

TXDVxx12

12 A high voltage Triacs

Features

- On-state current (I_{T(RMS)}): 12 A
- Max. blocking voltage (V_{DRM}/V_{RRM}): 1200 V
- Gate current (I_{GT}): 100 mA
- Commutation @ 10 V/µs: up to 42.5 A/ms
- Noise immunity: 2 kV/µs
- Insulated package:
 - 2,500 V rms (UL recognized: E81734).

Description

The TXDVxx12 series uses a high performance alternistor technology.

Featuring very high commutation levels and high surge current capability, these devices are well adapted to power control for inductive and resistive loads (motor, transformer...) especially on three-phase power grid. Targeted three-phase applications include heating systems, motor starters, and induction motor speed control (especially for fans).

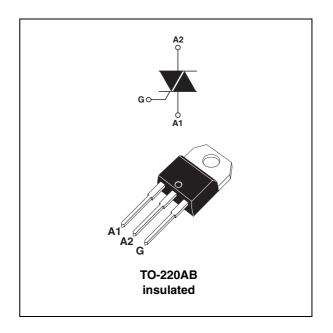


Table 1. Device summary

Parameter	TXDV812RG	TXDV1212RG		
Blocking voltage V _{DRM} /V _{RRM}	800 V	1200 V		
On-state current I _{T(RMS)}	12 A			
Gate current I _{GT}	100 mA			

January 2012 Doc ID 18272 Rev 2 1/7

Characteristics TXDVxx12

1 Characteristics

Table 2. Absolute maximum ratings (limiting values)

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	On-state rms current (180° conduction angle	tate rms current (180° conduction angle) $T_c = 90 ^{\circ}C$			Α
V_{DRM}	Repetitive peak off-state voltage	TXDV812	T _i = 125 °C	800	V
V_{RRM}	nepetitive peak oil-state voitage	TXDV1212	$ \frac{1}{j}$ = 125 C	1200	
		$t_p = 2.5 \text{ ms}$		170	
I _{TSM}	Non repetitive surge peak on-state current	$t_p = 8.3 \text{ ms}$	T _j = 25 °C	125	A
		t _p = 10 ms		120	
I ² t	I ² t value for fusing	$t_p = 10 \text{ ms}$	"	72	A ² s
dI/dt	Critical rate of rise of on-state current $I_G = 500 \text{ mA}$ $dI_G/dt = 1 \text{ A/}\mu\text{s}$	F = 50 Hz		100	A/µs
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C
V _{INS(RMS)} ⁽¹⁾	Insulation rms voltage			2500	V

^{1.} A1, A2, gate terminals to case for 1 minute

Table 3. Electrical characteristics ($T_j = 25$ °C, unless otherwise specified)

Symbol	Test conditions		Quadrant		Va	lue	Unit
Symbol			Quadrant		TXDV812	TXDV1212	
I _{GT}	$V_{\rm D} = 12 \text{ V DC}, R_{\rm I} = 33 \Omega$		1-11-111	MAX.	10	00	mA
V _{GT}	VD = 12 V DO, NL = 33 12		1-11-111	MAX.	1.5		V
V_{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ T_j	_j = 110 °C	1-11-111	MIN.	0	.2	V
t _{gt}	$V_D = V_{DRM}$ $I_G = 500$ mA $dI_G/dt = 3$	3 A/µs	1-11-111	TYP.	2.5		μs
ΙL	I _G = 1.2 x I _{GT}		1-111	TYP.	100		mA
_			II	111.	200		
I _H ⁽¹⁾	I _T = 500 mA Gate open		MAX.	100		mA	
dV/dt (1)	Linear slope up to: $V_D = 67\% \ V_{DRM}$ Gate open $T_j = 125 \ ^{\circ}C$		MIN.	2	2	kV/μs	
(dl/dt)c (1)	$(dV/dt)c = 10 V/\mu s$ T_j	V/μs		MIN.	42.5	30	A/ms
V _{TM} ⁽¹⁾	$I_{TM} = 17 \text{ A}$ $t_p = 380 \mu\text{s}$		MAX.	1.95		V	
$V_{to}^{(1)}$	Threshold voltage		MAX.	1.21		V	
R _d ⁽¹⁾	Dynamic resistance		MAX.	40		mΩ	
I _{DRM}			MAX.		0.01		mA
I _{RRM}	T _j	_j = 110 °C		IVI/A/A.	2	5	ША

^{1.} For either polarity of electrode ${\rm A}_2$ voltage with reference to electrode ${\rm A}_1.$

TXDVxx12 Characteristics

Table 4. Gate characteristics (maximum values)

Symbol	Parameter	Value	Unit	
P _{G(AV)}	Average gate power dissipation		1	W
P_{GM}	Peak gate power dissipation	t _p = 20 μs	10	W
I _{GM}	Peak gate current	t _p = 20 μs	4	Α
V_{GM}	Peak positive gate voltage	t _p = 20 μs	16	V

Table 5. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient	60	°C/W
R _{th(j-c)} DC	Junction to case for DC	2.5	°C/W
R _{th(j-c)} AC	Junction to case for 360 °Conduction angle (F = 50 Hz)	1.9	°C/W

Figure 1. Max. rms power dissipation versus Figure 2. on-state rms current (F = 50Hz). (curves limited by (dl/dt)c)

Max. rms power dissipation and max. allowable temperatures $(T_{amb}$ and $T_{case})$ for various R_{th}

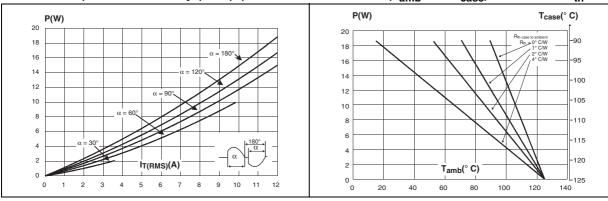
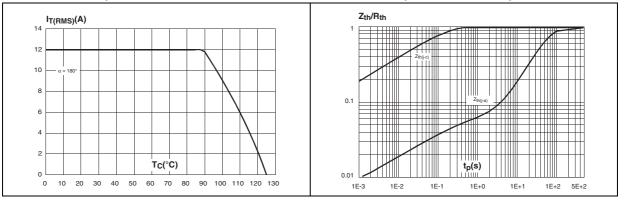
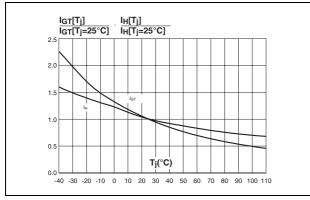



Figure 3. On-state rms current versus case temperature


Figure 4. Relative variation of thermal impedance versus pulse duration

Characteristics TXDVxx12

Figure 5. Relative variation of gate trigger current and holding current versus junction temperature

Figure 6. Non repetitive surge peak on-state current versus number of cycles

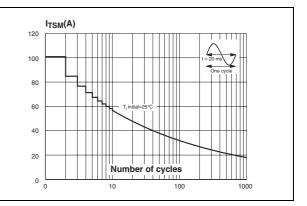
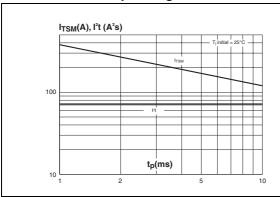



Figure 7. Non-repetitive surge peak on-state Figure 8. current for a sinusoidal pulse and corresponding values of I²t

Figure 8. On-state characteristics (maximum values)

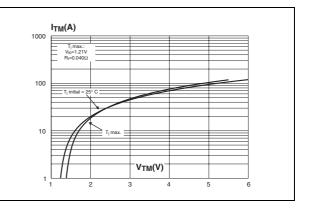
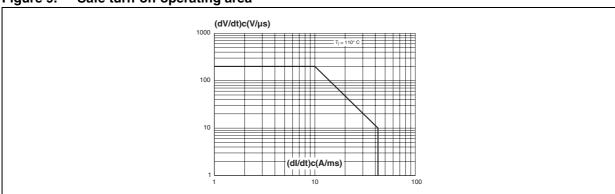
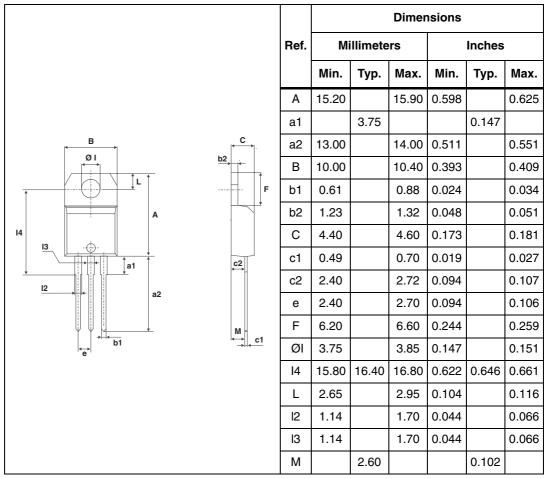



Figure 9. Safe turn-off operating area


4/7 Doc ID 18272 Rev 2

2 Package information

- Epoxy meets UL94,V0
- Cooling method: C (by conduction)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 6. TO-220AB insulated dimensions

Ordering information TXDVxx12

3 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
TXDV812RG	TXDV812	TO-220AB	2.3 g	50	Tube
TXDV1212RG	TXDV1212	insulated	2.5 g	50	Tube

4 Revision history

Table 8. Document revision history

Date	Revision	Changes	
30-Mar-2011	1	Initial release.	
13-Jan-2012	2	Updated dl/dt in Table 2, and added V _{to} and R _d in Table 3	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 18272 Rev 2 7/7