Schottky Barrier Rectifier Datasheet

DST560S-A 5A, 60V, TO-277B, Single

Additional Information

Description

The DST Series is a Shocttky Barrier Rectifier that provides ultra low forward voltage (VF) and is designed to meet the general requirements of automotive applications by providing high temperature, low leakage and lower VF.

It is suitable for high frequency switching mode power supply, free-wheeling diodes and polarity protection diodes.

Features

- High reliability application and AEC-Q101 qualified
- Ultra low forward voltage drop
- High frequency operation
- MSL: Level 1 unlimited
- High junction temperature capability
- Trench MOS Schottky technology

Applications

- Switching mode power supply
- DC/DC converters

- Single die in TO-277B
 Package
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tin(Sn) (IPC/ JEDEC J-STD-609A.01)
- Halogen-free
- Free-Wheeling diodes
- Polarity Protection Diodes

Maximum Ratings

Parameters	Symbol	Test Conditions	Max	Unit
Peak Inverse Voltage	V _{RWM}	-	60	V
Average Forward Current	I _{F(AV)}	50% duty cycle @T_ = 125 °C rectangular wave form	5	А
Peak One Cycle Non-Repetitive Surge Current	I _{FSM}	8.3 ms, half Sine pulse	100	А

Electrical Characteristics

Symbol	Test Conditions	Тур	Max	Unit	
V _{F1}	@2.5A, Pulse, T _J = 25 °C	0.42	-		
	@5A, Pulse, T _J = 25 °C	0.50	0.70	V	
V_{F2}	@2.5A, Pulse, T _J = 125 °C	0.33	-		
	@5A, Pulse, T _J = 125 °C	0.44	0.60		
I _{R1}	$@V_{R} = rated V_{R} T_{J} = 25 \ ^{\circ}C$	0.01	0.7	mA	
I _{R2}	$@V_{R} = rated V_{R} T_{J} = 125 °C$	6.4	25	ШA	
C _T	$@V_{_{ m R}} = 5V, T_{_{ m C}} = 25 \ ^{\circ}C, f_{_{ m SIG}} = 1MHz$	314	-	pF	
	V _{F1} V _{F2} I _{R1} I _{R2}	$ \begin{array}{c} & @2.5A, Pulse, T_{J} = 25 \ ^{\circ}\text{C} \\ & @5A, Pulse, T_{J} = 25 \ ^{\circ}\text{C} \\ & @5A, Pulse, T_{J} = 25 \ ^{\circ}\text{C} \\ & @2.5A, Pulse, T_{J} = 125 \ ^{\circ}\text{C} \\ & @5A, Pulse, T_{J} = 125 \ ^{\circ}\text{C} \\ & @V_{R} = \text{rated } V_{R,} T_{J} = 25 \ ^{\circ}\text{C} \\ & I_{R2} & @V_{R} = \text{rated } V_{R,} T_{J} = 125 \ ^{\circ}\text{C} \\ \end{array} $	V_{F1} @2.5A, Pulse, T_J = 25 °C 0.42 W_{F1} @5A, Pulse, T_J = 25 °C 0.50 W_{F2} @2.5A, Pulse, T_J = 125 °C 0.33 W_{F2} @5A, Pulse, T_J = 125 °C 0.44 I_{R1} $@V_R$ = rated V_R, T_J = 25 °C 0.01 I_{R2} $@V_R$ = rated V_R, T_J = 125 °C 0.64	$\frac{W_{F1}}{W_{F1}} = \frac{W_{F1}}{W_{F1}} = \frac{W_{F1}}{W_{F1}} = \frac{W_{F1}}{W_{F2}} = \frac{W_{F1}}{W_{F2}} = \frac{W_{F1}}{W_{F2}} = \frac{W_{F1}}{W_{F2}} = \frac{W_{F1}}{W_{F1}} = W_$	

* Pulse Width < 300µs, Duty Cycle <2%</p>

Downloaded from Arrow.com.

Schottky Barrier Rectifier Datasheet

DST560S-A 5A, 60V, TO-277B, Single

Thermal-Mechanical Specifications

Parameters	Symbol	Test Conditions	Мах	Unit
Junction Temperature	TJ		-55 to +150	°C
Storage Temperature	T _{stg}		-55 to +150	°C
Maximum Thermal Resistance Junction to Ambient	R _{thJA}		75	°C/W
Maximum Thermal Resistance Junction to Lead	R _{thJL}	DC operation	4	°C/W
Approximate Weight	wt		0.08	g
Case Style	ТО-277В			

Figure 1: Typical Forward Characteristics Instabtabeous Forward Current -I_F(A) 10 125°C 25°C

Figure 2: Typical Reverse Characteristics

Figure 3: Typical Junction Capacitance

0.1 0.3 0.5 0.7 Foward Voltage -V_F(V)

10

Units mounted or

0.9

1.1

30mm x 30mm

copper pad

Schottky Barrier Rectifier Datasheet

DST560S-A 5A, 60V, TO-277B, Single

Dimensions-TO-277B

Mounting Pad Layout

Symbol	Millimeters		
Symbol	Min	Тур	Max
А	6.30	6.50	6.70
В	3.88	3.98	4.08
С	0.95	1.10	1.25
D	0.20	0.25	0.30
E	5.28	5.38	5.48
F	3.40	3.55	3.70
G	2.90	3.05	3.20
Н	1.74	1.84	1.94
I	1.10	1.25	1.40
J	-	0.85	-
К	1.70	1.80	1.90
L	0.85	0.90	0.95
Μ	-	0.56	-

Part Numbering and Marking System

Packing Options

Part Number	Marking	Packing Mode	M.O.Q
DST560S-A	DST560S-A	5000pcs / Reel	5000

Symbol	Millimeters		
	Min	Мах	
А	4.28	4.48	
В	6.80	7.00	
d	1.40	1.60	
d1	-	1.50	
E	1.65	1.85	
F	5.40	5.60	
Р	7.90	8.10	
P0	3.90	4.10	
W	11.70	12.30	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="https://www.littelfuse.com/legal/disclaimers/product_disclaimers/disclaimers/disclaimers/disclaimers/disclaimers/disclaimers/disclai

Downloaded from Arrow.com.