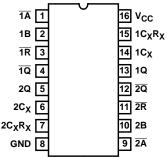


Data sheet acquired from Harris Semiconductor

CD54HC221, CD74HC221, CD74HCT221

High-Speed CMOS Logic Dual Monostable Multivibrator with Reset


November 1997 - Revised October 2003

Features

- Overriding RESET Terminates Output Pulse
- Triggering from the Leading or Trailing Edge
- Q and Q Buffered Outputs
- Separate Resets
- · Wide Range of Output-Pulse Widths
- · Schmitt Trigger on B Inputs
- Fanout (Over Temperature Range)
 - Standard Outputs...... 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \leq 1 \mu \text{A}$ at $V_{\mbox{\scriptsize OL}},\, V_{\mbox{\scriptsize OH}}$

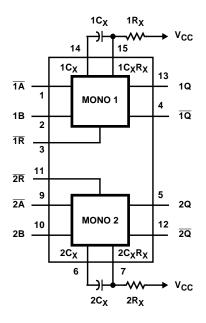
Pinout

CD54HC221 (CERDIP) CD74HC221 (PDIP, SOIC, SOP, TSSOP) CD74HCT221 (PDIP, SOIC) TOP VIEW

Description

The 'HC221 and CD74HCT221 are dual monostable multivibrators with reset. An external resistor (R_X) and an external capacitor (C_X) control the timing and the accuracy for the circuit. Adjustment of R_X and C_X provides a wide range of output pulse widths from the Q and \overline{Q} terminals. Pulse triggering on the B input occurs at a particular voltage level and is not related to the rise and fall time of the trigger pulse.

Once triggered, the outputs are independent of further trigger inputs on \overline{A} and B. The output pulse can be terminated by a LOW level on the Reset (\overline{R}) pin. Trailing Edge triggering (\overline{A}) and leading-edge-triggering (B) inputs are provided for triggering from either edge of the input pulse. On power up, the IC is reset. If either Mono is not used each input (on the unused device) must be terminated either high or low.


The minimum value of external resistance, R_X, is typically 500Ω The minimum value of external capacitance, C_X, is 0pF. The calculation for the pulse width is t_W = 0.7 R_XC_X at V_{CC} = 4.5V.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC221F3A	-55 to 125	16 Ld CERDIP
CD74HC221E	-55 to 125	16 Ld PDIP
CD74HC221M	-55 to 125	16 Ld SOIC
CD74HC221MT	-55 to 125	16 Ld SOIC
CD74HC221M96	-55 to 125	16 Ld SOIC
CD74HC221NSR	-55 to 125	16 Ld SOP
CD74HC221PW	-55 to 125	16 Ld TSSOP
CD74HC221PWR	-55 to 125	16 Ld TSSOP
CD74HC221PWT	-55 to 125	16 Ld TSSOP
CD74HCT221E	-55 to 125	16 Ld PDIP
CD74HCT221M	-55 to 125	16 Ld SOIC
CD74HCT221MT	-55 to 125	16 Ld SOIC
CD74HCT221M96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Functional Diagram

TRUTH TABLE

	INPUTS		OUTPUTS					
Ā	В	R	Q	Q				
Н	Х	Н	L	Н				
Х	L	Н	L	Н				
L	1	Ι	Ę	7				
\	Н	Ι	Ę	7				
Х	Х	L	L	Н				
L	Н	↑	(Note 3)	(Note 3)				

H = High Voltage Level, L = Low Voltage Level, X = Irrelevant, \uparrow = Transition from Low to High Level, \downarrow = Transition from High to Low Level, \blacksquare = One High Level Pulse, \blacksquare = One Low Level Pulse NOTE:

 For this combination the reset input must be low and the following sequence must be used: pin 1 (or 9) must be set high or pin 2 (or 10) set low; then pin 1 (or 9) must be low and pin 2 (or 10) set high. Now the reset input goes from lowto-high and the device will be triggered.

Thermal Information

Package Thermal Impedance, θ_{JA} (see Note 2):
E (PDIP) Package
M (SOIC) Package73°C/W
NS (SOP) Package64°C/W
PW (TSSOP) Package 108°C/W
Maximum Junction Temperature (Plastic Package) 150°C
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)300°C
(SOIC - Lead Tips Only)

Operating Conditions

Temperature Range, T _A 55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O
Input Rise and Fall Time, t_r , t_f on Inputs \overline{A} and \overline{R}
2V
4.5V 500ns (Max)
6V
Input Rise and Fall Time, t _r , t _f on Input B
2V Unlimited ns (Max)
4.5V Unlimited ns (Max)
6V Unlimited ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

		TE: CONDI		V _{CC}		25°C		-40°C T	O 85°C	-55 ⁰ C T	O 125 ⁰ C				
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS			
HC TYPES															
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V			
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V			
				6	4.2	-	-	4.2	-	4.2	-	V			
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V			
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V			
				6	-	-	1.8	-	1.8	-	1.8	V			
High Level Output	VoH	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V			
Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V			
OMOO LOGGO			-0.02	6	5.9	-	-	5.9	-	5.9	-	V			
High Level Output	7			-	-	-	-	-	-	-	-	-	V		
Voltage TTL Loads					-4	4.5	3.98	-	-	3.84	-	3.7	-	V	
112 20000			-5.2	6	5.48	-	-	5.34	-	5.2	-	V			
Low Level Output	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V			
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V			
- C.M C						0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output	7		-	-	-	-	-	-	-	-	-	V			
Voltage TTL Loads		-	4	4.5	-	-	0.26	-	0.33	-	0.4	V			
			5.2	6	-	-	0.26	-	0.33	-	0.4	V			

DC Electrical Specifications (Continued)

		TES CONDI		V _{CC}		25°C		-40°C 1	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Input Leakage Current	lį	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА
HCT TYPES								-				
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{ОН}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} and GND	0	5.5	-		±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μΑ
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 3)	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS
All Inputs	0.3

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., 360µA max at $25^{o}C.$

Prerequisite For Switching Function

			25°C		-40°C TO 85°C		-55°C T			
PARAMETER	SYMBOL	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES		-		-		-		-	-	
Input Pulse Width	t _{WL}	2	70	-	-	90	-	105	-	ns
Ā		4.5	14	-	-	18	-	21	-	ns
		6	12	-	-	15	-	18	-	ns
Input Pulse Width	t _{WH}	2	70	-	-	90	-	105	-	ns
В		4.5	14	-	-	18	-	21	-	ns
		6	12	-	-	15	-	18	-	ns

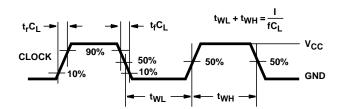
^{3.} For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

Prerequisite For Switching Function (Continued)

			25°C		-40°C 1	O 85°C	-55°C TO 125°C			
PARAMETER	SYMBOL	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Input Pulse Width	t _{WL}	2	70	-	-	90	-	105	-	ns
Reset		4.5	14	-	-	18	-	21	-	ns
		6	12	-	-	15	-	18	-	ns
Recovery Time	t _{SU}	2	0	-	-	0	-	0	-	ns
R to A or B		4.5	0	-	-	0	-	0	-	ns
		6	0	-	-	0	-	0	-	ns
Output Pulse Width Q or \overline{Q} $C_X = 0.1 \mu F R_X = 10 k\Omega$	t _W	5	630	-	770	602	798	595	805	μs
Output Pulse Width Q or Q $C_X = 28pF$, $R_X = 2k\Omega$	t _W	4.5	-	140	-	-	-	-	-	ns
$C_X = 1000 pF, R_X = 2k\Omega$	t _W	4.5	-	1.5	-	-	-	-	-	μs
$C_X = 1000 pF, R_X = 10 k\Omega$	t _W	4.5	-	7	-	-	-	-	-	μs
HCT TYPES										
Input Pulse Width Ā	t _{WL}	4.5	14	-	-	18	-	21	-	ns
Input Pulse Width B	t _{WH}	4.5	14	-	-	18	-	21	-	ns
Input Pulse Width Reset	t _{WL}	4.5	18	-	-	23	-	27	-	ns
Recovery Time R to A or B	t _{SU}	4.5	0	-	-	0	-	0	-	ns
Output Pulse Width Q or \overline{Q} $C_X = 0.1 \mu F R_X = 10 k\Omega$	t _W	5	630	-	770	602	798	595	805	μs
Output Pulse Width Q or Q $C_X = 28pF$, $R_X = 2k\Omega$	t _W	4.5	ı	140	-	-	-	-	-	ns
$C_X = 1000 pF$, $R_X = 2k\Omega$	t _W	4.5	ı	1.5	-	-	-	-	-	μs
$C_X = 1000 pF, R_X = 10 k\Omega$	t _W	4.5	-	7	-	-	-	-	-	μs

Switching Specifications Input t_{r} , $t_{f} = 6 \text{ns}$

		TEST		25°C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES					_	-		_		-	-
Propagation Delay,	t _{PLH}	C _L = 50pF	2	-	-	210	-	265	-	315	ns
Trigger \overline{A} , B, \overline{R} to Q		C _L = 50pF	4.5	-	-	42	-	53	-	63	ns
		C _L = 50pF	6	-	-	36	-	45	-	54	ns
		C _L = 15pF	5	-	18	-	-	-	-	-	ns
Propagation Delay,	t _{PHL}	C _L = 50pF	2	-	-	170	-	215	-	255	ns
Trigger \overline{A} , B , \overline{R} to \overline{Q}		C _L = 50pF	4.5	-	-	34	-	43	-	51	ns
		C _L = 50pF	6	-	-	29	-	37	-	43	ns
		C _L = 15pF	5	-	14	-	-	-	-	-	ns


Switching Specifications Input $t_{\text{r}},\,t_{\text{f}}$ = 6ns (Continued)

		TEST	TEST		25°C			с то °С	-55 ⁰ (
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Propagation Delay,	t _{PLH}	C _L = 50pF	2	-	-	160	-	200	-	240	ns
R to Q			4.5	-	-	32	-	40	-	48	ns
			6	-	-	27	-	34	-	41	ns
Propagation Delay,	t _{PHL}	C _L = 50pF	2	-	-	180	-	225	-	270	ns
$\overline{\mathbb{R}}$ to $\overline{\mathbb{Q}}$			4.5	-	-	36	-	45	-	54	ns
			6	-	-	31	-	38	-	46	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	C _{IN}	-	-	-	-	10	-	10	-	10	pF
Pulse Width Match Between Circuits in the Same Package $C_X = 1000pF$, $R_X = 10k\Omega$		-	4.5 to 5.5	-	±2	-	-	-	-	-	%
Power Dissipation Capacitance (Notes 4, 5)	CPD	-	5	-	166	-	-	-	-	-	pF
HCT TYPES											
Propagation Delay, Trigger Ā, B, R̄ to Q	t _{PLH}	C _L = 50pF	4.5	-	-	42	-	-	-	63	ns
Trigger A, B, K to Q		C _L = 15pF	5	-	18	-	-	-	-	-	ns
Propagation Delay,	t _{PHL}	$C_L = 50pF$	4.5	1	-	34	-	43	1	51	ns
Trigger \overline{A} , B , \overline{R} to \overline{Q}		C _L = 15pF	5	1	14	-	-	-	1	-	ns
Propagation Delay, \overline{R} to Q	^t PLH	C _L = 50pF	4.5	-	-	38	-	1	ı	57	ns
Propagation Delay, \overline{R} to \overline{Q}	t _{PHL}	C _L = 50pF	4.5	-	-	37	-	1	-	56	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	C _{IN}	-	-	-	-	10	-	10	-	10	pF
Pulse Width Match Between Circuits in the Same Package $C_X = 1000 pF$, $R_X = 10 k\Omega$		-	4.5 to 5.5	-	±2	-	-	-	-	-	%
Power Dissipation Capacitance (Notes 4, 5)	CPD	-	5	-	166	-	-	-	-	-	рF

^{4.} $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per multivibrator.

^{5.} $P_D = (C_{PD} + C_L) \ V_{CC}^2 \ f_i + \Sigma$ where f_i = input frequency, f_o = output frequency, C_L = output load capacitance, V_{CC} = supply voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f $_{MAX}$, input duty cycle = 50%.

FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

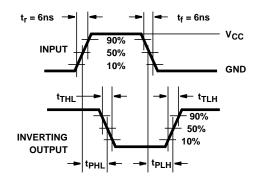
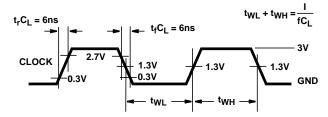



FIGURE 3. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f $_{MAX}$, input duty cycle = 50%.

FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

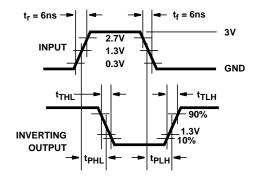


FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Typical Performance Curves

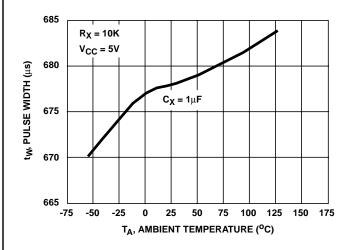


FIGURE 5. HC/HCT221 OUTPUT PULSE WIDTH vs TEMPERATURE

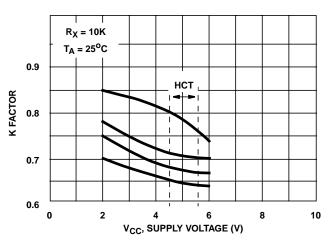


FIGURE 6. HC/HCT221 K FACTOR vs SUPPLY VOLTAGE

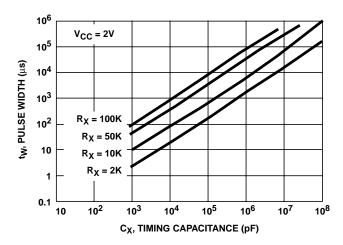


FIGURE 7. HC221 OUTPUT PULSE WIDTH vs C_χ

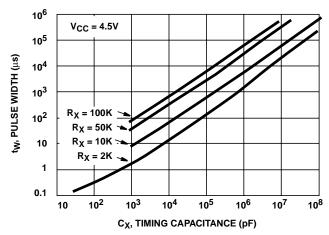



FIGURE 8. HC/HCT221 OUTPUT PULSE WIDTH vs C_χ

www.ti.com 18-Nov-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8780501EA	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8780501EA CD54HC221F3A	Samples
CD54HC221F	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HC221F	Samples
CD54HC221F3A	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8780501EA CD54HC221F3A	Samples
CD74HC221E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC221E	Samples
CD74HC221M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC221M	Samples
CD74HC221M96E4	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC221M	
CD74HC221NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC221M	Samples
CD74HC221PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ221	Samples
CD74HC221PWRE4	LIFEBUY	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ221	
CD74HCT221E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT221E	Samples
CD74HCT221M96	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT221M	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 18-Nov-2023

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC221, CD74HC221:

Catalog: CD74HC221

Military: CD54HC221

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

www.ti.com 12-May-2023

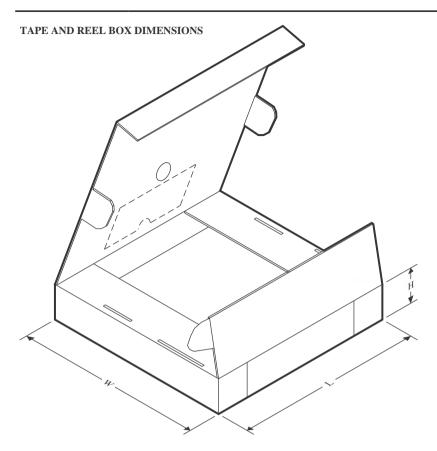
TAPE AND REEL INFORMATION

REEL DIMENSIONS Reel Diameter Reel Width (W1)

TAPE DIMENSIONS KO P1 BO W Cavity A0

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

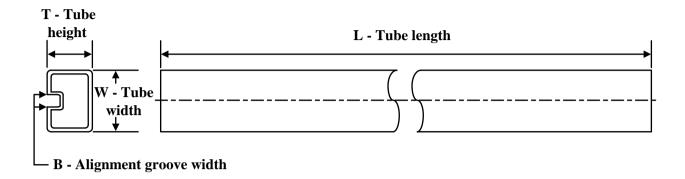


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC221M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC221NSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC221PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT221M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

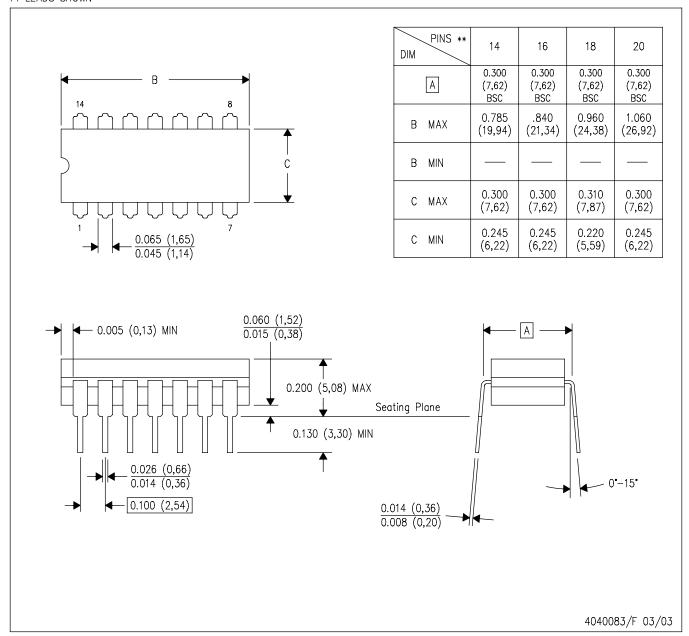
www.ti.com 12-May-2023

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC221M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC221NSR	so	NS	16	2000	356.0	356.0	35.0
CD74HC221PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HCT221M96	SOIC	D	16	2500	340.5	336.1	32.0

www.ti.com 12-May-2023

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74HC221E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC221E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT221E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT221E	N	PDIP	16	25	506	13.97	11230	4.32

J (R-GDIP-T**)

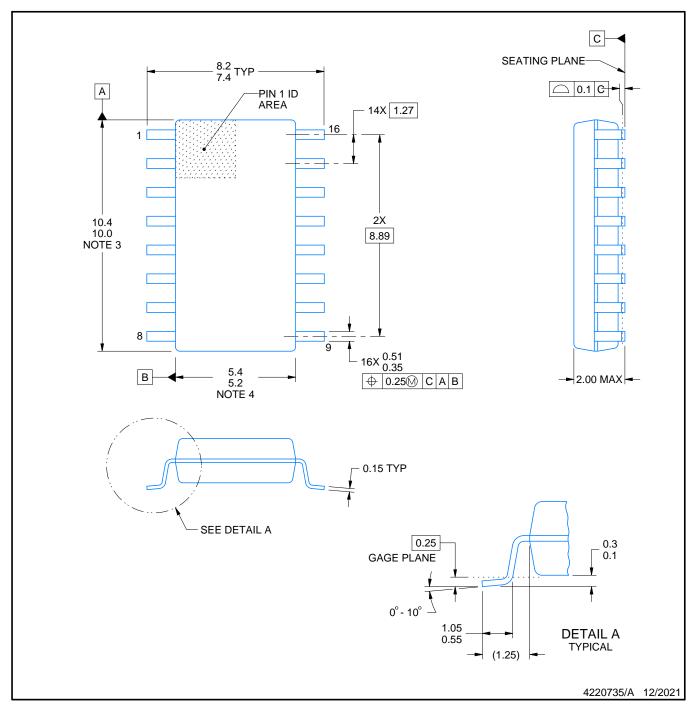
14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

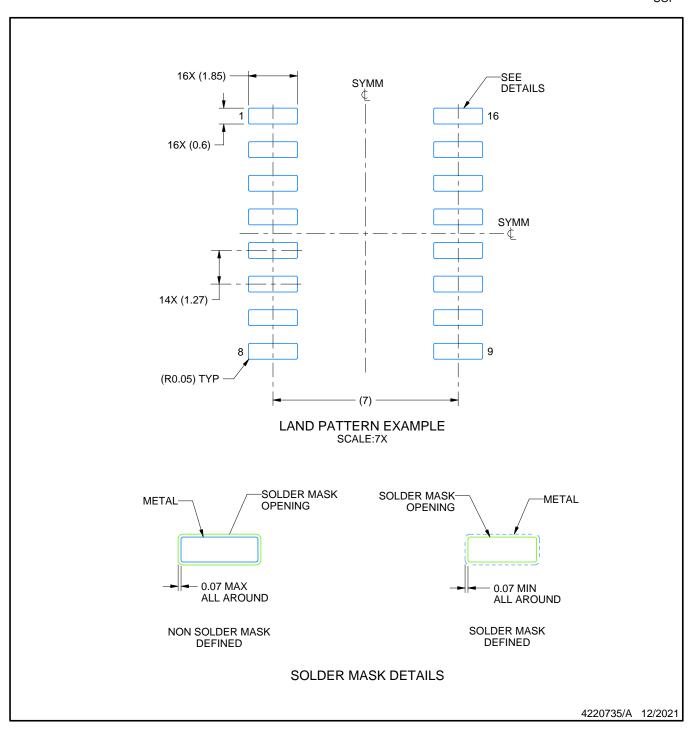
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

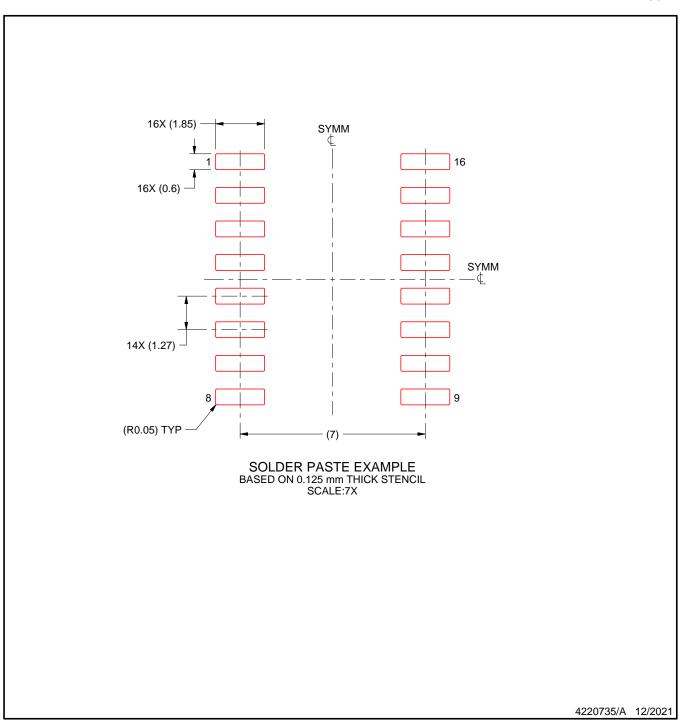
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF

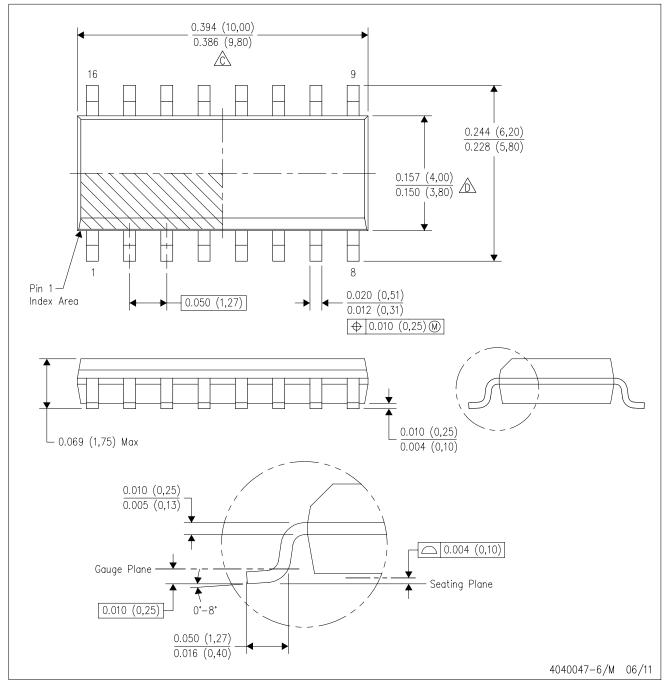


NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

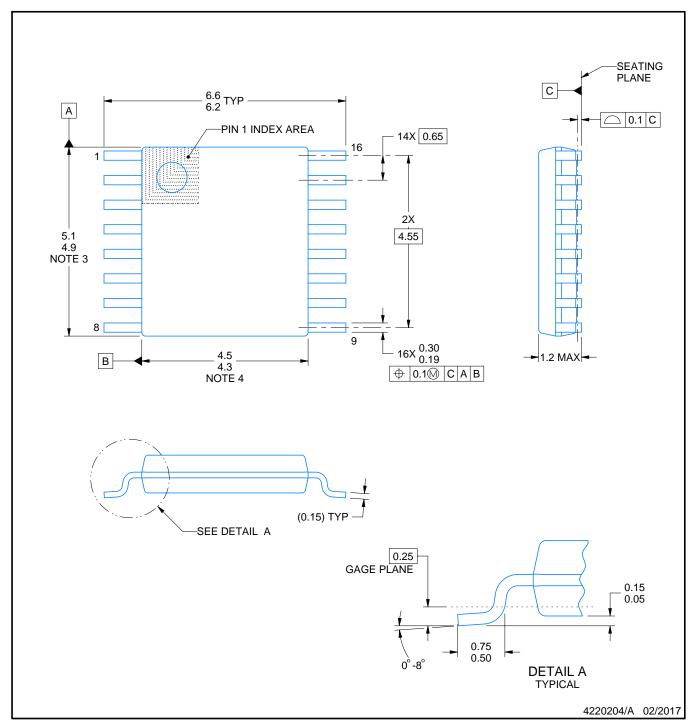
SOF


NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

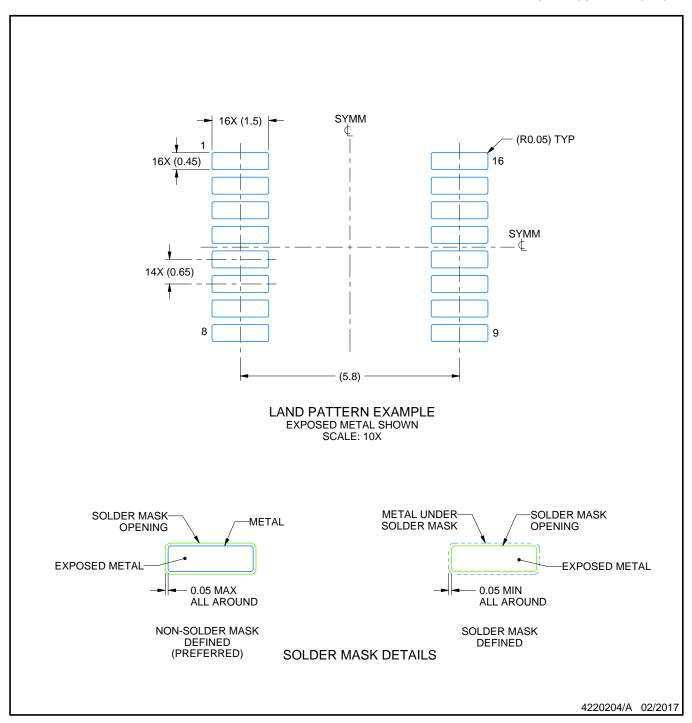
D (R-PDS0-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

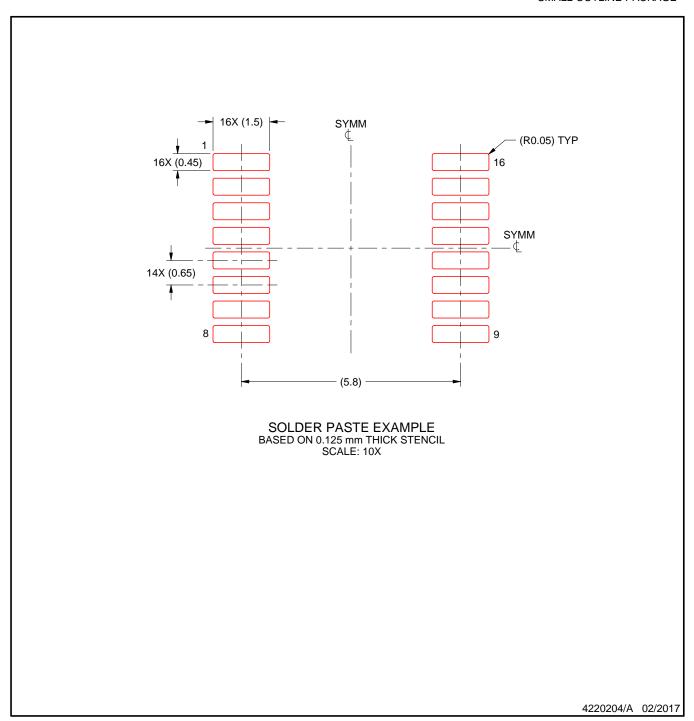
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

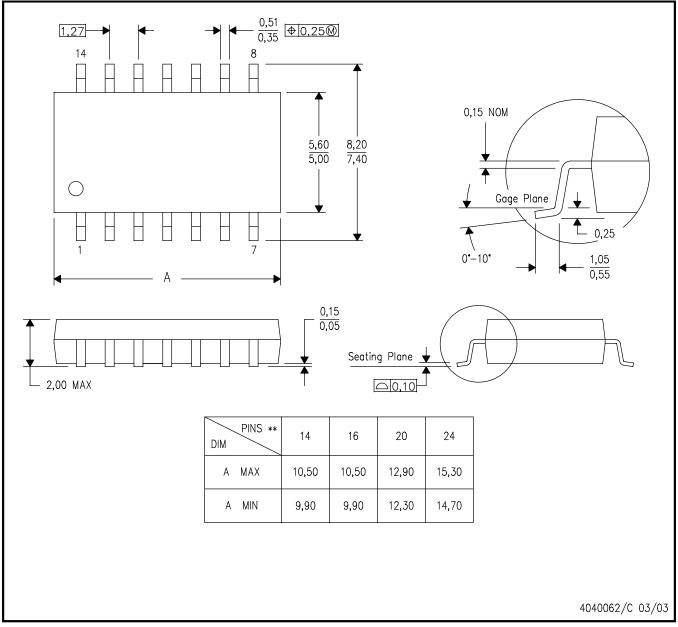
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated