c \le T_{j} \le 125^{o}c$)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT			MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}		Tj=25°C,	I _{OUT} =100mA	7.7	8.0	8.3	v
Input Regulation	Reg·line	1	Tj=25°C	$10.5V \leq V_{\text{IN}} \leq 25V$	_	6	160	mV
input Regulation	Keg IIIIc	_	1, 25 0	11V ≤ V _{IN} ≤ 17V	-	2	80	
Load Regulation	Reg·load	1	Tj=25°C	5mA ≤I _{OUT} ≤1.4A		12	160	mV
noad Regulation	neg 1000		-J	$250\text{mA} \le I_{\text{OUT}} \le 50\text{mA}$	_	4	80	
Output Voltage	V _{OUT}	1	10.5V ≤ V 5.0mA ≤ I	$I_{\text{N}} \leq 23V$ $OUT \leq 1.0A, P_{\text{O}} \leq 15W$	7.6	-	8.4	V
Quiescent Current	IB	1	Tj=25°C,	I _{OUT} =5mA	-	4.3	8.0	mA
Quiescent Current Change	ΔIB	1	10.5V≦V	In ≤25V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	1	Ta=25 ⁰ C,	10Hz≤f≤100kHz A	-	70	-	μV
Ripple Rejection	RR	1		$11.5V \le V_{IN} \le 21.5V$ A, $T_j = 25^{\circ} C$	58	74	1	dB
Dropout Voltage	v_{D}	1	I _{OUT} =1.0	$A, T_j = 25^{\circ}C$	-	2.0	-	V
Short Circuit Current Limit	I _{SC}	1	Tj=25°C		-	1.1	ı	A
Average Temperature Coefficient of Output Voltage	TCVO	1	I _{OUT} =5mA	$I_{OUT}=5mA$, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C$		-1.0	-	mV/ deg

ELECTRICAL CHARACTERISTICS (V_{IN}=15V, I_{OUT}=500mA, $0^{\circ}C \le T_{j} \le 125^{\circ}C$)

${\tt TA78005AP}\!\sim\!{\tt TA78024AP}$

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25°(C, I _{OUT} =100mA	8.64	9.0	9.36	v
Input Regulation	Reg.line	1	Tj=25°C	11.5V≤V _{IN} ≤26V	-	7.0	180	mV
	Keg.11me	1		$13V \leq V_{IN} \leq 19V$	-	2.5	90	
Load Regulation	Reg.load	1	T1=25°C	5mA ≤I _{OUT} ≤1.4A	-	12	180	mV
Load Kegalation	Keg. Toad	•	13.25	250mA ≤ I _{OUT} ≤ 750mA	-	4.0	90	,
Output Voltage	V _{OUT}	1	l	V _{IN} ≤2.6V ≤I _{OUT} ≤1.0A,Po ≤15W	8.55	-	9.45	v
Quiescent Current	IB	1	Tj=25°(C, I _{OUT} =5mA	_	4.3	8.0	mA
Quiescent Current Change	⊿I _B	1	11.5V≦	EV _{IN} ≤ 26V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	1	Ta=25°(IOUT=5(C, 10Hz≦f≦100kHz OmA	-	75	-	μV
Ripple Rejection	RR	1		z, 12.5V≤V _{IN} ≤22.5V OmA, Tj=25°C	56	72	-	dB
Dropout Voltage	v _D	1	I _{OUT} =1.0A, Tj=25°C		-	2.0	-	v
Short Circuit Current Limit	I _{SC}	1	Tj=25°C		-	1.0	-	A
Average Temperature Coefficient of Output Voltage	T _{CVO}	1	I _{OUT} =5	nA, 0°C≦Tj≦125°C	-	-1.1	-	™V/ _{deg}

$TA78005AP\!\sim\!TA78024AP$

T. 58-11-13

ELECTRICAL CHARACTERISTICS ($v_{IN}=16v$, $i_{OUT}=500mA$, $0^{\circ}C \le T_{j} \le 125^{\circ}C$)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TE	TEST CONDITION		TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25°0	C, I _{OTU} =100mA	9.6	10.0	10.4	v
				$12.5V \le V_{IN} \le 27V$	-	8	200	.,,
Input Regulation	Reg.line	1	Tj=25°C	14V ≤ V _{IN} ≤ 20V	-	2.5	100	mV
			m. 0590	5mA ≤IOUT ≤1.4A	_	12	200	mV
Load Regulation	Reg.load	1	Tj=25°C	250mA ≤ I _{OUT} ≤750mA	_	4	100	
Output Voltage	V _{OUT}	1		$\leq V_{\text{IN}} \leq 25V$ $\leq I_{\text{OUT}} \leq 1.0A, P_{\text{O}} \leq 15W$	9.5	-	10.5	v
Quiescent Current	IB	1	Tj=25°	C, I _{OUT} =5mA	_	4.3	8.0	mA
Quiescent Current Change	ΔIB	1	12.5V ≦	≤V _{IN} ≤27V	-	-	1.0	mA
Output Noise Voltage	V _{NO}	1	Ta=25° I _{OUT} =5	C, 10Hz ≤f ≤100kHz OmA	-	8.0	_	μV
Ripple Rejection	RR	1		z, 13.5V≦V _{IN} ≦23.5V OmA, Tj=25°C	5.5	72	-	dB
Dropout Voltage	v _D	1	IOUT=1.0A, Tj=25°C		-	2.0	-	v
Short Circuit Current	I _{SC}	1	T _j =25°C		_	0.9	-	A
Average Temperature Coefficient of Output Voltage	TCVO	1	$I_{OUT}=5mA$, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C$		-	-1.3	_	mV/de

ELECTRICAL CHARACTERISTICS (V_IN=19V, I_OUT=500mA, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TE	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1]	C, IOUT=100mA	11.5	12.0	12.5	v
Torus Beautania	D 14	1	m25°C	14.5V ≤ V _{IN} ≤ 30V	_	10	240	mV
Input Regulation	Reg.line	1	1j-25 C	16V≦V _{IN} ≦22V	_	3	1 20	III V
			T 0500	5mA ≤ I _{OUT} ≤ 1.4A	-	12	240	
Load Regulation	Reg.load	1	Tj=25°C	250mA ≤I _{OUT} ≤750mA	-	4	120	mV
Output Voltage	V _{OUT}	1		V _{IN} ≤27V S _{IOUT} ≤1.0A,P _O ≤15W	11.4	-	12.6	v
Quiescent Current	ΙB	1	Tj=25°(C, IOUT=5mA	-	4.3	8.0	mA
Quiescent Current Change	4 I _B	1	14.5∀≦	V _{IN} ≌30V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	1	Ta=25°(I _{OUT} =50	C, 10Hz ≦f≦100kHz DmA	-	90	1	μŲ
Repple Rejection	RR	1		z, 15V≦V _{IN} ≦25V DmA, Tj=25°C	55	71	1	dВ
Dropout Voltage	v _D	1	I _{OUT} =1.0A, T _j =25°C		_	2.0	_	٧
Short Circuit Current	I _{SC}	1	Tj=25°C		-	0.7	-	A
Average Temperature Coefficient of Output Voltage	T _{CVO}	1	I _{OUT} ≂5n	nA, 0°C≤T _j ≤125°C	-	-1.6	-	mV/deg

T-58-11-13

されてはある、大学を大学をから、大学をするとしているかられたかられてはないますが、こうかっち

ELECTRICAL CHARACTERISTICS (V_{IN}=23V, I_{OUT}=500mA, 0°C \leq T $_{j} \leq$ 125°C)

				<u> </u>				
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TI	TEST CONDITION		TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	Tj=25°0	C, I _{OUT} =100mA	14.4	15.0	15.6	V
		,	m. 0590	17.5V ≤ V _{IN} ≤ 30V	_	11	300	
Input Regulation	Reg.line	1	Tj=25°C	20V ≦V _{IN} ≤26V	1	3	150	mV
Total Description	Dec 1end	1	Tj=25°C	$5mA \leq I_{OUT} \leq 1.4A$	-	12	300	mV
Load Regulation	Reg.load	1	13=23 C	250mA ≤ I _{OUT} ≤ 750mA	-	4	150	IIIV
Output Voltage	VOUT	1		SV _{IN} ≦30V SI _{OUT} ≦1.0A,P _O ≦15W	14.25	_	15.75	v
Quiescent Current	IB	1	Tj=25°(C, I _{OUT} =5mA	-	4.4	8.0	mA
Quiescent Current Change	⊿ I _B	1	17.5V≦	ΣV _{IN} ≦30V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	1	Ta=25°(I _{OUT} =5(C, 10Hz≤f≤100kHz OmA	-	110	_	μ∇
Repple Rejection	RR	1		z, 18.5V≦V _{IN} ≦28.5V DmA, T _j =25°C	54	70	-	dB
Dropout Voltage	VD	1	I _{OUT} =1.0A, T _j =25°C		_	2.0	_	٧
Short Circuit Current	Isc	1	Tj=25°C		-	0.5	_	A
Average Temperature Coefficient of Output Voltage	TCVO	1	I _{OUT} =5mA, 0°C≤Tj≤125°C		-	-2.0	-	mV/ deg

T-58-11-13

TA78005AP~TA78024AP

ELECTRICAL CHARACTERISTICS ($v_{IN}=27v$, $I_{OUT}=500mA$, $0^{\circ}C \le T_{j} \le 125^{\circ}C$)

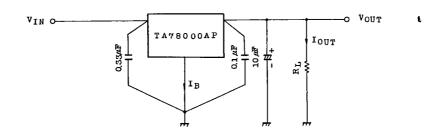
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	Tj=25°C,	I _{OUT} =100mA	17.3	18.0	18.7	V
Input Regulation	Reg·line	1	Ti=25°C	21V ≤V _{IN} ≤33V		13	360	mV
Impac negatation				24V ≤V _{IN} ≤30V	-	4	180	
Load Regulation	Reg · load	1.	Ti=25°C	5mA ≤IouT ≤1.4A	_	12	360	mV
hoad Regulation	Inch 1000	_	1, 1,	250 mA \leq I _{OUT} \leq 750mA	_	4	180	
Output Voltage	V _{OUT}	1	21V≤V _{IN} 5.0mA≤1	_N ≦33V L _{OUT} ≦1.0A, P _O ≦15W	17.1	-	18.9	٧
Quiescent Current	IB	1	т _ј =25°с,	, I _{OUT} ≃5mA	-	4.5	8.0	mA
Quiescent Current Change	ΔIB	1	21V≦V _{IN}	√ ≤ 33V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	1	Ta=25°C,	, 10Hz≦f≤100kHz nA	-	125	-	μV
Ripple Rejection	RR	1		, 22V≦V _{IN} ≤32V nA, T _j =25 [°] C	52	68	-	dB
Dropout Voltage	v _D	1	I _{OUT} =1.0	OA, T _j =25°C	_	2.0	-	V
Short Circuit Current Limit	ISC	1	Tj=25°C		-	0.4	-	A
Average Temperature Coefficient of Output Voltage	TCVO	1	$I_{OUT}=5mA$, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C$		-	-2.5	-	mV/ deg

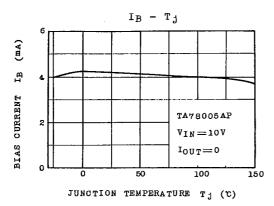
TA78005AP \sim TA78024AP

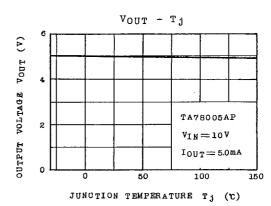
T-58-11-13

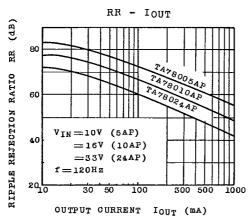
ELECTRICAL CHARACTERISTICS ($v_{\text{IN}}=29v$, $i_{\text{OUT}}=500\text{mA}$, $o^{\text{O}}\text{C} \leq r_{\text{j}} \leq 125^{\text{O}}\text{C}$)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TE	ST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	т _ј =25 ^о с,	I _{OUT} =100mA	19.2	20.0	20.8	v
Input Regulation	Reg·line	1	T ₁ =25 ^o C	23V ≤V _{IN} ≤35V	-	15	400	mV
Input Negozutzon] -J	$26V \leq V_{IN} \leq 32V$		5	200	
Load Regulation	Reg·load	1	Tj=25°C	$5mA \le I_{OUT} \le 1.4A$	-	12	400	mV
			,	$250\text{mA} \le I{OUT} \le 750\text{mA}$	_	4	200	
Output Voltage	VOUT	1	23V≦V _{IN} 5.0mA≦I	≤35V OUT ≤1.0A, P _O ≤15W	19.0	-	21.0	V
Quiescent Current	IB	1	т _ј =25 ⁰ С,	I _{OUT} =5mA	-	4.6	8.0	πA
Quiescent Current Change	41B	1	23V ≤ V _{IN}	≤35V	ı	-	1.0	mA
Output Noise Voltage	v _{NO}	1	Ta=25°C, I _{OUT} =50m	10Hz ≤f ≤100kHz A	_	135	_	μA
Ripple Rejection	RR	1	1	$24V \le V_{\text{IN}} \le 34V$ A, $T_j = 25^{\circ} C$	50	66	•	dВ
Dropout Voltage	v _D	1	I _{OUT} =1.0	A, T _j =25 ^o C	-	2.0	-	٧
Short Circuit Current Limit	I _{SC}	1	т _ј =25°С		-	0.4	-	A
Average Temperature Coefficient of Output Voltage	T _{CVO}	1	I _{OUT} =5mA	$, 0^{\circ} C \leq T_{j} \leq 125^{\circ} C$	-	-3.0	-	mV/ deg

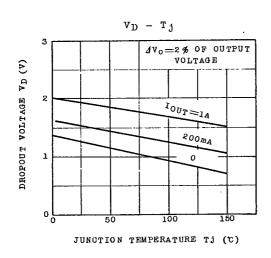

ELECTRICAL CHARACTERISTICS (V_{IN}=33V, I_{OUT}=500mA, 0°C \leq T $_{\rm j} \leq$ 125°C)

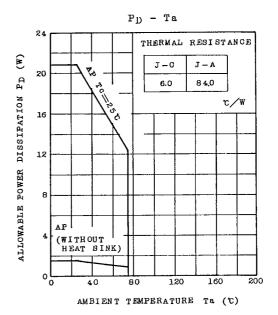

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	1	Tj=25°(C, I _{OUT} =100mA	23.0	24.0	25.0	v
Input Regulation	Reg.line	1	T ₁ =25°C	27V ≤ V _{IN} ≤38V	-	18	480	mV
Impor Regulation	Neg.11mc		13.23.0	$30V \leq V_{IN} \leq 36V$	-	6	240	
Load Regulation	Reg.load	1	Ti=25°C	$5\text{mA} \leq I_{OUT} \leq 1.4\text{A}$	-	12	480	mV
		•	1, 13	250mA ≤ I _{OUT} ≤ 750mA	-	4	240	
Output Voltage	V _{OUT}	1	27V≦V _] 5.0mA≦]	_{IN} ≦38V COUT≦1.OA, Po≦15W	22.8	-	25.2	v
Quiescent Current	IB	1	Tj=25°(C, I _{OUT} =5mA	ı	4.6	8.0	mA
Quiescent Current Change	. 11 _B	1	27V ≦ V	7 _{IN} ≦38V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	1	Ta=25°0 I _{OUT} =50	C, 10Hz≤f≤100kHz DmA	-	150	1	μV
Repple Rejection	RR	1		z, 28V≦V _{IN} ≦38V DmA, Tj=25°C	50	66		dВ
Droput Voltage	v_{D}	1	I _{OUT} =1.0A, T _j =25°C		_	2.0	-	V
Short Circuit Current	ı _{sc}	1	T _j =25°C		_	0.3	-	A
Average Temperature Coefficient of Output Voltage	T _{CVO}	1	I _{OUT} =5m	nA, 0°C≦T _j ≦125°C	-	-3.5	-	™V/ deg

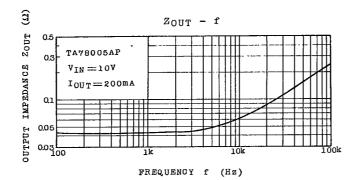

T-58-11-13


$TA78005AP \sim TA78024AP$

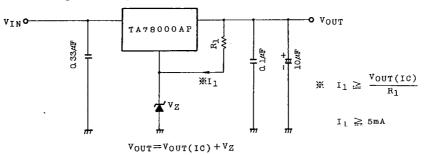
TEST CIRCUIT/STANDARD APPLICATION CIRCUIT

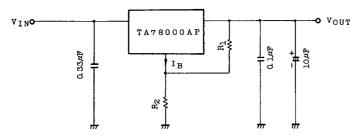






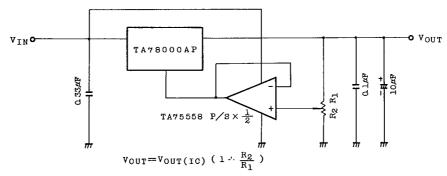
Downloaded from Arrow.com.



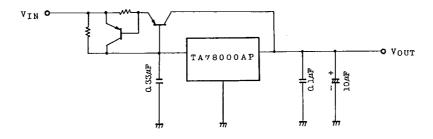

$TA78005AP\!\sim\!TA78024AP$

APPLICATION CIRCUITS

- (1) VOLTAGE BOOST REGULATOR
 - (a) Voltage boost by use of zener diode

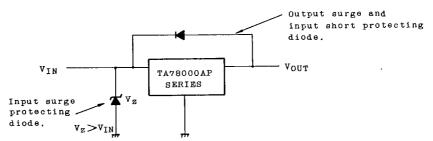


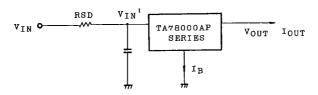
(b) Voltage boost by use of resistor



$$V_{OUT} = V_{OUT(IC)} (1 + \frac{R_k}{R_1}) + R_2 \cdot I_B$$

(c) Adjustable output regulator


(2) CURRENT BOOST REGULATOR


PRECAUTIONS ON APPLICATION

- (1) In regard to GND, be careful not to apply a negative voltage to the input/output terminal. Further, special care is necessary in case of a voltage boost application.
- (2) When a surge voltage exceeding maximum rating is applied to the input terminal or when a voltage in excess of the input terminal voltage is applied to the output terminal, the circuit may be destroyed. Specially, in the latter case, great care is necessary Further, if the input terminal shorts to GND in a state of normal operation, the output terminal voltage becomes higher than the input voltage (GND potential), and the electric charge of a chemical capacitor connected to the output terminal flows into the input side, which may cause the destruction of circuit.

In these cases, take such steps as a zener diode and a general silicon diode are connected to the circuit, as shown in the following figure.

(3) When the input voltage is too high, the power dissipation of three terminal regulator increases because of series regulator, so that the junction temperature rises. In such a case, it is recommended to reduce the power dissipation by inserting the power limiting resistor RSD in the input terminal, and to reduce the junction temperature as a result.

The power dissipation Pp of IC is expressed in the following equation.

$$P_D = (V_{IN} - V_{OUT}) \cdot I_{OUT} + V_{IN} \cdot I_B$$

If V_{IN} is reduced below the lowest voltage necessary for the IC, the parasitic oscillation will be caused according to circumstances. In determing the resistance value of RSD, design with margin should be made by making reference to the following equation.

$$R_{SD} < \frac{v_{IN} - v_{IN}}{I_{OUT} + I_B}$$

- (4) Connect the input terminal and GND, and the output terminal and GND, by capacitor respectively. The capacitances should be determind experimentally because they depend on prented patterns. In particular, adequate investigation should be made so that there is no problem even at time of high or low temperature.
- (5) Installation of IC for power supply

 For obtaining high reliability on the heat sink design of the regulator

 IC, it is generally required to derate more than 20% of maximum junction temperature (Tj MAX.).

Further, full consideration should be given to the installation of IC to the heat sink.

(a) Heat sink design

The thermal resistance of IC itself is required from the viewpoint of the design of elements, but the thermal resistance from the IC package to the open air varies with the contact thermal resistance.

Table 1 shows how much the value of the contact thermal resistance ($Q_C+\ Q_S$) is changed by insulating sheet (mica) and heat sink grease.

			TABLE		Unit: °C/W
	PACKAGE	MODEL No.	TORQUE	MICA	$Q_c + Q_s$
	TO-220AB	TA780×××AP	6kg.cm	Not Provided	$0.3 \sim 0.5 (1.5 \sim 2.0)$
	10-220AB	1A/OU^^AI	OKg.Ciii	Provided	$2.0 \sim 2.5 (4.0 \sim 6.0)$
1		1	I	1	l

The figures given in parentheses denote the values at time of no grease.

The package of regulator IC serves as GND, therefore, usually use the value at time of "no mica."

(b) Silicon grease

When a circuit not exceeding maximum rating is designed, it is to be desired that the grease should be used if possible. If it is required that the contact thermal resistance is reduced from the viewpoint of the circuit design, it is recommended that the following methods be adopted.

- A: Use Thercon (Fuji High Polymer Kogyo K.K.)
- B: Use SC101 (Torei Silicon) or G-640 (GE), if grease is used.

(c) Torque

When installing IC on a heat sink or the like, tighten the IC with the torque of less than the rated value. If it is tightened with the torque in excess of the rated value, sometimes the internal elements of the IC are adversely affected. Therefore, great care should be given to the installing operation.

Further, if polycarbonate screws are used, the torque causes a change with the passage of time, which may lessen the effect of radiation.