

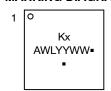
# **Fixed-Output Synchronous** TinyBoost® Regulator **FAN48615**

## **Description**

The FAN48615 is a low-power PWM only boost regulator designed to provide a minimum voltage-regulated rail from a standard single-cell Li-Ion battery and advanced battery chemistries. Even below the minimum system battery voltage, the device maintains the output voltage regulation for an output load current of 1000 mA. The combination of built-in power transistors, synchronous rectification, and low supply current suit the FAN48615 for battery-powered applications.

The FAN48615 is available in a 9-bump, 0.4 mm pitch, (1.215 x 1.215 mm) Wafer-Level Chip-Scale Package (WLCSP).

#### **Features**


- Input Voltage Range: 2.7 V to 5.5 V
- Output Voltage: 5.25 V and 5.4 V
- 1000 mA Max. Load Capability
- PWM Only
- Up to 97% Efficient
- Forced Pass-Through Operation via EN Pin
- Internal Synchronous Rectification
- True Load Disconnect
- Short-Circuit Protection
- Three External Components: 2016 (Metric) 0.47 µH Inductor, 0402 Input and 0603 Output Capacitors
- This is a Pb-Free Device

## **Applications**

- Class-D Audio Amplifier
- Boost for Low-Voltage Li-Ion Batteries
- Smart Phones, Tablets, Portable Devices
- RF Applications
- NFC Applications



#### **MARKING DIAGRAM**



KY / KZ Specific Device Code = Fab Indicator Assembly Location WL = Wafer Lot = Work Week = Pb-Free Package

Note: Microdot may be in either location)

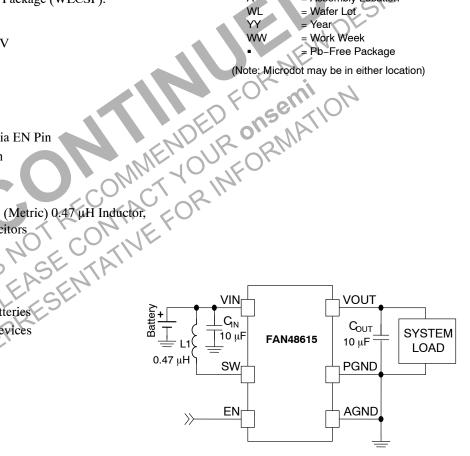



Figure 1. Typical Application

## **ORDERING INFORMATION**

| Part Number   | V <sub>OUT</sub> | Operating Temperature | Package               | Packing            | Device Marking |
|---------------|------------------|-----------------------|-----------------------|--------------------|----------------|
| FAN48615UC08X | 5.25 V           | -40°C to 85°C         | 9-Bump, 0.4 mm Pitch, | 3000 / Tape & Reel | KY             |
| FAN48615UC11X | 5.40 V           |                       | WLCSP Package         |                    | KZ             |

# **Block Diagram**

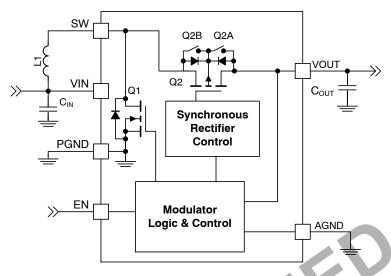



Figure 2. IC Block Diagram

**Table 1. RECOMMENDED COMPONENTS** 

| Table 1. RECO    |                                 | Modulator<br>Logic & Control | AGND           | DES'          | (CM  |
|------------------|---------------------------------|------------------------------|----------------|---------------|------|
| Component        | Description                     | Vendor                       | Parameter      | Typical Value | Unit |
| L1               | 20%, 5.3 A, 2016, 1.0 mm Height | DFE201610E-R47M<br>TOKO      | Inductance     | 470           | nH   |
|                  |                                 | TORO                         | DCR (Series R) | 26            | mΩ   |
| C <sub>IN</sub>  | 20%, 6.3 V, X5R, 0402 (1005)    | C1005X5R0J106M050BC<br>TDK   | Capacitance    | 10            | μF   |
| C <sub>OUT</sub> | 20%, 10 V, X5R, 0603 (1608)     | C1608X5R1A106K080AC<br>TDK   | Capacitance    | 10            | μF   |
| THIS             | 20%, 10 V, X5R, 0603 (1608)     | TATIVE                       |                |               |      |

# **Pin Configuration**

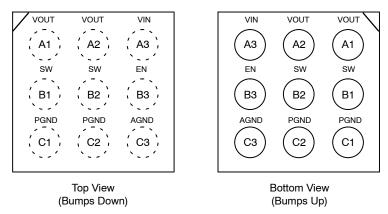



Figure 3. Pin Assignment

## **Pin Definitions**

# **Table 2. PIN DEFINITIONS**

|                                      | Figure 3. Pin Assignment |                                                                                                                                                                |  |  |  |
|--------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pin Definitions  Table 2. PIN DEFINI | TIONS                    | DESIGN                                                                                                                                                         |  |  |  |
| Pin #                                | Name                     | Description                                                                                                                                                    |  |  |  |
| A1                                   | VOUT                     | Output Voltage. This pin is the output voltage terminal; connect directly to C <sub>OUT</sub> .                                                                |  |  |  |
| A2                                   |                          | OR all a                                                                                                                                                       |  |  |  |
| A3                                   | VIN                      | Input Voltage. Connect to Li-Ion battery input power source and C <sub>IN</sub> .                                                                              |  |  |  |
| B1                                   | SW                       | Switching Node. Connect to inductor.                                                                                                                           |  |  |  |
| B2                                   |                          | CNV IR ON                                                                                                                                                      |  |  |  |
| B3                                   | EN                       | <b>Enable</b> . When this pin is HIGH, the circuit is enabled. After part is engaged, pin forces part into Forced-Pass-Through Mode when EN pin is pulled LOW. |  |  |  |
| C1                                   | PGND                     | Power Ground. This is the power return for the IC. C <sub>OUT</sub> capacitor should be returned                                                               |  |  |  |
| C2                                   |                          | with the shortest path possible to these pins.                                                                                                                 |  |  |  |
| C3                                   | AGND                     | Analog Ground. This is the signal ground reference for the IC. All voltage levels are measured with respect to this pin – connect to PGND at a single point.   |  |  |  |
| THIS DI                              | AGND<br>FICE PLE         | ASENTA"                                                                                                                                                        |  |  |  |

**Table 3. ABSOLUTE MAXIMUM RATINGS** 

| Symbol           | Parameter                                                                                  |                         | Min  | Max                | Unit |
|------------------|--------------------------------------------------------------------------------------------|-------------------------|------|--------------------|------|
| V <sub>IN</sub>  | Voltage on VIN Pin                                                                         |                         | -0.3 | 6.0                | V    |
| V <sub>OUT</sub> | Voltage on VOUT Pin                                                                        |                         | -0.3 | 6.0                | V    |
| V <sub>SW</sub>  | SW Node                                                                                    | DC                      | -0.3 | 6.0                | V    |
|                  |                                                                                            | Transient: 10 ns, 3 MHz | -1.0 | 8.0                |      |
| V <sub>CC</sub>  | Voltage on Other Pins                                                                      |                         | -0.3 | 6.0 <sup>(1)</sup> | V    |
| ESD              | Electrostatic Discharge Protection Level Human Body Model, ANSI/ESDA/<br>JEDEC JS-001-2012 |                         | 2    | .0                 | kV   |
|                  | Charged Device Model, JESD22-C101                                                          |                         | 1    | .0                 |      |
| TJ               | Junction Temperature                                                                       |                         | -40  | 150                | °C   |
| T <sub>STG</sub> | Storage Temperature                                                                        |                         | -65  | 150                | °C   |
| TL               | Lead Soldering Temperature, 10 Seconds                                                     |                         |      | 260                | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

**Table 4. RECOMMENDED OPERATING CONDITIONS** 

| Symbol           | Parameter                                                  | Min  | Max | Unit |
|------------------|------------------------------------------------------------|------|-----|------|
| V <sub>IN</sub>  | Supply Voltage for Boost & Auto Pass Through Operation (2) | 2)7  | 5.5 | V    |
| l <sub>out</sub> | Maximum Output Current                                     | 1000 | No. | mA   |
| T <sub>A</sub>   | Ambient Temperature                                        | -40  | 85  | °C   |
| T <sub>J</sub>   | Junction Temperature                                       | -40  | 125 | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

2. When V<sub>IN</sub> nears V<sub>OUT</sub> the part will automatically go into pass through mode, depending on load current.

**Table 5. THERMAL PROPERTIES** 

| Symbol            | Parameter                              | Typical | Unit |
|-------------------|----------------------------------------|---------|------|
| $\theta_{\sf JA}$ | Junction-to-Ambient Thermal Resistance | 50      | °C/W |

NOTE: Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards with vias in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature,  $T_{J(max)}$ , at a given ambient temperature,  $T_A$ .

<sup>1.</sup> Lesser of 6.0 V or  $V_{IN}$  + 0.3 V.

## **Table 6. ELECTRICAL CHARACTERISTICS**

Recommended operating conditions, unless otherwise noted, circuit per Figure 1, V<sub>OUT</sub> = 5.40 V. Typical, minimum and maximum values are given at  $V_{IN}$  = 3.6 V,  $T_A$  = 25°C, -40°C and +85°C.

| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Parameter                                                                                   | Conditions                                                             | Min       | Тур                   | Max | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|-----------------------|-----|------|
| Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                           |                                                                        |           |                       |     |      |
| IQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>IN</sub> Quiescent Current                                                           | I <sub>OUT</sub> = 0 mA, EN = 1.8 V, No Switching                      |           | 95                    |     | μΑ   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             | Forced Pass-Through EN = 0 V, V <sub>OUT</sub> = V <sub>IN</sub>       |           | 3.5                   |     |      |
| V <sub>UVLO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Under-Voltage Lockout                                                                       | V <sub>IN</sub> Rising                                                 |           | 2.20                  |     | V    |
| V <sub>UVLO_HYS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Under-Voltage Lockout Hysteresis                                                            |                                                                        |           | 150                   |     | mV   |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                                        |           |                       |     |      |
| V <sub>IH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Enable HIGH Voltage                                                                         |                                                                        | 1.05      |                       |     | V    |
| V <sub>IL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Enable LOW Voltage                                                                          |                                                                        |           |                       | 0.4 | V    |
| Outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                                                        |           |                       |     |      |
| V <sub>REG</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Output Voltage Accuracy DC (3)                                                              | $2.7 \text{ V} \le V_{IN} \le 4.5 \text{ V}$                           | -2        |                       | +2  | %    |
| Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                                        |           | ,                     | Ch  |      |
| f <sub>SW</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Switching Frequency                                                                         | I <sub>OUT</sub> = 300 mA                                              | 1.8       | 2.3                   | 2.8 | MHz  |
| t <sub>SS</sub> (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EN HIGH to 95% of Regulation                                                                | I <sub>OUT</sub> = 150 mA                                              |           | 440                   |     | μs   |
| t <sub>RST</sub> (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FAULT Restart Timer                                                                         |                                                                        | CV        | 20                    |     | ms   |
| Power Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                        | 17        |                       |     |      |
| R <sub>DS(ON)N</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N-Channel Boost Switch R <sub>DS(ON)</sub>                                                  | 10 COK                                                                 | in        | 63                    |     | mΩ   |
| R <sub>DS(ON)P</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P-Channel Sync. Rectifier R <sub>DS(ON)</sub>                                               |                                                                        | 10        | 52                    |     | mΩ   |
| DC I <sub>LOAD</sub> from the control of the c | om 0 to 1 A. V <sub>OUT</sub> measured from mid-<br>by design and characterization; not tes | point of output voltage ripple. Effective capacital ted in production. | nce of Co | <sub>UT</sub> ≥ 2.2 μ | F.  |      |

## **Typical Performance Characteristics**

Unless otherwise specified;  $V_{IN}$  = 3.8 V,  $V_{OUT}$  = 5.40 V,  $T_A$  = 25°C, and circuit according to Figure 1.

Components:  $C_{IN} = 10 \mu F$  (0402, X5R, 6.3 V, C1005X5R0J106M050BC),  $C_{OUT} = 10 \mu F$  (0603, X5R,

10 V, C1608X5R1A106K080AC), L1 = 470 nH (2016, 26 mΩ, DFE201610E–R47M ).

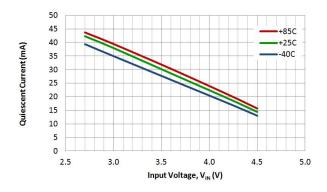



Figure 4. Quiescent Current (Switching) vs. Input Voltage and Temperature

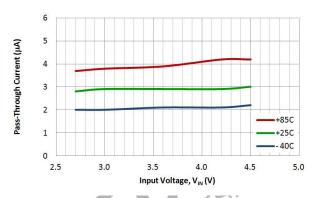



Figure 5. Pass-Through Current vs. Input Voltage and Temperature




Figure 6. Efficiency vs. Load Current and Input Voltage

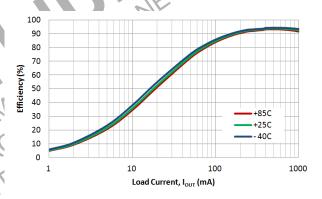



Figure 7. Efficiency vs. Load Current and Temperature

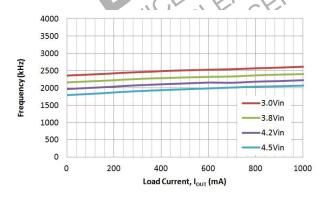



Figure 8. Switching Frequency vs. Load Current and Input Voltage

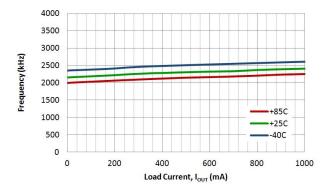



Figure 9. Switching Frequency vs. Load Current and Temperature

## **Typical Performance Characteristics**

Unless otherwise specified;  $V_{IN}$  = 3.8 V,  $V_{OUT}$  = 5.40 V,  $T_A$  = 25°C, and circuit according to Figure 1.

Components:  $C_{IN} = 10 \mu F$  (0402, X5R, 6.3 V, C1005X5R0J106M050BC),  $C_{OUT} = 10 \mu F$  (0603, X5R,

10 V, C1608X5R1A106K080AC), L1 = 470 nH (2016, 26 m $\Omega$ , DFE201610E–R47M ).

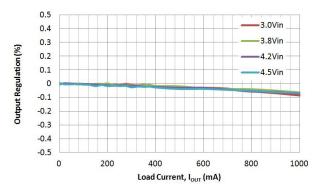



Figure 10. Output Regulation vs. Load Current and Input Voltage

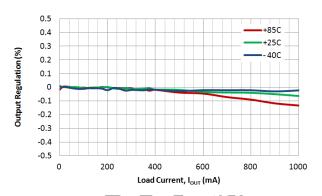



Figure 11. Output Regulation vs. Load Current and Temperature

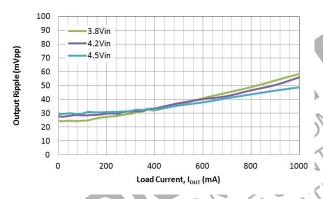



Figure 12. Output Ripple vs. Load Current and Input Voltage

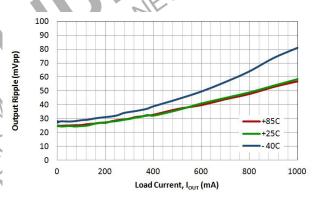



Figure 13. Output Ripple vs. Load Current and Temperature



Figure 14. Load Transient, 3.6  $V_{IN}$ , 100  $\leftrightarrow$  200 mA, 1  $\mu s$  Edge

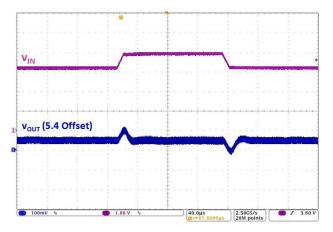
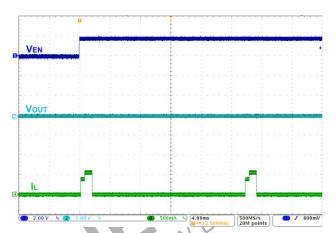



Figure 15. Line Transient, 50 mA, 3.2 V  $\leftrightarrow$  3.9 V, 10  $\mu s$  Edge


## **Typical Performance Characteristics**

Unless otherwise specified;  $V_{IN} = 3.8 \text{ V}$ ,  $V_{OUT} = 5.40 \text{ V}$ ,  $T_A = 25$ °C, and circuit according to Figure 1.

Components:  $C_{IN} = 10 \mu F$  (0402, X5R, 6.3 V, C1005X5R0J106M050BC),  $C_{OUT} = 10 \,\mu\text{F}$  (0603, X5R,

10 V, C1608X5R1A106K080AC), L1 = 470 nH (2016,  $26 \text{ m}\Omega$ , DFE201610E-R47M ).





#### **CIRCUIT DESCRIPTION**

FAN48615 is a synchronous PWM Only boost regulator. The regulator's Pass-Through Mode automatically activates when VIN is above the boost regulator's set point.

**Table 7. OPERATING MODES** 

| Mode | Description          | Invoked When:                                                                                   |
|------|----------------------|-------------------------------------------------------------------------------------------------|
| LIN  | Linear Startup       | V <sub>IN</sub> > V <sub>OUT</sub>                                                              |
| SS   | Boost Soft-Start     | V <sub>IN</sub> < V <sub>OUT</sub> < V <sub>OUT</sub> (TARGET)                                  |
| BST  | Boost Operating Mode | V <sub>OUT</sub> = V <sub>OUT(TARGET)</sub>                                                     |
| PT   | Pass-Through Mode    | V <sub>IN</sub> > V <sub>OUT(TARGET)</sub> or<br>when EN is pulled LOW<br>after initial startup |

#### **Boost Mode Regulation**

The FAN48615 uses a current-mode modulator to achieve excellent transient response.

**Table 8. BOOST STARTUP SEQUENCE** 

| Start<br>Mode | Entry                         | Exit                                        | End<br>Mode | Timeout<br>(μs) |
|---------------|-------------------------------|---------------------------------------------|-------------|-----------------|
| LIN1          | V <sub>IN</sub> >             | $V_{OUT} > V_{IN} - 300 \text{ mV}$         | SS          |                 |
|               | V <sub>UVLO</sub> ,<br>EN = 1 | Timeout                                     | LIN2        | 512             |
| LIN2          | LIN1 Exit                     | $V_{OUT} > V_{IN} - 300 \text{ mV}$         | SS          |                 |
|               |                               | Timeout                                     | FAULT       | 1024            |
| SS            | LIN1 or<br>LIN2 Exit          | V <sub>OUT</sub> = V <sub>OUT(TARGET)</sub> | BST         | CC              |
|               |                               | Overload Timeout                            | FAULT       | 64              |

## **LIN Mode**

When EN is HIGH and  $V_{IN} > V_{UVLO}$ , the regulator first attempts to bring  $V_{OUT}$  within 300 mV of  $V_{IN}$  by using the internal fixed-current source from VIN (Q2), The current is limited to the LIN1 set point.

If  $V_{OUT}$  reaches  $V_{IN}{-}300$  mV during LIN1 Mode, the SS Mode is initiated. Otherwise, LIN1 times out after 512  $\mu s$  and LIN2 Mode is entered.

In LIN2 Mode, the current source is incremented. If  $V_{OUT}$  fails to reach  $V_{IN}$ -300 mV after 1024  $\mu s$ , a fault condition is declared and the device waits 20 ms to attempt an automatic restart.

#### Soft-Start (SS) Mode

Upon the successful completion of LIN Mode ( $V_{OUT} \ge V_{IN}$ – 300 mV), the regulator begins switching with boost pulses current limited to 50% of nominal level.

During SS Mode, if  $V_{OUT}$  fails to reach regulation during the SS ramp sequence for more than 64  $\mu$ s, a fault is declared. If large  $C_{OUT}$  is used, the reference is automatically stepped slower to avoid excessive input current draw.

#### **Boost (BST) Mode**

This is a normal operating mode of the regulator.

#### Pass-Through Mode

The device allows the user to force the device in Forced Pass–Through Mode through the EN pin. If the EN pin is pulled HIGH, the device starts operating in Boost Mode. Once the EN pin is pulled LOW, the device is forced into Pass–Through Mode. To disable the device, the input supply voltage must be removed. The device cannot startup in Forced Pass–Through Mode (see Figure 18). During startup, keep the EN pulled HIGH for at least 350 µs before pulling it LOW in order to make sure that the device enters Pass–Through Mode reliably.

In normal operation, the device automatically transitions from Boost Mode to Pass–Through Mode if VIN goes above the target  $V_{OUT}$ . In Pass–Through Mode, the device fully enhances Q2 to provide a very low impedance path from VIN to VOUT. Entry to the Pass–Through Mode is triggered by condition where  $V_{IN} > V_{OUT}$  and no switching has occurred during the past 5  $\mu$ s. To soften the entry into Pass–Through Mode, Q2 is driven as a linear current source for the first 5  $\mu$ s. Pass–Through Mode exit is triggered when  $V_{OUT}$  reaches the target  $V_{OUT}$  voltage. During Automatic Pass–Through Mode, the device is short–circuit protected by a voltage comparator tracking the voltage drop from  $V_{IN}$  to  $V_{OUT}$ ; if the drop exceeds 300 mV, a fault is declared.

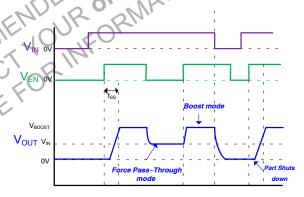



Figure 18. Pass-Through Profile

#### **Current Limit Protection**

The FAN48615 has valley current limit protection in case of overload situations. The valley current limit will prevent high current from causing damage to the IC and the inductor. The current limit is halved during soft–start.

When starting into a fault condition, the input current will be limited by LIN1 and LIN2 current threshold.

## **Fault State**

The regulator enters Fault State under any of the following conditions:

- V<sub>OUT</sub> fails to achieve the voltage required to advance from LIN Mode to SS Mode.
- V<sub>OUT</sub> fails to achieve the voltage required to advance from SS Mode to BST Mode.

- Boost current limit triggers for 2 ms during BST Mode.
- $V_{IN} V_{OUT} > 300 \text{ mV}$ ; this fault can occur only after successful completion of the soft-start sequence.
- $V_{IN} < V_{IJVLO}$

Once a fault is triggered, the regulator stops switching and presents a high-impedance path between VIN and VOUT. After waiting 20 ms, an automatic restart is attempted.

## Over-Temperature

The regulator shuts down if the die temperature exceeds 150°C and restarts when the IC cools by ~20°C.

# **Layout Recommendation**

The layout recommendations below highlight various top-copper pours by using different colors.

To minimize spikes at VOUT, COUT must be placed as close as possible to PGND and VOUT, as shown in Figure 19.

For best thermal performance, maximize the pour area for all planes other than SW. The ground pour, especially, should fill all available PCB surface area and be tied to internal layers with a cluster of thermal vias.

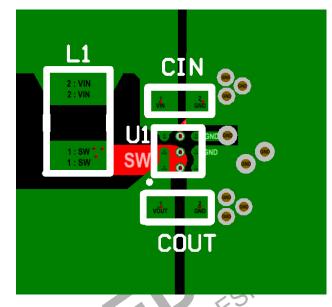
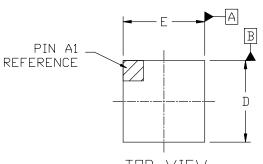
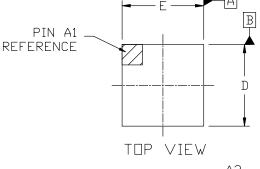


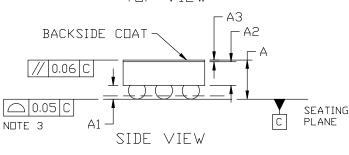

Figure 19. Recommended Layout

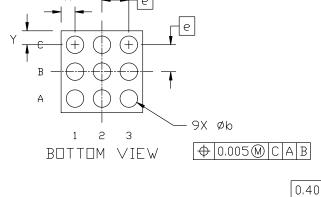
# Table 9. PRODUCT-SPECIFIC PACKAGE DIMENSIONS

| Product      | D (mm)        | E (mm)        | X (mm) | Y (mm) |
|--------------|---------------|---------------|--------|--------|
| AN48615UC08X | 1.215 ± 0.030 | 1,215 ± 0.030 | 0.2075 | 0.2075 |
|              |               | CO CO         | 2 //   |        |
|              | CU            | BENIL EO.     |        |        |
|              | 10            | COLINE        |        |        |
|              | SACE          |               |        |        |
|              | CELLAS        | CHI           |        |        |
|              | MORDIFIE      | E.            |        |        |
| OF           | ORL           |               |        |        |
| $\sim$       | QE!           |               |        |        |
| 113          |               |               |        |        |
| THIS         |               |               |        |        |
| THIS         |               |               |        |        |


All other brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders.



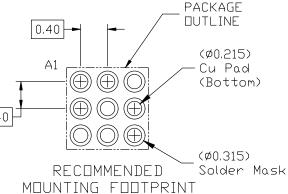





## WLCSP9 1.215x1.215x0.581 CASE 567QW **ISSUE B**

**DATE 24 FEB 2023** 










#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER PARALLEL TO DATUM C.

|     | MILLIMETERS |          |       |  |
|-----|-------------|----------|-------|--|
| DIM | MIN.        | N□M.     | MAX.  |  |
| Α   | 0.542       | 0.581    | 0.620 |  |
| A1  | 0.183       | 0.203    | 0.223 |  |
| A2  | 0.335       | 0.353    | 0.371 |  |
| A3  | 0.022       | 0.025    | 0.027 |  |
| b   | 0.24        | 0.26     | 0.28  |  |
| D   | 1.185       | 1.215    | 1.245 |  |
| E   | 1.185       | 1.215    | 1.245 |  |
| е   | 0.400 BSC   |          |       |  |
| X   | 0.208 REF   |          |       |  |
| Υ   | C           | .208 REI | -     |  |



For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

| DOCUMENT NUMBER: | 98AON13355G             | Electronic versions are uncontrolled except when accessed directly from the Document Repos<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | WLCSP9 1.215x1.215x0.58 | 1                                                                                                                                                                             | PAGE 1 OF 1 |

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

