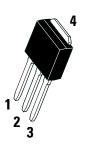


MCR12DSM, MCR12DSN

Description

The MCR12DSM and MCR12DSN are designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control; CDI (Capacitive Discharge Ignition); and small engines.


Features

- Small Size
- Passivated Die Surface for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- UL Recognized compound meeting flammability rating V-0

• ESD Ratings: Human Body Model, 3B > 8000V Machine Model, C > 400V

Pin Out

Functional Diagram

Additional Information

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit	
Peak Repetitive Off–State Voltage (Note 1) MCR12DSM ($T_C = -40 \text{ to } +110^{\circ}\text{C}$, Sine Wave, 50 to 60 Hz, $R_{GK} = 1 \text{ k }\Omega$) MCR12DSN		V _{DRM} V _{RRM}	600 800	V
On–State RMS Current (180° Conduction Angles; T _C = 75°C)		I _{T(RMS)}	12	А
Average On-State Current (180° Conduction Angles; T _c = 75°C)	I _{T (AV)}	7.6	А	
Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, $T_J = 110$ °C)	I _{TSM}	100	А	
Circuit Fusing Consideration (t = 8.3 ms)	l²t	41	A ² s	
Forward Peak Gate Power (Pulse Width ≤ 1.0 µsec, T _c = 75°C)	P _{GM}	5.0	W	
Forward Average Gate Power (t = 8.3 ms, $T_c = 75^{\circ}C$)	P _{G (AV)}	0.5	W	
Forward Peak Gate Current (Pulse Width ≤ 1.0 µsec, T _C = 75°C)	I _{GM}	2.0	А	
Operating Junction Temperature Range	T,	-40 to +110	°C	
Storage Temperature Range		T _{stq}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the component. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect component reliability.

1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the component are exceeded.

Thermal Characteristics

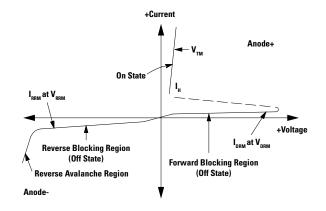
Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{eJC}	2.2	
Thermal Resistance, Junction-to-Ambient	R _{eJA}	88 °C/W	
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{eJA}	80	
Maximum Lead Temperature for Soldering Purposes (Note 3)	T _L	260	°C

Electrical Characteristics - **OFF** (T_J = 25°C unless otherwise noted)

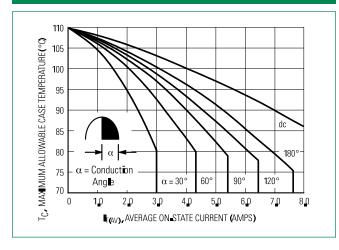
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	T _J = 25°C	I _{DRM}	-	-	10	^
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM'} R_{GK} = 1.0 \text{ k } \Omega)^4$	T _J = 110°C	I	-	-	500	μΑ

Electrical Characteristics - **ON** $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Reverse Gate Blocking Voltage, (I _{GR} = 10 μA)		V_{GRM}	10	12.5	18	V
Peak Reverse Gate Blocking Current, (V _{GR} = 10 V)		I _{GRM}	_	_	1.2	μА
Peak Forward On-State Voltage (Note 5), (I _{TM} = 20 A)		V _{TM}	-	1.3	1.9	V
Gate Trigger Voltage (Note 6)	$T_J = 25^{\circ}C$	1	5.0	12	200	
$(V_{AK} = 12 \text{ Vdc}; R_L = 100 \Omega, T_C = 110^\circ)$	T _J = -40°C	GT	_	_	300	μΑ
Gate Trigger Voltage (Continuous dc) (Note 6) $(V_{AK} = 12 \text{ V}; \text{ R}_1 = 100 \Omega)$	T _J = 25°C		0.45	0.65	1.0	V
	T _J = -40°C	V _{GT}	_	_	1.5	
(VAK 12 V, VL 18811)	T _J = 110°C		0.2	-	-	
Holding Current	T _J = 25°C		0.5	1.0	6.0	A
$(V_D = 12 \text{ V, Initiating Current} = 200 \text{ mA, R}_{GK} = 1 \text{ k}\Omega)$	T _J = -40°C	I _H	_	_	10	mA
Latching Current	T _J = 25°C		0.5	1.0	6.0	A
$(V_D = 12 \text{ V}, I_G = 2.0 \text{ mA}, R_{GK} = 1 \text{ k}\Omega)$	T _J = -40°C	i 'L	_	_	10	mA
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)		I _{RGM}	_	_	1.2	μΑ
Turn-On Time (Source Voltage = 12 V, $R_S = 6.0 \text{ K}\Omega$, $I_T = 16 \text{ A(pk)}$, $R_{GK} = 1.0 \text{ K}\Omega$) ($V_D = \text{Rated V}_{DRM'}$ Rise Time = 20 ns, Pulse Width = 10 μ s)		t _{gt}	-	2.0	5.0	μs



Dynamic Characteristics Characteristic Symbol Min Max Unit Тур Critical Rate of Rise of Off-State Voltage dv/dt 2.0 10 V/µs (VD = 0.67 x Rated VDRM, Exponential Waveform, RGK = 1.0 K, TJ = 110°C) Critical Rate of Rise of On-State Current di/dt 50 100 A/µs (IPK = 50 A, PW = 40 sec, diG/dt = 1 A/sec, IGT = 10 mA)


- 2. These ratings are applicable when surface mounted on the minimum pad sizes recommended
- 3. 1/8" from case for 10 seconds.
- 4. Ratings apply for negative gate voltage or R_{nx} = 1.0 kΩ Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Component should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage. **5.** Pulse Test: Pulse Width ≤ 2.0 msec, Duty Cycle $\leq 2\%$.
- 6. R_{GK} current not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I,	Holding Current

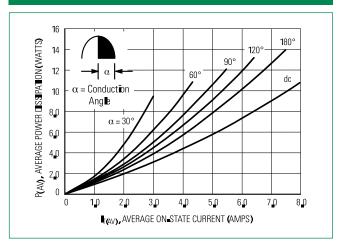


Figure 3. On-State Characteristics

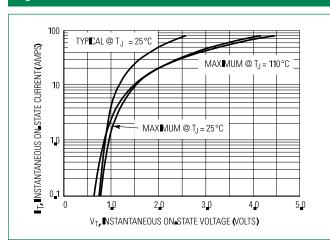


Figure 4. Transient Thermal Response

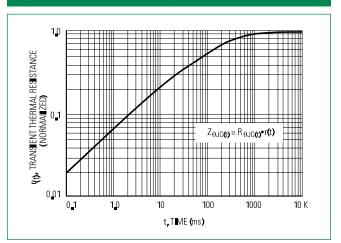


Figure 5. Typical Gate Trigger Current vs Junction Temperature

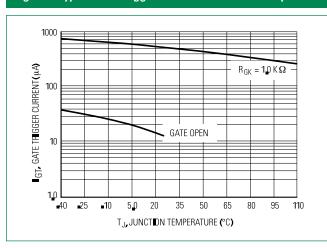


Figure 6. Typical Gate Trigger Voltage vs Junction Temperature

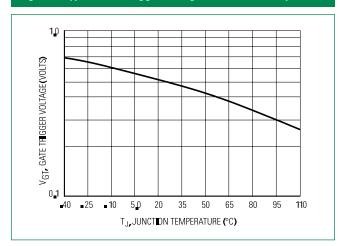


Figure 7. Typical Holding Current vs Junction Temperature

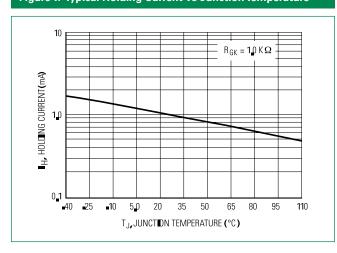


Figure 8. Typical Latching Current vs Junction Temperature

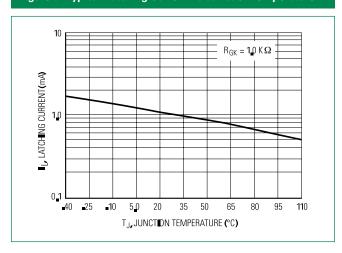


Figure 9. Holding Current vs Gate-Carthode Resistance

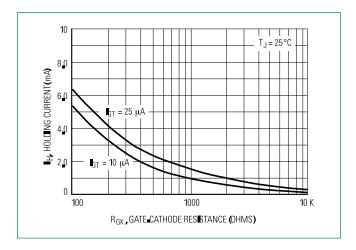


Fig.10 Exponential Static dv/dt vs Gate-Carthode Resistance & Junction Temp

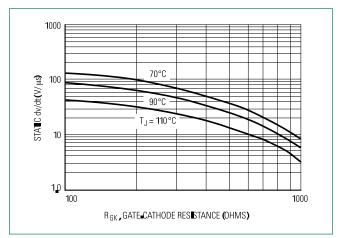


Figure 11. Typical Gate Trigger Current vs Junction Temperature

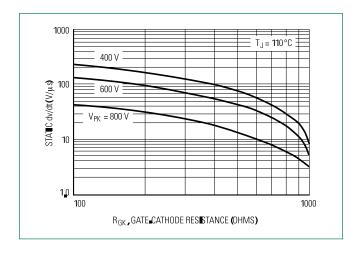
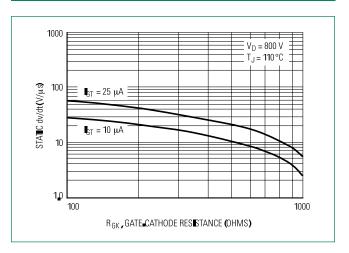
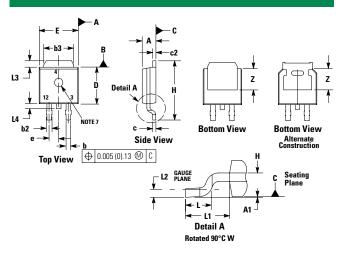
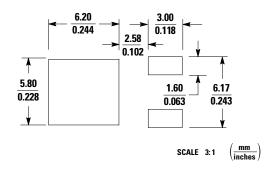




Figure 12. Typical Gate Trigger Voltage vs Junction Temperature

Dimensions

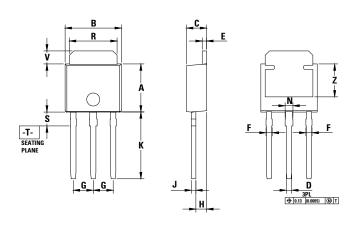


	Inc	hes	Millimeters		
Dim	Min	Max	Min	Max	
Α	0.087	0.094	2.20	2.40	
A1	0.000	0.005	0.00	0.12	
b	0.022	0.030	0.55	0.75	
b2	0.026	0.033	0.65	0.85	
b3	0.209	0.217	5.30	5.50	
С	0.019	0.023	0.49	0.59	
c2	0.019	0.023	0.49	0.59	
D	0.213	0.224	5.40	5.70	
E	0.252	0.260	6.40	6.60	
е	0.0	91	2.30		
Н	0.374	0.406	9.50	10.30	
L	0.058	0.070	1.47	1.78	
L1	0.1	114	2.90		
L2	0.019	0.023	0.49	0.59	
L3	0.053	0.065	1.35	1.65	
L4	0.028	0.039	0.70	1.00	
Z	0.154	-	3.90	-	

- 1. Dimensioning and tolerancing per asme y14.5m, 1994.

- 2. Controlling dimension: inch.
 3. Thermal pad contour optional within di-mensions b3, l3 and z.
 4. Dimensions d and e do not include mold flash, protrusions, or burrs. Mold flash, protrusions, or gate burrs shall 13 z not exceed 0.006 Inches per side.
- 5. Dimensions d and e are determined at the outermost extremes of the plastic body.
 6. Datums a and b are determined at datum plane h.

Soldering Footprint



Dimensions

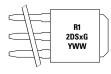
DPAK-3 Case 369D

T0251-3L P0D

Dim	Dim		Millin	neters	
Dim	Min	Max	Min	Max	
Α	0.213	0.224	5.40	5.70	
В	0.252	0.260	6.40	6.60	
С	0.087	0.094	2.20	2.40	
D	0.024	0.030	0.60	0.75	
E	0.022	0.026	0.55	0.65	
F	0.022	0.03	0.58	0.78	
G	0.091		2.30		
Н	0.046	0.050	1.18	1.28	
J	0.019	0.023	0.49	0.59	
K	0.291	0.315	7.40	8.00	
N	0.031	0.038	0.78	0.98	
R	0.209	0.217	5.30	5.50	
s	0.063		1.6	60	
V	0.053	0.065	1.35	1.65	
Z	0.1	0.150		80	

- Dimensioning and Tolerancing Per ANSI Y14.5M, 1982.
 Controlling Dimension: Inch.
- STYLE 6:Pin 1. MT1
- 2. MT2 3. Gate 4. MT2

Part Marking System



DPAK-3 Case 369C Style 4

DPAK-3 Case 369D Style 4

R12DSx = Device Code = M, or N = Year ww = Work Week = Pb-Free Package

Pin Assignment				
1	Cathode			
2	Anode			
3	Gate			
4	Anode			

Ordering Information

Device	Package Type	Package	Shipping
MCR12DSMT4G	DPAK	369C	2500 Tape & Reel
MCR12DSN-1G	IPAK	369D	4000 Units/Box
MCR12DSNT4G	DPAK	369C	2500 Tape & Reel

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littleffuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics