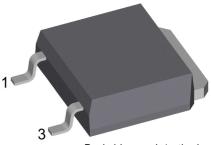


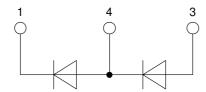
Standard Rectifier

=2x1200 V

10 A


 V_{F} 1.27 V

Phase leg


Part number

DMA10P1200UZ

Marking on Product: MATMZP

Backside: anode/cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very low forward voltage drop
- Improved thermal behaviour • High commutation robustness
- High surge capability

Applications:

- Diode for main rectification
- For single and three phase bridge configurations

Package: TO-252 (DPak)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- High creepage distance between terminals

Terms and Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

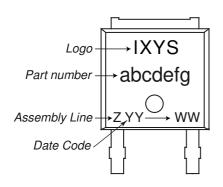
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20180905a

IXYS reserves the right to change limits, conditions and dimensions.

© 2018 IXYS all rights reserved


Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V_{RRM}	max. repetitive reverse blocking	ı voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			5	μΑ
		$V_R = 1200 V$	$T_{VJ} = 150$ °C			0.05	mΑ
V _F	forward voltage drop	I _F = 5 A	$T_{VJ} = 25^{\circ}C$			1.29	V
		$I_F = 10 A$				1.55	V
		I _F = 5 A	$T_{VJ} = 150 ^{\circ}\text{C}$			1.27	V
		$I_F = 10 A$				1.63	V
I _{FAV}	average forward current	T _C = 140°C	T _{VJ} = 175°C			10	Α
		180° sine					
V _{F0}	threshold voltage		T _{vJ} = 175°C			0.90	V
r _F	slope resistance } for power	loss calculation only				37	mΩ
R _{thJC}	thermal resistance junction to ca	ase				2	K/W
R _{thCH}	thermal resistance case to heat	sink			0.5		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			75	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			100	Α
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			110	Α
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			85	Α
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			92	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			50	A ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			50	A²s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			36	A ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			35	A²s
C	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		1		pF

Package TO-252 (DPak)				Ratings			
Symbol	Definition Condition	ıs	min.	typ.	max.	Unit	
I _{RMS}	RMS current per termina	ıl			20	Α	
T _{VJ}	virtual junction temperature		-55		175	°C	
T _{op}	operation temperature		-55		150	°C	
T _{stg}	storage temperature		-55		150	°C	
Weight				0.3		g	
F _c	mounting force with clip		20		60	N	
d _{Spp/App}	creepage distance on surface striking distance throug	terminal to terminal	3.6			mm	
d _{Spb/Apb}	creepage distance on surface Striking distance through	terminal to backside	3.0			mm	

Product Marking

Part description

D = Diode

M = Standard Rectifier

A = (up to 1800V)

10 = Current Rating [A]

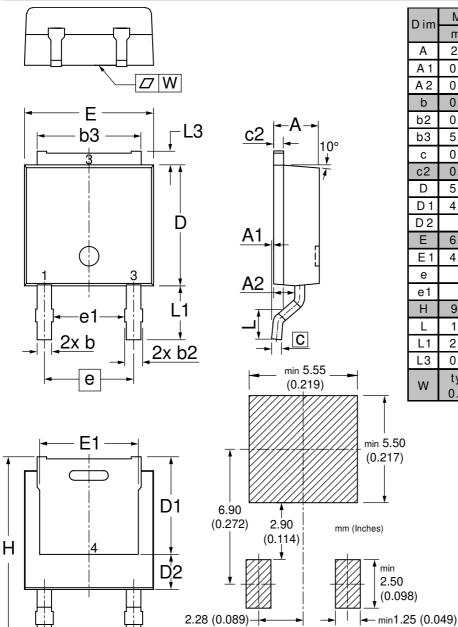
P = Phase leg

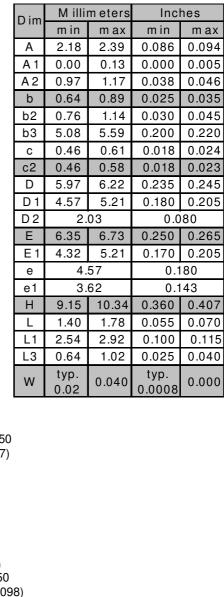
1200 = Reverse Voltage [V] UZ = TO-252AA (DPak) (2HV)

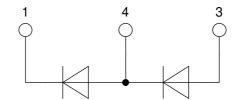
Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DMA10P1200UZ-TRL	MATMZP	Tape & Reel	2500	524603
Alternative	DMA10P1200UZ-TUB	MATMZP	Tube	70	524596

Similar Part	Package	Voltage class
DMA10P1600UZ	TO-252AA (DPak) (2HV)	1600

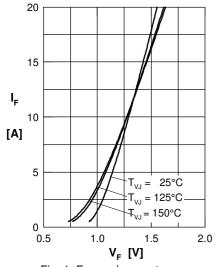
Equivalent Circuits for Simulation		* on die level	$T_{VJ} = 175 ^{\circ}\text{C}$	
$I \rightarrow V_0$)— <u>R</u> o	Rectifier		
V _{0 max}	threshold voltage	0.9		V
$R_{0 \; max}$	slope resistance *	34		$m\Omega$

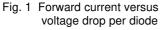

IXYS reserves the right to change limits, conditions and dimensions.


Data according to IEC 60747and per semiconductor unless otherwise specified


20180905a

Outlines TO-252 (DPak)





Recommended min. foot print

Rectifier

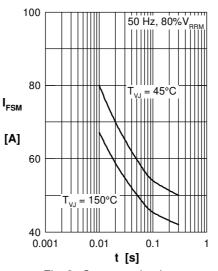


Fig. 2 Surge overload current

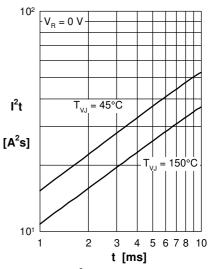


Fig. 3 I²t versus time per diode

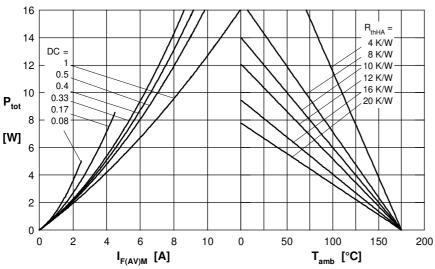


Fig. 4 Power dissipation vs. direct output current and ambient temperature

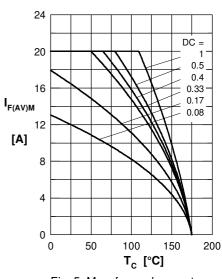


Fig. 5 Max. forward current vs. case temperature

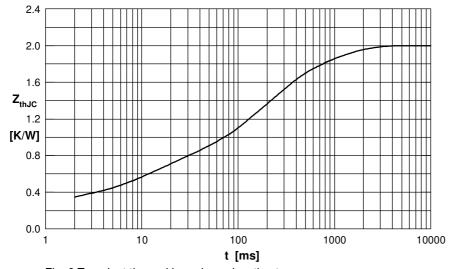


Fig. 6 Transient thermal impedance junction to case

Constants for Z_{thJC} calculation:

i	R _{thi} (K/W)	t _i (s)
1	0.275	0.0005
2	0.385	0.0105
3	0.880	0.1700
4	0.460	0.8500

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

20180905a