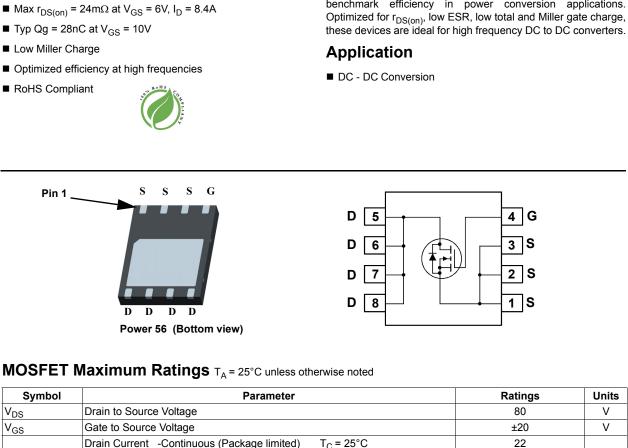


Is Now Part of




# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="mailto:www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="mailto:Fairchild\_questions@onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.



N-Channel UltraFET Trench<sup>®</sup> MOSFET

UltraFET devices combine characteristics that enable benchmark efficiency in power conversion applications.

February 2007

| Power 56 (Bottom view)                                |                       |           |         |       |  |
|-------------------------------------------------------|-----------------------|-----------|---------|-------|--|
|                                                       |                       |           |         |       |  |
| <b>aximum Ratings</b> T <sub>A</sub> = 25°C unless of | herwise noted         |           |         |       |  |
| Parameter                                             |                       |           | Ratings | Units |  |
| Drain to Source Voltage                               |                       |           | 80      | V     |  |
| Gate to Source Voltage                                |                       |           | ±20     | V     |  |
| Drain Current -Continuous (Package limited)           | T <sub>C</sub> = 25°C |           | 22      |       |  |
| -Continuous (Silicon limited)                         | T <sub>C</sub> = 25°C |           | 48      | Α     |  |
| -Continuous                                           | T <sub>A</sub> = 25°C | (Note 1a) | 8.8     |       |  |
| -Pulsed                                               |                       |           | 50      |       |  |
| Power Dissipation                                     | T <sub>C</sub> = 25°C |           | 78      |       |  |
| Power Dissipation                                     | T <sub>A</sub> = 25°C | (Note 1a) | 2.5     |       |  |
|                                                       |                       |           |         |       |  |

**General Description** 

## **Thermal Characteristics**

 $I_D$ 

 $P_D$ 

Downloaded from Arrow.com.

T<sub>J</sub>, T<sub>STG</sub>

FAIRCHILD SEMICONDUCTOR

**FDMS3572** 

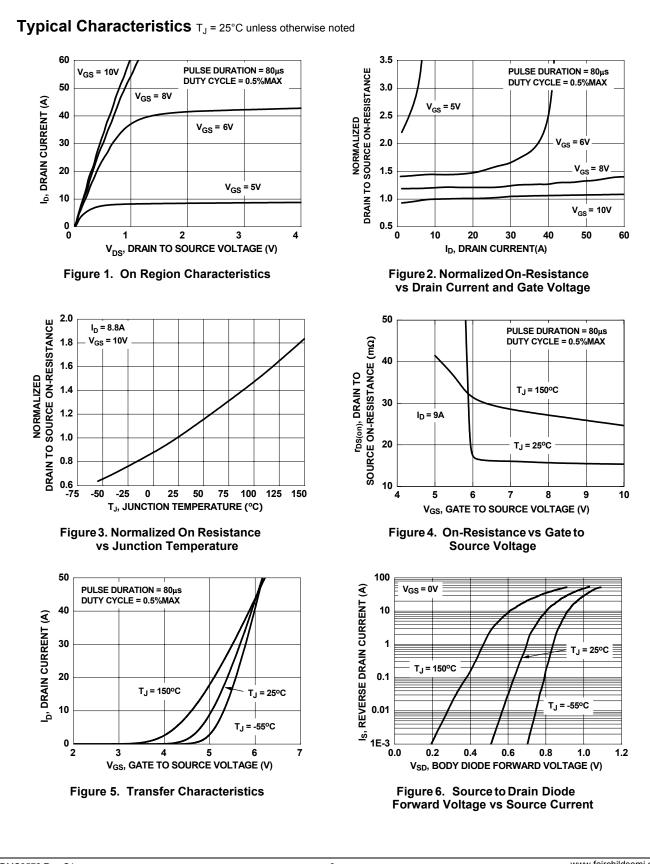
Features

**80V, 22A, 16.5m**Ω

Max r<sub>DS(on)</sub> = 16.5mΩ at V<sub>GS</sub> = 10V, I<sub>D</sub> = 8.8A

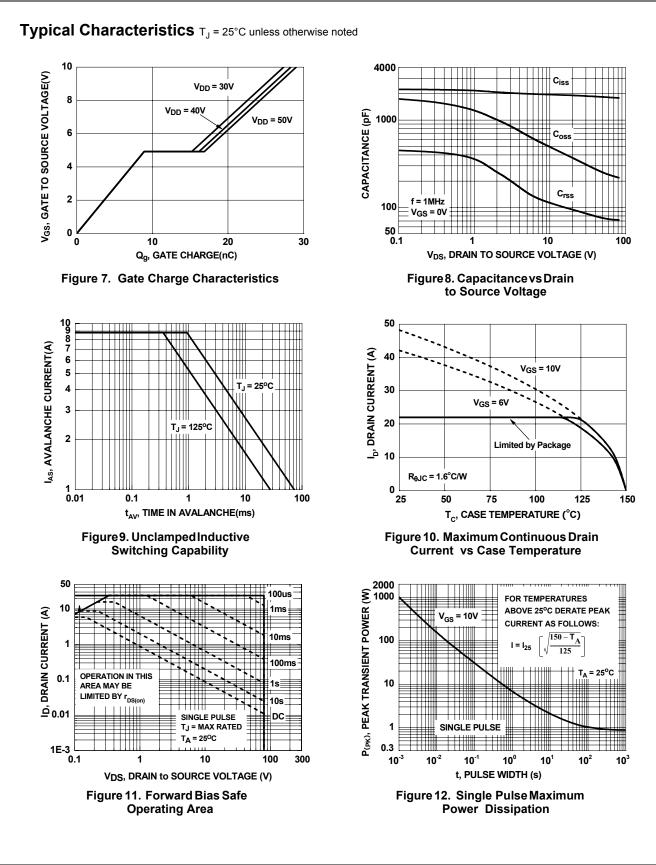
| $R_{\theta JC}$ | Thermal Resistance, Junction to Case              | 1.6 | °C/W |
|-----------------|---------------------------------------------------|-----|------|
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient (Note 1a) | 50  | 0/11 |

## Package Marking and Ordering Information


Operating and Storage Junction Temperature Range

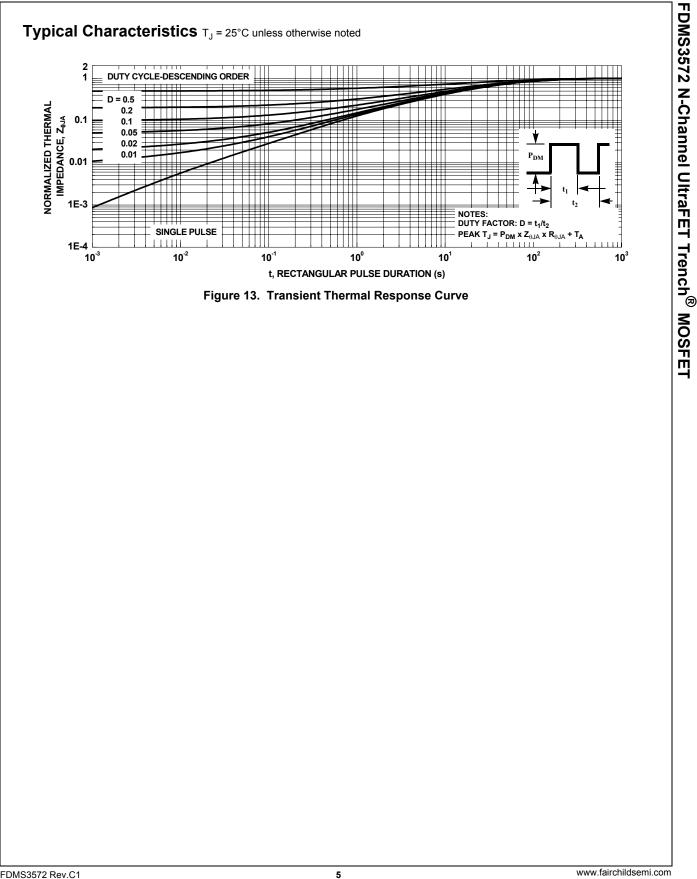
| Device Marking | Device   | Package  | Reel Size | Tape Width | Quantity   |
|----------------|----------|----------|-----------|------------|------------|
| FDMS3572       | FDMS3572 | Power 56 | 13"       | 12mm       | 3000 units |

°C


-55 to +150

| Symbol                                                    | Parameter                                                                                                                                                         | Test Conditions                                               | Min | Тур         | Max       | Units       |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----|-------------|-----------|-------------|
| Off Chara                                                 | cteristics                                                                                                                                                        |                                                               |     |             |           |             |
| BV <sub>DSS</sub>                                         | Drain to Source Breakdown Voltage                                                                                                                                 | I <sub>D</sub> = 250μA, V <sub>GS</sub> = 0V                  | 80  |             |           | V           |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$                    | Breakdown Voltage Temperature<br>Coefficient                                                                                                                      | $I_D = 250 \mu$ A, referenced to 25°C                         |     | 76          |           | mV/°C       |
| I <sub>DSS</sub>                                          | Zero Gate Voltage Drain Current                                                                                                                                   | V <sub>DS</sub> = 64V, V <sub>GS</sub> = 0V                   |     |             | 1         | μA          |
| I <sub>GSS</sub>                                          | Gate to Source Leakage Current                                                                                                                                    | $V_{GS} = \pm 20V, V_{DS} = 0V$                               |     |             | ±100      | nA          |
|                                                           |                                                                                                                                                                   | 63 7 13 7                                                     | 1   | 1           |           | 1           |
| On Chara                                                  | cteristics                                                                                                                                                        |                                                               |     |             |           |             |
| V <sub>GS(th)</sub>                                       | Gate to Source Threshold Voltage                                                                                                                                  | $V_{GS} = V_{DS}, I_D = 250 \mu A$                            | 2   | 3.2         | 4         | V           |
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$                    | Gate to Source Threshold Voltage<br>Temperature Coefficient                                                                                                       | $I_D = 250 \mu A$ , referenced to $25^{\circ}C$               |     | -11         |           | mV/°C       |
|                                                           |                                                                                                                                                                   | V <sub>GS</sub> = 10V, I <sub>D</sub> = 8.8A                  |     | 13.5        | 16.5      |             |
| r <sub>DS(on)</sub>                                       | Drain to Source On Resistance                                                                                                                                     | $V_{GS} = 6V, I_{D} = 8.4A$                                   |     | 18.3        | 24        | mΩ          |
|                                                           |                                                                                                                                                                   | $V_{GS}$ = 10V, I <sub>D</sub> = 8.8A, T <sub>J</sub> = 125°C |     | 22.2        | 29        |             |
| 9 <sub>FS</sub>                                           | Forward Transconductance                                                                                                                                          | V <sub>DS</sub> = 10V, I <sub>D</sub> = 8.8A                  |     | 23          |           | S           |
| Dynamic                                                   | Characteristics                                                                                                                                                   |                                                               |     |             |           |             |
| -                                                         |                                                                                                                                                                   |                                                               |     | 4070        | 0.400     |             |
| C <sub>iss</sub>                                          |                                                                                                                                                                   | V <sub>DS</sub> = 40V, V <sub>GS</sub> = 0V,                  |     | 1870        | 2490      | pF          |
| C <sub>oss</sub>                                          | Output Capacitance                                                                                                                                                | f = 1MHz                                                      |     | 275         | 365       | рF          |
| C <sub>rss</sub>                                          | Reverse Transfer Capacitance<br>Gate Resistance                                                                                                                   | f = 1MHz                                                      |     | 78          | 120       | pF<br>Ω     |
| R <sub>g</sub>                                            | Gale Resistance                                                                                                                                                   |                                                               |     | 1.3         |           | 52          |
| Switching                                                 | g Characteristics                                                                                                                                                 |                                                               |     |             |           |             |
| t <sub>d(on)</sub>                                        | Turn-On Delay Time                                                                                                                                                |                                                               |     | 11          | 20        | ns          |
| t <sub>r</sub>                                            | Rise Time                                                                                                                                                         | $V_{DD} = 40V, I_D = 8.8A$                                    |     | 13          | 24        | ns          |
| t <sub>d(off)</sub>                                       | Turn-Off Delay Time                                                                                                                                               | $-V_{GS}$ = 10V, $R_{GEN}$ = 6 $\Omega$                       |     | 24          | 39        | ns          |
| t <sub>f</sub>                                            | Fall Time                                                                                                                                                         |                                                               |     | 12          | 22        | ns          |
| Q <sub>g(TOT)</sub>                                       | Total Gate Charge at 10V                                                                                                                                          | $V_{GS}$ = 0V to 10V $V_{DD}$ = 40V                           |     | 28          | 40        | nC          |
| Q <sub>gs</sub>                                           | Gate to Source Gate Charge                                                                                                                                        | I <sub>D</sub> = 8.8A                                         |     | 9           |           | nC          |
| Q <sub>gd</sub>                                           | Gate to Drain "Miller" Charge                                                                                                                                     |                                                               |     | 8           |           | nC          |
|                                                           | maa Diada Ohamaataniatiaa                                                                                                                                         |                                                               |     |             |           |             |
|                                                           | arce Diode Characteristics                                                                                                                                        |                                                               |     |             |           |             |
| V <sub>SD</sub>                                           | Source to Drain Diode Forward Voltage                                                                                                                             | $V_{GS} = 0V, I_S = 8.8A$ (Note 2)                            |     | 0.8         | 1.2       | V           |
| t <sub>rr</sub>                                           | Reverse Recovery Time                                                                                                                                             | I <sub>F</sub> = 8.8A, di/dt = 100A/μs                        |     | 43          | 65        | ns          |
| Q <sub>rr</sub>                                           | Reverse Recovery Charge                                                                                                                                           |                                                               |     | 71          | 107       | nC          |
| Notes:<br>1: R <sub>0JA</sub> is deterr<br>the user's boa | nined with the device mounted on a 1in <sup>2</sup> pad 2 oz copper pard design.<br>ard design.<br>a. 50°C/W when mount<br>a 1 in <sup>2</sup> pad of 2 oz copper | ed on b. 1                                                    |     | n mounted o |           | etermined b |
|                                                           | 00000<br>00000                                                                                                                                                    | <b>T</b><br>888888                                            |     |             |           |             |
| 2: Pulse Test: P                                          | ulse Width < 300µs, Duty cycle < 2.0%.                                                                                                                            |                                                               |     |             |           |             |
|                                                           |                                                                                                                                                                   | 2                                                             |     |             | 140404/ f | airchildser |




www.fairchildsemi.com





FDMS3572 Rev.C1

www.fairchildsemi.com



FDMS3572 Rev.C1

\_\_\_0.10 C 2X 5.0 A -0.77Ð 8 5 X 4.52 6.0 6.61 4.32 3.91-4 0.10 C 2X PIN #1 IDENT -1 TOP VIEW 0.61 TYP. 1.27 TYP -0.8 MAX RECOMMENDED LAND PATTERN // 0.10 C (0.25)C 0.08 C ¢ 0.05 0.00 SIDE VIEW SEATING PLANE 3.86 <u>@</u> 3.66 0.64 0.44 PIN #1 IDENT (OPTIONAL) 3.42 3.22 4.01? .10 5 1.27 0.36-0.46 🚯 ⊕ 0.10 M C A B 3.81 0 ⊕ 0.05 M C BOTTOM VIEW NOTES: ODES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229. DATED 11/2001. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994 D. TERMINALS 5,6,7 AND 8 ARE TIED TO THE EXPOSED PADDLE MLP08GrevD

www.fairchildsemi.com

#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx <sup>TM</sup><br>ActiveArray <sup>TM</sup><br>Bottomless <sup>TM</sup><br>Build it Now <sup>TM</sup><br>CoolFET <sup>TM</sup><br>$CROSSVOLT^{TM}$<br>DOME <sup>TM</sup><br>EcoSPARK <sup>TM</sup><br>$E^2CMOS^{TM}$<br>EnSigna <sup>TM</sup><br>FACT <sup>®</sup><br>FAST <sup>®</sup><br>FAST <sup>®</sup><br>FAST <sup>®</sup><br>FAST <sup>TM</sup><br>FRFET <sup>TM</sup><br>Across the board. Around<br>The Power Franchise <sup>®</sup><br>Programmable Active Dro |  | OCX <sup>TM</sup><br>OCXPro <sup>TM</sup><br>OPTOLOGIC <sup>®</sup><br>OPTOPLANAR <sup>TM</sup><br>PACMAN <sup>TM</sup><br>POWer247 <sup>TM</sup><br>Power247 <sup>TM</sup><br>PowerEdge <sup>TM</sup><br>PowerSaver <sup>TM</sup><br>PowerTrench <sup>®</sup><br>QFET <sup>®</sup><br>QFT <sup>®</sup><br>QS <sup>TM</sup><br>QT Optoelectronics <sup>TM</sup><br>Quiet Series <sup>TM</sup><br>RapidConfigure <sup>TM</sup><br>RapidConfigure <sup>TM</sup><br>RapidConnect <sup>TM</sup><br>$\mu$ SerDes <sup>TM</sup><br>ScalarPump <sup>TM</sup> | SILENT SWITCHER <sup>®</sup><br>SMART START <sup>™</sup><br>SPM <sup>™</sup><br>Stealth <sup>™</sup><br>SuperFET <sup>™</sup><br>SuperSOT <sup>™</sup> -3<br>SuperSOT <sup>™</sup> -6<br>SuperSOT <sup>™</sup> -6<br>SuperSOT <sup>™</sup> -8<br>SyncFET <sup>™</sup><br>TCM <sup>™</sup><br>TinyBoost <sup>™</sup><br>TinyBoost <sup>™</sup><br>TinyBoost <sup>™</sup><br>TinyBuck <sup>™</sup><br>TinyPWM <sup>™</sup><br>TinyPWM <sup>™</sup><br>TinyPower <sup>™</sup><br>TinyLogic <sup>®</sup><br>TINYOPTO <sup>™</sup><br>TruTranslation <sup>™</sup><br>UHC <sup>®</sup> | UniFET <sup>TM</sup><br>VCX <sup>TM</sup><br>Wire <sup>TM</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|

#### DISCLAIMER

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |

www.fairchildsemi.com

FDMS3572 Rev. C1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC